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Abstract

We answer a question posed by Lampert and Slater [7]. Consider a sequence of real numbers
qn in the interval [0, 1] defined by q0 = 0, q1 = 1, and, for n ≥ 1, qn+1 equals an average of
preceding terms in the sequence. The weights used in the average are provided by a triangular
array pn,k of probabilities whose row sums are 1. What is the limiting behavior of a sequence qn
so defined? For the Lampert-Slater sequence the weight pn,k is the probability that a randomly
chosen fixed-point free mapping of [n + 1] omits exactly k elements from its image. To gain
some insight into this averaging process, we first analyze what happens with a simpler array of
weights pn,k defined in terms of binomial coefficients. One of our theorems states that if the
weights pn,k are closely concentrated and the sequence qn exhibits oscillatory behavior up to a
certain computable point, then it will exhibit oscillatory behavior from then on. We carry out
the computations necessary to verify that the Lampert-Slater sequence satisfies the hypotheses
of the latter theorem. A result on martingales [1] is used to prove the close concentration of the
weights pn,k.

AMS-MOS Subject Classification (1990): 05A16, 60C05, 60G46
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1 Introduction

In [7], the following question is raised. Begin with n players, and repeat the following “knockout”
procedure while there remain two or more players. Each remaining player chooses another player
uniformly at random; the set of players so chosen drop out of the game; that is, we knockout the
chosen players. The game terminates when there is a single player, or no player. Lampert and
Slater in their paper consider more general knockout processes on a graph G during a single round
of which each vertex chooses at random a neighbor for knocking out. The process described above
corresponds to G being the complete graph on n vertices.

The question is, as a function of n = the number of players who begin the game, what is the
expected number qn of players remaining at the end of the knockout process? Clearly, the numbers
qn all lie between 0 and 1. Our initial computations through n = 170 revealed a gentle oscillation
between maxima in the neighborhood of 0.53 and minima in the neighborhood of 0.47, with an
apparent slight tendency towards convergence. One might conjecture at that point that the limit
is 1/2, and that the convergence is slow.

To the contrary, however, we have proven that for appropriate constants a, b, φ and all large n,

| a+ b cos(2π log n+ φ) − qn | < b. (1)

This implies that the sequence qn has no limit. (All logarithms in this paper are to the base e.)
What is the connection between the Lampert-Slater sequence qn and deranged mappings? A

deranged mapping of the set [n] = {1, 2, . . . n} is a function f : [n]→ [n] such that f(i) 6= i for all
i. The number of such functions is (n − 1)n. Let pn,k be the probability that a randomly chosen
deranged mapping of [n + 1] omits exactly k elements from its image. Then the Lampert-Slater
sequence qn is given by

q0 = 0, q1 = 1, qn+1 =
n∑
k=0

pn,k qk, n ≥ 1. (2)

The reader may note that the probabilities pn,k so defined are nonzero only for k in the range
0 ≤ k ≤ n− 1, because any mapping of [n + 1] which omits exactly n elements from its image is
constant, and hence not deranged. Nevertheless, we write the basic recursion (2) as above, with
the summation over the range 0 ≤ k ≤ n, because we will wish to consider other underlying arrays
pn,k. In Section 2, in particular, we analyze a sequence qn defined by (2) with a different underlying
triangular array pn,k. In Section 3 we gather the necessary results on deranged mappings. In Section
4, we prove (Theorem 3) that if the given probabilities pn,k satisfy certain properties (foremost of
which is close concentration), and if a sufficiently long segment of the sequence qn exhibits a type
of oscillatory behavior, then, in fact, the sequence qn oscillates indefinitely. Finally, in Section 6,
we describe the computations used to verify that the probabilities pn,k and sequence qn posed by
Lampert and Slater do indeed satisfy the hypotheses of Theorem 3. We conclude by proving (1).

The roles of qn and pn,k change from section to section. The definition of pn,k is given at the
start of each section, and always qn is determined by (2).
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2 The Coin Flipping Game

In this section we consider the following problem: initially n coins are all heads up on a table top.
Repeat the following process until only one or none of the coins is heads up: flip exactly once all of
the coins that are still showing heads. What is the probability qn that we terminate with exactly
one head?

