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Let Sz be the set of positive integers that are omitted values of the form 
f  = z”= a.x. where the a, are fixed and relatively prime natural numbers *1 $1) 
and the xi are variable nonnegative integers. Set w = #Q and K = max 0 + 1 
(the conductor). Properties of w and K are studied, such as an estimate for 
w (similar to one found by Brauer) and the inequality 2w > K. The so-called 
Gorenstein condition is shown to be equivalent to 2w = K. 

1. INTRODUCTION 

Let a, ,..., a, be positive integers, and let 

di = g.c.d. (a, ,..., ai) (i = 1 ,***, 4, 

d,, = 0. 
(1) 

As xi ,..., x, run independently over the nonnegative integers, the values 
of the form 

f = a,x, + ..I + a,x, (2) 

run over a certain set of nonnegative integers, This set of assumed values 
is clearly a semigroup. If d, = 1, it is well known that there is an m, 
such that all m 2 m, are assumed by J 

The purpose of this paper is to study the following two properties of 
the form f: 

(a) K(f), the conductor off, is the least positive m, for which f 
assumes all values am, . 

(b) Sz = Q(f), the set of omitted values off, and in particular, 
w(f) = #Q. 

* Research supported in part by the National Science Foundation. 

98 
0 1972 by Academic Press, Inc. 



REPRESENTATIONS OF INTEGERS BY LINEAR FORMS 99 

For example, if 

f = 5x1 + 3x,, 

we have K(f) = 8, G = (1, 2, 4, ‘i’}, o = 4. 
A classical theorem of Sylvester [l] states that, if n = 2, then 

K(f) = 6% - l>(az - I), (3) 

4.f) = Ha1 - l>(az - 11, (4) 

and so, in particular, 

w(f) = &K(f). (5) 

We give another proof of (3)-(5) in Section 2 below, to introduce the 
methods which will be used here for n > 2. 

In 1942, A. Brauer investigated this problem [2], and he showed that 
under the condition 

(I) For each i = 2,..., n, the number ai/di is an assumed valzae of the 
f orm 

it follows that 

(11) K(f) = i (+ - 1) ak + 1, 
k=l 

(6) 

and he showed also that the right side of (II) is always an upper bound 
for K(f). 

We will show below that under the same condition (I), the formula 

(III) 4.f) = ; i (* - I) a, + Ij 
i kc2 

holds and that the right side of (III) is always an upper bound for w(f). 
Our proof yields (II) also, and considerably more, namely, that the Con- 
ditions (I), (II), (III) above are actually equiualent.’ 

It will follow, then, that under any of these three conditions, 

(IV) d.f) = =h(f)- 

We further investigate the relationship of these conditions to another 
proposition which arises in the theory of Gorenstein rings [3]. Suppose S 

1 The equivalence of (I) and (II) was shown by Brauer and Seelbinder [4]. 
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is the set of integers m which are assumed by f and in which we have x, = 0 
for every representation, i.e., 

S=(meRIm-aa,$R}, 

where R is the set of assumed values off. 
Then define a set 

(7) 

T = (m ES 1 (Vi = l,..., n) m + ai #S>. (8) 

The Gorenstein condition is the property 

m #T= 1. 

We will show that (IV) and (V) are equiva1ent.l The full collection of 
interrelationships among our conditions will then be 

(I) 0 (11) 0 (III) =P (IV) 0 (V). 

The example (al , a, , as) = (6, 7, 8) shows that the missing implication 
cannot be included in general. 

2. THE CASE n = 2 

The following short proof of (3) and (4) is based on methods that will 
be used several times. Since g.c.d. (al , aJ = 1, every integer m can be 
written as m = xa, + ya, in many ways if x and y are allowed to be 
negative; the representation becomes unique if we demand that 0 < x < a2 . 
Then m is assumed by f if y 2 0; m is omitted if y < 0. The largest 
omitted value is therefore obtained for x = a2 - 1, y = -1, and ~cf) is 
one unit bigger: 

~cf> = (a2 - l)a, - a2 + 1 = (al - l)(az - 1). 

Now, let 0 < m -C I, and let m be represented with 0 < x < a, , then 

m’=KCf)-l-m=(a,-l-x)a,+(-l-y)a,. 

Here 0 < a2 - 1 - x < a2 , so if y > 0 then m is representable and m’ 
is omitted, while if y < 0 the roles are reversed. This shows that precisely 
half of the numbers O,..., K(f) - 1 are omitted by f, so (5) holds. 

1 (Added in proof) This was proved independently by E. Kunz [5]. 
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3. A MAP AND AN INEQUALITY 

We now return to general values of n. 

