Basis Partitions

Jennifer M. Nolan*
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27695-8206

Carla D. Savage ${ }^{\dagger}$
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27695-8206

Herbert S. Wilf ${ }^{\ddagger}$
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104-6395

Abstract

We study basis partitions, introduced by Hansraj Gupta in 1978. For this family of partitions, we give a recurrence, a generating function, identities relating basis partitions to more familiar families of partitions, and a new characterization of basis partitions.

1 Introduction

In a 1978 paper [1], Hansraj Gupta introduced an interesting class of integer partitions called basis partitions. An integer partition is a basis partition if, in the class of all partitions with its rank vector (see below), its weight is minimum. A partition π of a positive integer n is a sequence of positive integers $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$ satisfying $\pi_{1} \geq \pi_{2} \geq \ldots \geq \pi_{l}$ and $\pi_{1}+\pi_{2}+\ldots+\pi_{l}=n$. We will call n the weight of π, and will write $n=|\pi|$. We write $P(n)$ for the set of all partitions of n, where $P(0)$ contains only the empty partition, λ.

For a partition $\pi=\left(\pi_{1}, \ldots, \pi_{l}\right)$, the associated Ferrers graph is the array of l rows of dots, where row i has π_{i} dots and rows are left justified. Let π^{\prime} denote the conjugate partition $\pi^{\prime}=\left(\pi_{1}^{\prime}, \ldots, \pi_{m}^{\prime}\right)$ where $m=\pi_{1}$ and π_{i}^{\prime} is the number of dots in the i-th column of the Ferrers graph of π. The Durfee square of π is the largest square subarray of dots in the Ferrers graph of π. Let $d(\pi)$ denote the size (number of rows) of the Durfee square of π. As in [1], define the rank vector of π,

$$
\mathbf{r}(\pi)=\left[\pi_{1}-\pi_{1}^{\prime}, \quad \pi_{2}-\pi_{2}^{\prime}, \ldots, \pi_{d(\pi)}-\pi_{d(\pi)}^{\prime}\right]
$$

[^0]| (10) | $(4,4,1,1)$ |
| :--- | :--- |
| $(8,2)$ | $(3,3,3,1)$ |
| $(7,3)$ | $(3,3,1,1,1,1)$ |
| $(6,2,2)$ | $(2,2,2,2,2)$ |
| $(6,4)$ | $(2,2,2,2,1,1)$ |
| $(5,5)$ | $(2,2,2,1,1,1,1)$ |
| $(4,3,3)$ | $(2,2,1,1,1,1,1,1)$ |
| $(4,2,2,2)$ | $(1,1,1,1,1,1,1,1,1,1)$ |

Figure 1: The basic partitions of 10.
to be the vector of length $d(\pi)$ whose entries are what Atkin [2] calls the successive ranks of π.
Note that a given rank vector is associated with infinitely many partitions. For example, the partitions $\alpha=(13,7,7,6,4,3,3,2,2,1)$ and $\beta=(12,6,5,5,3,2,2,2,1)$ of 48 and 38 , respectively, both have rank vector $[3,-2,0,1]$. However, Gupta shows in [1] that for every rank vector, \mathbf{r}, there is a unique partition π, for which $|\pi|$ is minimum over all partitions with rank vector \mathbf{r}. This partition is called the basis partition of \mathbf{r}. For example, the basis partition of $[3,-2,0,1]$ is (10, 5, 5, 5, 3, 2, 2).

Call a partition π of n basic if it is the basis partition of its associated rank vector and let $B(n)$ be the set of all basic partitions of n. Of the 42 partitions of 10 , only 16 are basic and these are shown in Fig. 1. We consider the empty partition to be a basic partition of $n=0$.

In the next section, we review some results on basis partitions from [1] and use them to derive a generating function and recurrence for $b(n, d)$, the number of basis partitions of n with Durfee square of size d. In Section 3, we give an alternative characterization of basis partitions, as well as identities describing $B(n)$ in terms of more familiar families of partitions.

2 A Generating Function for Basis Partitions

For a partition π, note that if $d=d(\pi)$, then the Ferrers graph of π (and hence π itself) is completely specified by the first d rows $\left(\pi_{1}, \pi_{2}, \ldots \pi_{d}\right)$ and the first d columns $\left(\pi_{1}^{\prime}, \pi_{2}^{\prime}, \ldots \pi_{d}^{\prime}\right)$. It will be convenient to view π as a $2 \times d$ array

$$
\pi=[\mathbf{x}, \mathbf{y}]_{d}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{d} \\
y_{1} & \ldots & y_{d}
\end{array}\right]
$$

where for $1 \leq i \leq d, x_{i}=\pi_{i}$ and $y_{i}=\pi_{i}^{\prime}$.
We focus first on the existence and uniqueness of basis partitions.
Theorem 1 (Gupta) Among all partitions with the same rank vector $\mathbf{r}=\left[r_{1}, \ldots, r_{d}\right]$, there is just one with minimum weight.