This question was raised as a monthly Problem in 1991 and a solution was given in 1994 [9].
The answer was given in just sufficient detail to answer the question precisely as asked, which was
to decide if the limit exists or not (it doesn’t). Here we give a more detailed solution to give some
additional insight into the sort of behavior that such problems exhibit, in a context that is simpler
than the knockouts problem that will be discussed below, and is the main object of this paper.

It is clear that the sequence qn is given by the recursion (2) with the underlying probabilities:

pn,k = (2n+1 − 1)−1

(
n+ 1
k

)
, 0 ≤ k ≤ n.

We shall compute the ordinary generating function

f(x) =
∞∑
n=0

qnx
n

for this sequence. Summing

qnx
n =

n∑
k=0

(
n

k

)
2−nqkxn

over n ≥ 2, we obtain

f(x)− x =
∑
n≥0

n∑
k=0

(
n

k

)
2−nqkxn − q0 − x

(
q0 + q1

2

)

= −x
2

+
2

2− x
∑
n≥0

qn

(
x

2− x

)n
,

so
f(x) =

x

2
+

2
2− xf

(
x

2− x

)
and now, by iterating this, we obtain

f(x) =
x

2
+

x

(2− x)2
+

2x
(4− 3x)2

+
4x

8− 7x
+

8x
(16 − 15x)2

+ · · ·

=
x

2

∞∑
n=0

2n

(2n − (2n − 1)x)2
.

With this generating function we are now ready to prove the nonexistence of the limit. In fact we
will give three different proofs of this. Let’s state it as a theorem.
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Theorem 1 The probability qn of terminating with exactly one head in an n-head game doesn’t
tend to a limit.

2.1 First proof of Theorem 1

Now we can get an explicit, finite formula for the coefficients qn. Indeed we have

f(x) =
x

2

∑
m≥0

2−m
1

(1− (1− 2−m)x)2

=
x

2

∑
m≥0

2−m
∑
`≥0

(`+ 1)(1 − 2−m)`x`

=
∑
`≥0

(`+ 1)
2

x`+1
∑
m≥0

2−m(1− 2−m)`

=
∑
`≥0

(`+ 1)
2

x`+1
∑
m≥0

2−m
∑
j

(
`

j

)
(−1)j2−mj

=
∑
`≥0

(`+ 1)
2

x`+1
∑
j

(
`

j

)
(−1)j

1
1− 2−j−1

.

The coefficient of xn gives us

qn =
n

2

∑
j

(
n− 1
j

)
(−1)j

1− 2−j−1
=
n

2

δn,1 +
∑
j

(
n− 1
j

)
(−1)j

2j+1 − 1


a finite, explicit formula for our coefficients.

Sums of this type have appeared elsewhere. Precisely this sequence qn is treated in the analysis
of a probabilistic model in number theory [8]. In [4] we find a discussion of the quantities

Σ2(k) =
∑
j

(
n

j

)
(−1)j

1
2j+k − 1

.

In terms of them, our qn’s are given by

qn+1 =
n+ 1

2
(δn,0 + Σ2(1)).

Now a formula for our sequence can be read off from that of the Σ’s, as given in the latter paper.
We have

qn =
1

2 log 2
+

1
2
δn,1 +

ne−Hn−1

2 log 2

∑
m6=0

e
2mπiHn−1

log 2

(1− 2mπi
log 2 )

∏n−1
k=1

{(
1 +

1− 2mπi
log 2

k

)
e( 2mπi

log 2
−1)/k

} ,
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where the H’s are the harmonic numbers. As n→∞, the above formula is

qn =
1

2 log 2

1 +
∑
m6=0

Γ
(

1− 2mπi
log 2

)
e2mπi log2 n

+ o(1).

Note that qn is a periodic function of logn, to accuracy o(1). A similar formula appears in [5,
Section 5.2.2, equation (47)], where it arises in the asymptotic analysis of a sorting algorithm.

2.2 Second proof of Theorem 1

This time we use the fact that if
lim
n→∞

qn = L

exists, then
lim
ε→0+

εf(1− ε) = L.

Hence

εf(1− ε) =
ε(1− ε)

2

∞∑
k=0

2k

(2k − (2k − 1)(1 − ε))2

=
ε(1− ε)

2

∞∑
k=0

2k

(1 + (2k − 1)ε)2
.