THEOREM 1. Under the hypothesis d, = 1 we have 

4) 3 b(f). (9) 
Proof. Define 

,0(X) = K(j) - 1 - X w-9 

(this reversal map will be used several more times); so x + p(x) = K(f) - 1. 
The right side is not assumed by f; by the definition of K(J), hence not 
both terms on the left can be assumed (semigroup property!). So, if x 
is represented, then p(x) is not. The set of omitted values among 
0 ,*‘*, K(f) - 1 contains therefore a subset of the cardinality of that of the 
assumed values, so at least half of the numbers O,..., K(J) - 1 are omitted 
by f; i.e., (9) holds. 

The same argument shows: If m is an omitted value then at least half 
the numbers O,..., m are omitted. 

4. THE GORENSTEIN CONDITION 

Let S and T be as in (7), (8). 

LEMMA 1. The set W = (x / x - a, E T) is given by 

W = {X j x $ R, ViX + at E R}; (11) 

K(f) - 1 belongs to W. 

Proof. A number m belongs to T if and only if it satisfies all conditions 
(0) .-. (n): 

(0) mERandm -a,#R, 

(i) (i = I,..., n) m + ai $ R or m - a,, + ai E R. 

The first condition in (i) is never satisfied if the first in (0) is, so the former 
may be deleted. The first condition in (0) is the same as the second in (n), 
hence the former may be deleted. Hence, 

T=(mjm-aa,$R,Vi m - a,, -f ai E R). 

Formula (11) is now obvious, and ~cf) - 1 E Was it is the largest omitted 
number. 
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THEOREM 2. The Gorenstein condition (V) (equivalent to #W = 1) is 
satisfied if and only if(IV) holds. 

Proof. Let #W = 1. We show that p(x) is an assumed value if x is 
omitted; so exactly half the numbers O,..., I - 1 are omitted. Let x be 
omitted, and let y be the largest assumed value for which x + y is omitted. 
As y + ai is an assumed value which exceeds y, it follows that x + y + ai 
is assumed; so x + y E W. That means x $ y = I - 1, i.e., y = p(x) is 
an assumed value. 

Conversely, let (IV) hold, then p(x) is assumed if and only if x is not. 
Let w  E W, then w  is omitted, hence I - 1 - w  is assumed. Suppose 
K(f) - 1 - w  > 0, then it equals C <iai with at least one si > 0, hence 
there is i such that w’ = K(f) - 1 - w  - ai is assumed. Then p(w’) = 
w  + ai is omitted, contrary to one of the properties of the elements w  of W. 
Hence, w  = I - 1, and that is the only element of W. 

We have just seen that, if w  E W, w < I - 1, then p(w) is omitted. 
Therefore we have 

THEOREM 3. The. following inequality holds 

24.f) - K(f) >, #w - 1. (12) 

5. A COUNT OF OMITTED VALUES 

To determine the set Q of omitted values of (a, ,..., a,) with d,, = 1, 
it suffices to determine first the set D of omitted values of 

h/L ,..., an-l/dn-l> 

and then study the values that are taken by the form xd,-, + ya, 
(x, y 3 0). This idea is motivation for the following lemma: 

LEMMA 2. Suppose a and b are positive integers, g.c.d. (a, d) = 1, and 
D is a$nite set of positive integers. Let D’ be the set of positive integers z 
not of the form 

z=md+xa (m >, 0, m $ D, x 3 0). (13) 

Furthermore, let D, be the set 

D, = m E D 1 m - ka E D 
I 

for all k = O,..., + 1. [ I 
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Then 

#L’ = (a - l)(d - 1) 
2 

+ d . #D < (’ - l)(d - ‘) + d . #D a---. 2 
(14) 

and 

max D’ = d . max D, + (d - 1)~ < d . max D + (d - 1)a. (15) 

In particular, 

2#D’ - (max D’ + 1) = d(2#D, - (max D, + 1)). (16) 

If #D, or #D = 0 replace max D, or max D in (15) and (16) by -1. 

Proof. The numbers of D’ are of two types: 

I. Numbers z which have no representation of the form 

z = md + xu (m, x > 0); (17) 

their number is given by (4) with a, = d, a2 = a. 

II. Numbers z which have representations of the form (17) but for 
every such representation we have m E D. 

One of the representations of z of the form (17) has x < d; the others 
are then of the form 

z=(m-ka)d+(x+kd)a k = l,..., + . [ 1 
If z is of Type II, then m - ka ED for all k = O,..., [m/u]; hence m must 
belong to D, . For each such m there are precisely d numbers z not of the 
type (13), namely, for x = 0 ,..., d - 1. Hence there are d . #D, many 
numbers z of Type II. This proves (14). 

