ASSIGNMENT # 9
MATH 660, DIFFERENTIAL GEOMETRY

(1) Let \(\gamma: [0, a] \to M \) be a geodesic and \(L(c) = \int_0^a |c'(t)|dt \) be the length of a curve. Let \(c_s \) be a proper variation (i.e. end points fixed) with \(c_0 = \gamma, V = \frac{d(c_s)}{ds} |_{s=0} \) its variational vector field, and \(L(s) = L(c_s) \). Show that \(L'(0) = 0 \) and
\[
L''(0) = \int_0^a \langle V'_\perp, V'_\perp \rangle - \langle R(V\perp, \gamma')\gamma', V\perp \rangle dt
\]
where \(V\perp = V - \langle V, \gamma' \rangle \gamma'/|\gamma'|^2 \) is the component of \(V \) orthogonal to \(\gamma' \).

(2) Prove the Morse Schönberg comparison theorem:
Let \(\gamma: [0, a] \to M^n \) be a normal geodesic and \(\sec \geq \delta \). Show that if \(L(\gamma) = a > k\sqrt{\frac{n}{\delta}} \), for some positive integer \(k \), then the index of \(\gamma \) satisfies \(\text{ind}(\gamma) > k(n - 1) \).
Thus, by the index theorem, \(\gamma \) has at least \(k(n - 1) \) conjugate points (counted with multiplicity). What is the corresponding statement for \(\sec \leq \delta \)?
Hint: Compare the index form of \(\gamma \) with the index form of a geodesic \(\bar{\gamma} \) in a space of constant curvature \(\delta \).

(3) Let \(N^k \subset M^n \) be a submanifold and \(\gamma: [0, a] \to M \) a geodesic with \(\gamma(0) \in N, \gamma'(0) \) orthogonal to \(N \), and \(\gamma(a) = p \).
(a) If \(\gamma \) has no focal points for \(t \leq a \), show that there exists a neighborhood \(U \) of \(\gamma \) such that any curve from \(N \) to \(p \), which is completely contained in \(U \), is longer than \(\gamma \) unless it is a reparametrization of \(\gamma \).
(b) If there exists a focal point \(\gamma(t_0) \) with \(t_0 < a \), show that there exist nearby curves from \(N \) to \(p \) which are shorter than \(\gamma \). (You need to use the formula for the index form \(I \) in problem (3) below).
Hint: For part (a) you need to use the Gauss Lemma from problem (1) in the next Assignment # 10.

(4) Recall the following: Let \(\gamma \) be a geodesic as in problem (3) above and define the index form as
\[
I(V, W) = \int_0^a \langle V', W' \rangle - \langle R(V, \gamma')\gamma', W \rangle dt + \langle S_{\gamma'}(V), W \rangle_{t=0}.
\]
Then for any variation \(c_s \) from \(N \) to \(p \) with variational vector field \(V \), \(E''(0) = I(V, V) \). Show that \(I \) is positive definite iff \(\gamma \) has no focal points. (You need to first determine the null space of \(I \).)

(5) Let \(N \subset \mathbb{R}^3 \) be a paraboloid \(z = y^2 \). Determine the focal points along any geodesic starting normal to \(N \). Up to what value of \(t \) are the parallel hypersurfaces \(N_t = \{ \exp(tn_p) \mid p \in N \} \) smooth (where \(n \) is the inward pointing normal).

(6) Show that if \(M \) has sectional curvature \(\sec \leq 0 \), then a geodesic in \(M \) has no focal points.