It is easy to see that the behaviour of this when ε is small is close to the behaviour of

F (ε) =
ε

2

∑
k

2k

(1 + 2kε)2
.

Write u(t) = 2t/(1 + ε2t)2, and ψ(t) = t− btc − 1/2. By the Euler-Maclaurin sum formula,

F (ε) =
ε

2

{∫ ∞
−∞

u(t)dt+
∫ ∞
−∞

ψ(t)u′(t)dt
}

=
1

2 log 2
+
ε

2

∫ ∞
−∞

ψ(t)u′(t)dt

=
1

2 log 2
+

1
2

∫ ∞
0

ψ(log
t

ε
)

1− t
(1 + t)3

dt

In the integral, if we cut ε in half, we add 1 to the argument of ψ, which doesn’t change its value.
So the integral is invariant under halving of ε. To learn more, we replace ψ by its Fourier series

ψ(t) = −
∑
n≥1

sin 2nπt
nπ

,
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and integrate termwise (which Hardy is fond of noting cannot be justified by absolute convergence
but it can by bounded convergence) to obtain,

F (ε) =
1

2 log 2
+

1
2

∫ ∞
0

ψ(log
t

ε
)

1− t
(1 + t)3

dt

=
1

2 log 2
− 1

2

∑
n≥1

1
nπ

∫ ∞
0

sin
(

2nπ log
t

ε

)
1− t

(1 + t)3
dt

=
1

2 log 2
− 1

2

∑
n≥1

1
nπ

∫ ∞
0

sin (2nπ log t) cos (2nπ log ε)
1− t

(1 + t)3
dt+ · · ·

· · ·+ 1
2

∑
n≥1

1
nπ

∫ ∞
0

cos (2nπ log t) sin (2nπ log ε)
1− t

(1 + t)3
dt

=
1

2 log 2
− 1

2

∑
n≥1

1
nπ

cos (2nπ log ε)

(
−4n2π3

(log 2)2 sinh(2nπ2/ log 2)

)

=
1

2 log 2
+

1
(log 2)2

∑
n≥1

2nπ2

sinh(2nπ2/ log 2)
cos (2nπ log ε),

showing that F (ε) is periodic in log ε (and not constant), and hence that

lim
ε→0+

εf(1− ε)

doesn’t exist.

2.3 Third proof of Theorem 1

qn ∼ 1
2

∞∑
k=−∞

2θ+ke−2θ+k ,

where θ is the fractional part of the base-2 logarithm of n:

n = 2t+θ.

This implies that qn doesn’t tend to a limit. To prove the asserted asymptotic formula, we extract
the coefficient of xn in f(x), to find

qn =
n

2

∞∑
k=0

2−k
(
1− 2−k

)n−1
.
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Hence,

qn =
1
2

∞∑
k=0

2t+θ−k
(

1− 2t+θ−k

n

)n−1

=
1
2

∞∑
k=−t

2θ−k
(

1− 2θ−k

n

)n−1

.

Now, if −t ≤ k < −t/3, then (
1− 2θ−k

n

)n−1

<

(
1− 2

θ+t
3

n

)n−1

=

(
1− n1/3

n

)n−1

∼ e−n
1/3
,

and so

qn =
∑

k≥−t/3
2θ−k

(
1− 2θ−k

n

)n−1

+ o
(
n−1

)
.

Now, if k ≥ −t/3, then(
1− 2θ−k

n

)n−1

= e−2θ−k
(

1 + o

(
2θ−k + 22θ−2k

n

))
,

and so

qn =
1
2

∑
k≥t/3

2θ−ke−2θ−k
(

1 + o

(
2θ−k + 22θ−2k

n

))
+ o

(
1
n

)

=
1
2

∞∑
k=−∞

2θ−ke−2θ−k + O

(
1
n

)

=
1
2

∞∑
k=−∞

2θ+ke−2θ+k + O

(
1
n

)
,

as claimed.
By taking more care with the expansion of

(
1− x

n

)n−1, we obtain

qn = s1(θ) +
1
n

(
s2(θ)− 1

2
s3(θ)

)
+

1
n2

(
s3(θ)− 5

6
s4(θ) +

1
8
s5(θ)

)
+O

(
1
n3

)
,
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in which

sj(θ) =
1
2

∞∑
k=−∞

2j(θ+k)e−2θ+k .