Proof. If $\pi=[\mathbf{x}, \mathbf{y}]_{d}$ has rank vector \mathbf{r}, then since $\mathbf{r}=\mathbf{x}-\mathbf{y}$,

$$
\begin{equation*}
|\pi|=\sum_{i=1}^{d}\left(x_{i}+y_{i}\right)-d^{2}=2 \sum_{i=1}^{d} x_{i}-\sum_{i=1}^{d} r_{i}-d^{2} . \tag{1}
\end{equation*}
$$

The key to minimizing $|\pi|$, then, for fixed \mathbf{r}, is to minimize $\sum x_{i}$. Since \mathbf{x}, \mathbf{y} must satisfy $x_{1} \geq x_{2} \geq$ $, \ldots, \geq x_{d} \geq d$ and $y_{1} \geq y_{2} \geq, \ldots, \geq y_{d} \geq d$,

$$
x_{i} \geq \begin{cases}\max \left(x_{i+1}, x_{i+1}+r_{i}-r_{i+1}\right) & \text { if } 1 \leq i<d \tag{2}\\ \max \left(r_{d}+d, d\right) & \text { if } i=d\end{cases}
$$

If $\left[x_{1}, \ldots x_{d}\right]$ is chosen so that equality holds in (2) and if $y_{i}=x_{i}-r_{i}$, then $\pi=[\mathbf{x}, \mathbf{y}]_{d}$ actually is a partition, necessarily with rank vector \mathbf{r}, and by (1), $|\pi|$ is minimum. Since after minimizing the x_{i}, the y_{i} are determined, this π is the unique minimum.

The following simple test will determine whether a partition is basic.
Lemma 1 A partition $\pi=[\mathbf{x}, \mathbf{y}]_{d}$ is basic if and only if both
(i) $x_{d}=d$ or $y_{d}=d$ and
(ii) for $1 \leq i<d$, $\left(x_{i}>x_{i+1}\right)$ implies $\left(y_{i}=y_{i+1}\right)$.

Proof. From the proof of Theorem 1, a partition π is basic if and only if equality holds in (2) and $\mathbf{y}=\mathbf{x}-\mathbf{r}$, that is, if and only if:

$$
x_{i}= \begin{cases}\max \left(x_{i+1}, x_{i+1}+\left(x_{i}-y_{i}\right)-\left(x_{i+1}-y_{i+1}\right)\right. & \text { if } 1 \leq i<d \\ \max \left(x_{d}-y_{d}+d, d\right) & \text { if } i=d\end{cases}
$$

For $1 \leq i<d$, note that since π is a partition, $x_{i} \geq x_{i+1} \geq d$. Thus, equality in this case above occurs if and only if whenever $x_{i}>x_{i+1}$, we have

$$
x_{i}=x_{i+i}+\left(x_{i}-y_{i}\right)-\left(x_{i+1}-y_{i+1}\right),
$$

that is, $y_{i}=y_{i+1}$. Equality in case $i=d$ occurs if and only if $x_{d}=d$ or if $x_{d}=x_{d}-y_{d}+d$, that is, $y_{d}=d$.

Finally, Gupta [1] notes the following bijection, where $p(n, d)$ denotes the number of partitions of n into at most d parts.

Theorem 2 [Gupta] Let $\mathbf{r}=\left[r_{1}, \ldots r_{d}\right]$ and let $\pi=[\mathbf{x}, \mathbf{y}]_{d}$ be the basis partition of \mathbf{r}. The number of partitions of n with rank vector \mathbf{r} is $p(m, d)$ where $m=(n-|\pi|) / 2$.

Proof. If $z_{1} \geq z_{2} \geq \ldots \geq z_{d}$ is a partition in the set counted by $p(m, d)$, then $[\mathbf{x}+\mathbf{z}, \mathbf{y}+\mathbf{z}]_{d}$ is a partition of n with rank vector \mathbf{r}. Conversely, if partition $\sigma=[\mathbf{u}, \mathbf{v}]_{d}$ of n has rank vector \mathbf{r}, then by the proof of Theorem 1 , for $1 \leq i \leq d$ we have $u_{i} \geq x_{i}, v_{i} \geq y_{i}$, and $z_{i}=u_{i}-x_{i}=v_{i}-y_{i} \geq 0$. If $x_{i}=x_{i+1}$, then $z_{i}-z_{i+1}=u_{i}-u_{i+1} \geq 0$. Otherwise, by Lemma 1 (ii), $y_{i} \geq y_{i+1}$ and then $z_{i}-z_{i+1}=v_{i}-v_{i+1} \geq 0$. Thus, $z_{1} \geq z_{2} \geq \ldots \geq z_{d} \geq 0$ and the nonzero terms in this sequence form a partition of $(n-|\pi|) / 2$.