For (15) consider the largest element of Type I; it is (d - l)(u - 1) - 1 
by (3). The largest element of Type II is obtained from (17) by maximizing 
m in D, and x < d; this gives max D, * d + (d - I)a. The maximal 
element of Type II obviously exceeds that of Type I provided D, is non- 
empty. Otherwise, setting max D, = -1 gives exactly the maximal 
element of Type I. 

LEMMA 3. If in Lemma 2 D is the set of omitted values of 

@llL ,-.., ~,-&Ld, a = a,, d = d,,-l , 

and d, = 1, then Q = D’ is exactly the set of omitted values of (al ,..., a,,). 
If a, is an assumed value of (al/d,-, ,..., a,-,/d,-,), then D, = D. 
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Proof. In the light of Lemma 2 the first statement is a precise for- 
mulation of the introductory remark of this section. The second part uses 
the fact that the difference x - J' between an omitted value x E D and an 
assumed value y = a, is itself always an omitted value, hence belongs to D 
if it is not negative. 

Remark. Under the hypotheses of Lemma 3 (except that a, need not 
be an assumed value) it is easy to see that the set D, in Lemma 2 is exactly 
the set of omitted values of (aI/dnV1 ,..., a,-I/d+l , a,). By (16), {al ,..., a,} 
will satisfy 2w = K if and only if {a,/d,-I ,..., an-I/dn-l , a,} does. The 
ordering of the a’s is actually irrelevant; this proves: 

THEOREM 4. Let d be the g.c.d. of the numbers a, ,..., a, with the 
exception of ai. Then {al ,..., a,> satisfies the Gorenstein condition if and 
only if{a,/d,..., ai-& ai , ai+llR.-, a,id) satisfies the Gorenstein condition. 

For an application, consider (12, 13, 14); we use self-explanatory 
notation. 

Gor(12, 13, 14) o Gor(6, 13, 7) o Gor(6, 7): satisfied. 

Another: 

Gor(6, 10, 15) o Gor(2, 10, 3) o Gor(1, 5, 3) o Gor(1): satisfied. 

6. UPPER ESTIMATES FOR w(f) AND K(f). 

THEOREM 5. Let a,,..., a,, be positive integers, d, = 1, and let f be 
given by (2). Let w(f) be the number of positive values omitted by f, and 
K(f) the conductor off. Then 

df > d 2df) < 1 f j,, ak (+ - l)= i+L ak- i al,+ 1. 

k=2 k=l 

(18) 
Equality between the second and third members implies equality throughout; 
this occurs if and only if condition (I) ho& 

Proof. Let Kk be short for rc(al/dk ,..., a,/d,), and similarly for wk . 
Then the inequalities (14) and (15) can be expressed as 

dk--l 2wk < 2--- 
dk 

wk-1 + (2 - 1,(+ - l) 

4-1 
Kk < - 

dk 
Kk--l + a, - l)(+ - l), 

4 
(K1 = 0). (20) 
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Equality in (19) occurs if wk* = wk [see (14), the starred quantity refers 
to (@k-l ,***, ak-l/dk-l , &&)]; then there is alSO equality in (20); all 
this happens if and only if Uk/dk is assumed by (u,/d,-, ,..., ak-l/d+l). 
Rewrite (19) as 

2W,da = 2W,-Id,-, + (2 - 1) (d,-, - dk) 

and sum on k; in view of d, = 1 this gives 

2~0, = z2 (2 - 1) (c&e1 - dk) = & 2 (b--l - dd - (4 - dn) 

= il aI, (+ - 1) + 1 
k 

as required. 

7. CONSECUTIVE INTEGERS 

An interesting special case is that in which 

@I ,*-*, 4J =(m,m + Lm +2 ,***, m+n-1) (21) 

Brauer has given the formula for the conductor in this case. Indeed, the 
set of assumed values is clearly 

This yields at once 

4.0 = mJ, 

&J(f) = 7 
I 

(m - 1) + B(k - 1) 
m I 

3 

4&f) 1 -=- (m - 1) + O(k - 1) 
4f) 2 I m I 7 

where Jis the least integer >(rn - l)/(k - I), and 

m-l -- J--l=k-l 8 (0 < e d 1) 

(22) 

(23) 

(24) 

defines 8. 
One sees in particular that W/K > t always, as required by Theorem 1, 

and that W/K = ?J if and only if k - 1 divides m - 2. 
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