This can, of course, be expanded to any fixed number of terms. By way of example, actual
computation gives q512 = 0.721352430446 · · ·, and

s1(0) +
1
n

(
s2(0) − 1

2
s3(0)

)
+

1
n2

(
s3(0) − 5

6
s4(0) +

1
8
s5(0)

)
= 0.7213524304938 · · · .

3 Properties of Deranged Mappings

Throughout this section pn,k equals the probability that a randomly chosen deranged mapping of
[n + 1] omits exactly k points from its image, 0 ≤ k ≤ n. In Section 5 we give an algorithm for
computing these probabilities. The literature on random mappings is vast, see for example [6],
although the fixed-point-free property does not appear often. In [2] the asymptotic distribution
for many statistics on mappings is derived, including the normality of the image size. Of course,
the number of elements omitted from the range differs from the latter only by a constant. It turns
out we do not need information on the distribution of this statistic so much as we need a bound
on deviation from average behavior; that is, a close concentration result. The necessary theorem
appears in Chapter 7 (Martingales) of the book [1] by Alon, Spencer, and Erdős.

The total number of deranged mappings of [n + 1] is nn+1, since in constructing a function f ,
for each integer i in the domain there are n choices for f(i). Assigning each of these mappings the
probability n−n−1 is an instance of the following general situation: let there be given a domain A,
a range B, and an |A| × |B| matrix of probabilities whose row sums are all 1. The entry appearing
at row a and column b equals the probability that a function f : A → B satisfies f(a) = b, the
latter events being independent over different a ∈ A. The given matrix determines a probability
distribution on the set of all functions f : A → B. The uniform probability space which we are
considering for deranged mappings is the case in which both A and B have size n+ 1, all diagonal
entries of the matrix are 0, and all off diagonal entries are 1/n.

Continuing to follow [1, p. 89], let L : AB → < be a functional (we shall be interested in L(f)
being the number of points omitted from the image of f), and let

∅ = B0 ⊆ B1 ⊆ · · · ⊆ Bm = B (3)

be an m-gradation of the range B. The sequence X0,X1, . . . Xm defined on functions f : A → B
by

Xi(f) def= E (L(g) | g(b) = f(b) for all b ∈ Bi)

is a martingale. (See [1] for undefined terms.) Note that X0(f) is the constant E(L), independently
of f , and Xm(f) is L(f). We need the following concentration result:
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Theorem 2 [1, p. 90]. Let a probability measure on a finite function space AB be given as above
by an |A|× |B| matrix of non negative numbers whose row sums are 1, and let L(f) be a functional
satisfying the Lipschitz condition

f, f ′ differ only on Bi+1 −Bi ⇒ |L(f)− L(f ′)| ≤ 1

with respect to a given gradation (3). Then, for µ = E(L) and all λ > 0 we have

Pr
(
L(f) > µ+ λm1/2

)
< e−λ

2/2

Pr
(
L(f) < µ− λm1/2

)
< e−λ

2/2.

Let us remark that with Bi = [i], 0 ≤ i ≤ n+ 1, and L(f) = the number of points omitted from
the range of f , the Lipschitz condition is satisfied. Thus, we have a close concentration result for
the probabilities pn,k.

We complete this section by computing the mean µ and standard deviation σ of the distribution:

µ =
n∑
k=0

k pn,k

σ2 =
n∑
k=0

(k − µ)2 pn,k.

Of course the mean is simply n+1 times the probability that a particular element, say 1, is omitted
from the range:

µ = (n+ 1)(1− 1/n)n.

Turning to σ, we start with

n∑
k=0

k(k − 1) pn,k = (n + 1)n(1 − 1/n)2(1− 2/n)n−1,

which is obtained by counting triples (i, j, f), with f a fixed-point-free mapping, i, j two distinct
elements not in the range of f , and then dividing by the total number of fixed-point-free mappings.
Adding

∑n
k=0 kpn,k, and subtracting µ2, we find

σ2 = (n+ 1)n(1− 1/n)2(1− 2/n)n−1 + (n+ 1)(1 − 1/n)n − (n+ 1)2(1 − 1/n)2n.