Let $B(n, d)$ be the set of basic partitions of n which have a rank vector of length d, that is, Durfee square of size d, and let $b(n, d)=|B(n, d)|$. The empty partition is the sole element of $B(0,0)$. A partition can be classified according to the length of its rank vector \mathbf{r} and the weight n_{0} of the basis partition associated with \mathbf{r}. Combining this with Theorem 2 gives the following.

Corollary 1 The number $p_{d}(n)$ of partitions of n with Durfee square of size d satisfies

$$
p_{d}(n)=\sum_{n_{0}=0}^{n} b\left(n_{0}, d\right) p\left(\left(n-n_{0}\right) / 2, d\right),
$$

in which it is understood that $p(n, d)=0$ if n is not an integer.
From this, we can derive the generating function for $b(n, d)$.
Corollary 2 For $d \geq 0$ the generating function $\Psi_{d}(q)$ for $b(n, d)$ is

$$
\begin{equation*}
\Psi_{d}(q)=\sum_{n \geq d^{2}} b(n, d) q^{n}=\frac{(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{d}\right)}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{d}\right)} q^{d^{2}} . \tag{3}
\end{equation*}
$$

Proof. Letting $\Phi_{k}(q)$ denote the well-known generaing function for $p(n, k)$,

$$
\Phi_{k}(q)=\frac{1}{(1-q) \ldots\left(1-q^{k}\right)},
$$

we have from Corollary 1 that

$$
q^{d^{2}}\left[\Phi_{d}(q)\right]^{2}=\Psi_{d}(q) \Phi_{d}(2 q)
$$

This gives

$$
\begin{equation*}
\Psi_{d}(q)=\frac{\left(1-q^{2}\right)\left(1-q^{4}\right) \ldots\left(1-q^{2 d}\right)}{(1-q)^{2}\left(1-q^{2}\right)^{2} \ldots\left(1-q^{d}\right)^{2}} q^{d^{2}}=\frac{(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{d}\right)}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{d}\right)} q^{d^{2}} \tag{4}
\end{equation*}
$$

From the partial fraction expansion of (3), for fixed d, we have $b(n, d) \sim 2^{d} n^{d-1} /(d-1)$!, for large n, compared with $n^{2 d-1} /\left(d!^{2}(2 d-1)!\right.$), for the number of all partitions of n whose Durfee square has size d.

We can obtain from (3) a recurrence for $b(n, d)$. since

$$
\Psi_{d}(q)=\frac{\left(1+q^{d}\right)}{\left(1-q^{d}\right)} q^{d^{2}-(d-1)^{2}} \Psi_{d-1}(q),
$$

or equivalently,

$$
\left(1-q^{d}\right) \Psi_{d}(q)=\left(q^{2 d-1}+q^{3 d-1}\right) \Psi_{d-1}(q),
$$

the following recurrence results from comparing the coefficients of q^{n} on both sides.
Corollary 3 We have $b(0,0)=1$, and $b(n, d)=0$ if otherwise n or d is nonpositive, and finally, if n and d are both positive, then

$$
b(n, d)=b(n-d, d)+b(n-2 d+1, d-1)+b(n-3 d+1, d-1) .
$$

3 An Alternative Characterization of Basis Partitions

Let $D(n, d)$ be the number of partitions of n into distinct parts of size at most d. Since $D(n, d)$ has generating function $(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{d}\right)$, Corollary 2 gives:

$$
\begin{equation*}
b(n, d)=\sum_{j \geq 0}|D(j, d)| p\left(n-d^{2}-j, d\right) . \tag{5}
\end{equation*}
$$

This would suggest that when the $d \times d$ Durfee square is removed from the Ferrers graph of a basis partition, what remains is a partition into distinct parts together with an ordinary partition. However, this is not the case, for example, for $\pi=(7,6,6,4,4,4,2,2)$. In this section we present another way to view basis partitions which will make (5) clear.