Some careful calculation shows that σ2 differs from (n+ 1)e−1(1− 2e−1) by less than 1. We record
for future use:

e−1 (1− n−1) < (1− 1/n)n < e−1 for n ≥ 2
|σ2 − (n+ 1)e−1(1− 2e−1)| < 1 for n ≥ 1. (4)
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4 A Theorem About Oscillatory Behavior

Throughout this section pn,k denotes a generic array of probabilities about which we shall assume
certain hypotheses and prove certain results. We shall use F (X) to denote the function

F (X) = a+ b cos(λX + φ),

the constants a, b, λ, φ being given. With no loss one may take the constants b, λ, φ positive, and
we do so.

An array pn,k, determining a sequence qn, and a function F (X) understood to have been given,
for integers I and J we define

∆(I, J ] def= max{|qk − F (log k)| : I < k ≤ J}, (5)

the maximum absolute difference between qk and the approximation F (log k) over the half open
interval (I, J ].

We introduce one additional convenient notation involving the symbol θ. Whenever θ appears
in an equation, it stands for a real number whose value is in the interval [−1,+1]. It is, of course,
not necessarily the same value at each appearance; moreover, in a given equation, its value may
depend on the free variables found in the equation. If we want to say, for example, that two real
valued functions f(x) and g(x) differ in absolute value by no more than 10/x2 for all x ∈ S, we
would write

f(x) = g(x) + 10θx−2, x ∈ S.

Precisely, this says that θ, defined on S by θ(x) = (f(x)− g(x))x2/10, never exceeds 1 in absolute
value. Two further examples of this new notation, both used in the sequel, are

log(1 + y) = y + 0.65θy2, y ≥ −1/3 (6)
F (X + y) = F (X) + F ′(X)y + θbλ2y2/2. (7)

The first is proven by noting that (log(1 + y)− y) /y2 is an increasing function of y > −1. The
second follows from Taylor’s formula with remainder.

The next theorem gives conditions on pn,k to quantify and prove the notion that if F (log k)
approximates qk well on a sufficiently large interval (I, J ], then there is a substantially larger
interval (I,K] where the approximation is only slightly less good.

Theorem 3 Given: a triangular array pn,k, 0 ≤ k ≤ n, n ≥ 1, of probabilities whose row sums
equal 1, and six positive constants α, β, a, b, λ, φ. Let qn be defined by the recursion (2), F (X) =
a + b cos(λX + φ), ∆(I, J ] be defined by (5), µ (= µ(n)) be the mean

∑
k kpn,k of the n-th row,

σ2 (= σ2(n)) be the variance
∑
k(k − µ)2pn,k of the n-th row, and <n be the set of k such that
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|k − µ| ≤ (n+ 1)2/3. Assume the following conditions:

µ = (n+ 1)α (1 + θ/n)
λ logα = −2π

σ2 < β(n+ 1) + 1, (n ≥ 2)∑
k 6∈<n

pn,k ≤ 2e−n
1/3/2.

Then there exist constants C1, C2, δ > 0, and N such that for every pair of integers I < J satisfying

J ≥ N and αJ (1− J−1 − α−1J−1/3) ≥ I + 1, (8)

there exists an integer K ≥ (1 + δ)J such that

∆(J,K] ≤ ∆(I, J ] + C1/J + C2e
−J1/3/2. (9)

Proof. We begin by telling how to choose C1, C2, δ, and N . Let

c = bλ (0.75λ + 0.65).

Choose N so large and δ positive but so small that

N ≥ max
(

(3/α + 0.01)3, 90/β, 1000
)

(10)

and
α (1 + δ +N−1) (1 +N−1) (1 +N−1 + α−1N−1/3) = 1. (11)

Then, choose C1 and C2 by the formulas

C1 = 1.02 cβα−2 + bλ

C2 = 2 (1 + |a| + b + m(bλ+ cm)) , m = max( 1, 1.0001α−1 − 1 ). (12)

Let I < J be two integers satisfying condition (8). We claim that K may be taken as d(1+δ)J e.
To see this, let n+ 1 be an integer in the half open interval (J,K]. (In what follows, we sometimes
use n ≥ J ≥ N without explicit mention.) We have

qn+1 =
∑
k∈<n

pn,k qk +
∑
k 6∈<n

pn,k qk.