For a partition $\pi=[\mathbf{x}, \mathbf{y}]_{d}$, let ρ and σ denote the partitions

$$
\rho=\left(x_{1}-d, x_{2}-d, \ldots, x_{d}-d\right)
$$

and

$$
\sigma=\left(y_{1}-d, y_{2}-d, \ldots, y_{d}-d\right)
$$

where parts of size 0 are ignored. Then ρ and σ represent the partitions east and south, respectively, of the Durfee square in the Ferrers graph A of π, oriented as shown in Fig. 2. So, π can be represented as the triple $\pi=(d, \rho, \sigma)$.

For convenience below, let $\rho_{i}=\sigma_{i}=0$ if $i>d$.
Theorem 3 The partition $\pi=(d, \rho, \sigma)$ is basic if and only if the conjugate partitions ρ^{\prime} and σ^{\prime} have no common parts.

Figure 2: Representation of a partition π with Durfee square of size d as a triple (d, ρ, σ).

Proof. Interpreting Lemma 1 in terms of ρ and $\sigma, \pi=(d, \rho, \sigma)$ is basic if and only if for $1 \leq i \leq d$,

$$
\left(\rho_{i}>\rho_{i+1}\right) \Rightarrow\left(\sigma_{i}=\sigma_{i+1}\right)
$$

We show that $\rho_{i}>\rho_{i+1}$ if and only if ρ^{\prime} contains a part of size i (and similarly for σ^{\prime} if $\sigma_{i}>\sigma_{i+1}$.) It follows that ρ^{\prime} and σ^{\prime} each contain a part of size i if and only if both $\rho_{i}>\rho_{i+1}$ and $\sigma_{i}>\sigma_{i+1}$, that is, π is not basic.

To complete the proof, if $\rho_{i}>\rho_{i+1}$, then ρ^{\prime} contains a part of size i, namely, $\rho_{k}^{\prime}=i$ for $k=\rho_{i}-d$. Conversely, if ρ^{\prime} contains a part of size i, let j be the position of the last i in ρ^{\prime}. Then $\rho_{i}=d+j$ and $\rho_{i}>\rho_{i+1}$.

We now give a bijective proof of (5). Define a mapping

$$
\Theta: B(n, d) \longrightarrow \bigcup_{j=0}^{n-d^{2}}\left(D(j, d) \times P\left(n-d^{2}-j, d\right)\right)
$$

for $\pi=(d, \rho, \sigma) \in B(n, d)$ by $\Theta((d, \rho, \sigma))=(\alpha, \beta)$ where ($\left.\alpha^{\prime}, \beta^{\prime}\right)$ is obtained from ($\left.\rho^{\prime}, \sigma^{\prime}\right)$ by moving all but one copy of each part of ρ^{\prime} to σ^{\prime}. For example, $\Theta(12,9,6,6,3)=\Theta(4,(8,5,2,2),(3))=$ $((3,2,1,1),(4,3,2,2,1,1,1))$. Since by Theorem $3, \rho^{\prime}$ and σ^{\prime} had no common part, (d, ρ, σ) can be recovered from (α, β) by moving from α^{\prime} to β^{\prime} all parts of α^{\prime} which occur in β^{\prime}.

Let $q(n, k, d)$ be the number of partitions of n (into an arbitrary number of parts) that have exactly k distinct parts, and all of those parts are at most d. In view of Theorem 3 we can associate a partition π in $q\left(n-d^{2}, k, d\right)$ with a basic partition (d, ρ, σ) in 2^{k} ways, according to the number of ways to allocate the k distinct parts of π among ρ^{\prime} and σ^{\prime}. Thus we have

$$
\begin{equation*}
b(n, d)=\sum_{k \geq 0} q\left(n-d^{2}, k, d\right) 2^{k} . \tag{6}
\end{equation*}
$$

From (6) we have that the number of basis partitions of $n, b(n)$, is even or odd depending, resp., on whether n is not or is a square. Thus, although for most of the famous partition functions of number theory, the discovery of simple parity tests is a very difficult problem, for the number of basis partitions of n it is easy.

We remark further that it is simple to prove this parity result bijectively. By Lemma 1 it follows that the only self-conjugate basis partitions are the ones whose Ferrers graphs are square and that the conjugate of a basis partition is basic. Hence the pairing of each basic partition with its conjugate completes the proof.

References

[1] H. Gupta, The rank-vector of a partition, Fibonacci Quarterly 16, No. 6 (1978) 548-552.
[2] A. O. L. Atkin, A note on ranks and conjugacy of partitions, Quart. J. Math. 17, No. 2 (1966) 335-338.

[^0]: *Supported by the National Science Foundation through the CRA Distributed Mentor Project, 1995
 ${ }^{\dagger}$ Supported in part by National Science Foundation Grant No. DMS 9302505 and DIMACS
 ${ }^{\ddagger}$ Supported in part by the Office of Naval Research