Letting E = 2e−n
1/3/2, we see that the second sum on the right of the previous equation equals

θE. To bound the first sum, we first check that <n ⊆ (I, J ]. By assumption, µ − (n + 1)2/3 ≥
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(n− n−1)α− (n+ 1)2/3; since the latter is increasing for n ≥ N ,

µ− (n+ 1)2/3 ≥ (J − J−1)α− (J + 1)2/3

= α(J + 1)(1 − J−1 − α−1(J + 1)−1/3)
≥ αJ(1− J−1 − α−1J−1/3)
≥ I + 1,

and <n ⊆ (I,+∞). In the other direction, by assumption, µ ≤ (n+ 1)α(1 + n−1); since the latter
is an increasing function of n,

µ + (n+ 1)2/3 ≤ (K + 1)α(1 +K−1) + (K + 1)2/3

= αK(1 +K−1)(1 +K−1 + α−1(K + 1)−1/3)
≤ αK(1 +K−1)(1 +K−1 + α−1K−1/3)
≤ αK(1 +N−1)(1 +N−1 + α−1N−1/3)
≤ Jα(1 + δ + J−1)(1 +N−1)(1 +N−1 + α−1N−1/3)
≤ J,

and <n ⊆ (−∞, J ]. Hence, as asserted, <n ⊆ (I, J ], and∑
k∈<n

pn,k qk =
∑
k∈<n

pn,k F (log k) + θ∆(I, J ].

For the duration of the proof, let x (= x(n, k)) be implicitly defined by

k = µ + x(n+ 1)1/2.

Using (for k ∈ <n) ∣∣∣∣ kµ − 1
∣∣∣∣ ≤ (n+ 1)2/3

µ

≤ (n+ 1)2/3

(n+ 1)α(1 − 1/n)

≤ n2/3

α(n− 1)
,

and the assumption that n1/3 ≥ 3/α + n−2/3, we have (again, for k ∈ <n),

k = µ

(
1 +

x(n+ 1)1/2

µ

)
= µ (1 + θ/3) .
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Thus, (6) is applicable, and

log(k) = log(µ) +
x(n+ 1)1/2

µ
+ 0.65θ

x2(n+ 1)
µ2

, for k ∈ <n.

Using (7) we calculate, for k ∈ <n,

F (log k) = F (log µ) + F ′(log µ)
x(n+ 1)1/2

µ
+ θ

cx2(n+ 1)
µ2

.

To continue, we compute ∑
k∈<n

x pn,k =
∑
k

x pn,k −
∑
k 6∈<n

x pn,k

= θ E
max(µ, n− µ)

(n + 1)1/2
,

as well as ∑
k∈<n

x2 pn,k =
∑
k

x2 pn,k −
∑
k 6∈<n

x2 pn,k

=
σ2

n+ 1
+ θ E

max(µ2, (n− µ)2)
n+ 1

.

With m = max(1, n/µ − 1), we have altogether

qn+1 = F (log µ) + θ
cσ2

µ2
+ θ∆(I, J ] + θE (1 + | a|+ b+m(bλ+ cm)) . (13)

Using the assumptions about µ, α, and λ, we have

F (log µ) = F (log(n+ 1)) + θbλn−1,

which in conjunction with (13) implies (9). This completes the proof of Theorem 3.

Now we may state a corollary which, in conjunction with computation, will permit us to prove
that sequences qn of the type we are studying do not have limits.
Corollary Let pn,k, qn and F (X) satisfy the hypotheses of Theorem 3, let C1, C2 be defined by
(12), and assume that δ, N satisfy conditions (10) and (11). Let I be the largest integer possible,
subject to

αN (1−N−1 − α−1N−1/3) ≥ I + 1. (14)

Then, for every n > I,

| qn − F (log n) | ≤ ∆(I,N ] + C1N
−1(1 + δ−1) + C2 e

−N1/3/2 1
1− e−δN1/3/6

. (15)
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In particular, if the latter is less than b, then the sequence qn has no limit.

Proof. By the definition of ∆ the inequality holds for I < n ≤ N . Let J0 = N and J1 = d(1+δ)J0e.
For I < n ≤ J1, we have by Theorem 3,

| qn − F (log n) | ≤ ∆(I,N ] + C1J
−1
0 + C2 e

−J1/3
0 /2.

Let J2 = d(1 + δ)J1e; again by Theorem 3, for I < n ≤ J2, we have

| qn − F (log n) | ≤ ∆(I,N ] + C1(J−1
0 + J−1

1 ) + C2 (e−J
1/3
0 /2 + e−J

1/3
1 /2).

By induction, with Ji+1 = d(1 + δ)Jie, we find that for all n > I,

| qn − F (log n) | ≤ ∆(I,N ] + C1

∞∑
i=0

Ji + C2

∞∑
i=0

e−J
1/3
i /2.

Since Ji ≥ (1 + δ)iN , we have
∞∑
i=0

Ji ≤ J−1
0 (1 + δ−1);

and, since (1 + δ)i/3 ≥ (1 + iδ/3),

∞∑
i=0

e−J
1/3
i /2 ≤

∞∑
i=0

e−J
1/3
0 (1+δ)i/3/2

≤
∞∑
i=0

e−J
1/3
0 (1+iδ/3)/2

= e−N
1/3/2 1

1− e−N1/3δ/6
.

The Corollary follows.

5 A warmup exercise

To illustrate the use of the Corollary, we give another proof that the long term behavior of the
coin flipping problem is oscillatory. Then in the following section we will apply it to the knockouts
problem. To use the Corollary requires somewhat lengthy calculations. We will describe the process
in detail for this example, and be more brief with the second example.

The first task is to find all of the constants in Theorem 3. Our triangular matrix of probabilities
here is pn,k =

(n+1
k

)
/(2n+1 − 1). It is easy to verify that the tail estimate∑

k 6∈<n
pn,k ≤ 2e−n

1/3/2,
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which is a hypothesis of Theorem 3, holds, by standard estimates (e.g., Appendix A of [1]) of the
tails of the binomial distribution. It is also not hard to determine that α = 1/2 and β = 1/4.
Because α = 1/2, we take λ = 2π/ log(2). From (12) we have

C1 = 0.000557393854568
C2 = 3.44380523114

To determine, tentatively, our approximating function F (X), we compute the first one thousand
values of qn, and solve for a, b1, and b2 to minimize the sum of squares

1000∑
k=401

(
qk − a− b1 cos(λ log(k))− b2 sin(λ log(k))

)2

. (16)

To get the more familiar form of F (X), we solve for b and φ such that

b cos(λX + φ) = b1 cos(λX) + b2 sin(λX).

We find that b = (b21 + b22)1/2 is about 7 × 10−6, rather small. Knowing C1, C2, we guess N by
insisting that the last two terms on the right side of (15) sum to less than 6× 10−6. In this way,
we decide to take N = 20, 000. From (14) we take I = 9, 261. Now we repeat the least squares fit,
using the “official” limits 9, 261 < k ≤ 20, 000 instead of the tentative limits 400 < k ≤ 1, 000 in
(16). This yields the values

a = 0.721347521521
b = 0.715212387521 × 10−5

φ = 5.41028540810

for the function F (X), and gives also

∆(I,N ] = max
I<k≤N

{|qk − F (log(k))|} = 0.8455 × 10−8.

The computed value for a agrees closely to the theoretical value 1/(2 log(2)) given in Section
2. Finally, we compute the right side of (15) to be 0.4552 · · · × 10−5, which is less than b =
0.7152 · · · × 10−5, and we have confirmed that qn has no limit.

6 Computations for the Knockouts Problem

Throughout this section pn,k again equals the probability that a randomly chosen deranged mapping
on the set [n+ 1] omits exactly k points from its image. Define t(n, k) to be the number of ways to
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partition the set [n] into an ordered collection of n− k blocks, such that for 1 ≤ i ≤ n− k element
i does not belong to the i-th block. Such an ordered partition corresponds in a natural way to a
fixed-point-free mapping of [n] whose image is exactly the set {1, 2, · · · n− k}. Hence,

nn+1 =
n∑
k=0

(
n+ 1
k

)
t(n+ 1, k),

and

pn,k =

(
n+ 1
k

)
t(n+ 1, k) n−n−1.

A mapping which omits no element from its image is a fixed-point-free permutation, also known
as a derangement. The recursion for counting derangements is well known [3], and we have

t(n, 0) = dn, d0 = 1, d1 = 0, dn+1 = n(dn + dn−1), n ≥ 1.

Now let us consider t(n+1, k) when k is at least 1. The ordered partitions counted by t(n+1, k)
are of two varieties. In the first variety, we have those partitions in which element n+1 is a singleton
block; in the second variety we have those partitions in which element n+ 1 belongs to a block of
size two or greater. To create an ordered partition of the first type, we proceed in three steps: (1)
choose an integer j, in the range 1 ≤ j ≤ n − k + 1; (2) choose an ordered partition of [n] into
n− k blocks such that i is not in the i-th block for 1 ≤ i < j and such that i+ 1 is not in the i-th
block for j ≤ i ≤ n− k; (3) insert {n+ 1} as the j-th block. We defined t(n, k) as counting ordered
partitions of [n] into n− k blocks such that element i is forbidden from the i-the block. However,
a moment’s reflection will reveal that t(n, k) will also count correctly any scheme of forbidding in
which a certain element is denied membership in the i-th block, and the n− k elements so singled
out are all distinct. Hence, the number of ordered partitions in step (2) above equals t(n, k), and
the total number of partitions of the first variety is (n− k + 1) t(n, k).

To create an ordered partition of the second type: (1) partition [n] into n−k+1 blocks, keeping
i out of the i-th block; (2) choose a block into which n + 1 is then inserted. Note that step (1)
is feasible, and that step (2) does not create any forbidden memberships, due to the assumption
k ≥ 1. Summarizing, we have the nice recursion:

t(n+ 1, k) = (n− k + 1) ( t(n, k) + t(n, k − 1) ) , n ≥ 0, k ≥ 1. (17)

Let us remark that if we fill the k = 0 column of the array with the factorials 1, 1, 2, 6, 24, . . . instead
of the derangement numbers 1, 0, 1, 2, 9, . . ., and then fill the rest of the table (where k ≥ 1) by
exactly the same recursion (17), the resulting table contains (n − k)!S(n, n − k), where S(n, b) is
the Stirling number of the second kind. The probabilities pn,k associated with (n− k)!S(n, n− k)
correspond to choosing a mapping of [n + 1] at random, with no requirement the mapping be
fixed-point-free. This amounts to a Lampert-Slater knockout game in which self-elimination is
permitted.
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Altogether, then, we can compute initial rows of the t(n, k) array in a number of arithmetic
operations which is proportional to the number of values computed. This suggests that the first
n values of the sequence qn can be computed in quadratic time, but such a conclusion ignores a
further multiplicative factor of n log n in the complexity due to the size of the integer operands
involved. It is, however, feasible to compute the first 1, 776 values of qn using the above scheme,
provided the calculation is done in floating point, and not exactly. There arises the question of
rounding error. To confirm reliability, the computations have been carried out in two different
precisions, first with Digits = 22, then with Digits = 32. (For those unfamiliar with the symbolic
computation system Maple, “Digits” is a global variable set by the user which controls the number
of digits kept in floating point computations.) The two results agree, out to n = 1776, in the
first sixteen places always. For anyone wishing to repeat the calculations, we report the following
sample values, obtained with Digits = 32,

q1000 = 0.47675343531232572822205635018666
q1776 = 0.52829933875860791739826500429501.

From Section 3, we know that α = e−1 and β = e−1(1− 2e−1). Note that the four assumptions
needed to apply Theorem 3 are fulfilled: the inequalities needed for µ and σ are implied by (4), and
the concentration result for pn,k is given in Theorem 2. Because α = e−1, we have λ = 2π. The
values chosen for a, b, and φ were again determined by a least squares fit. Here is the summary of
all computations:

a = 0.5029602
b = 0.0268190
φ = 3.5514971
N = 1776
C1 = 0.8305359
C2 = 8.9762295
I = 505

∆(I,N ] < 0.00036

One final act of arithmetics reveals

∆(I,N ] + C1N
−1(1 + δ−1) + C2 e

−N1/3/2 1
1− e−N1/3δ/6

< 0.0243;

since 0.0243 is smaller than b = 0.026 · · ·, we have proven (1).
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[9] Lennart Räde, proposer, Problem E3436, The Amer. Math. Monthly 98 (1991), p. 366; solu-
tion by O. P. Lossers , ibid. 101 (1994), p. 78.

18


