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2 CONSTRUCTION TECHNIQUES IN POLYTOPES

1. Introduction

A convex polytope is the convex hull of a finite set of points in the
Euclidean space. When its affine hull is of dimension d, we call it a
d-polytope. In a d-polytope P we denote the number of j-dimension
face as fj(P ), and call f(P ) = (f0(P ), f1(P ), ..., fd−1(P )) the f -vector
of P . By convention we may add f−1(P ) = 1.

The f -vector is an integer vector. For many years it is not known
whether we can find a characterization of the set of f -vectors of all poly-
topes. And if yes, what is the meaning of it. This is an open problem
in the general sense. In 1971 McMullen proposed a characterization of
the f -vectors of a special type of polytopes, called simplicial polytopes.
In 1979 Billera and Lee proved the sufficiency of his conjecture using an
elegant geometric construction. Their techniques are further developed
by Kalai to obtain a sharp lower bound for the number of triangulation
of spheres (with labelled vertices). In 1980 Stanley proved the necessity
of McMullen’s conjecture. In this expository paper we will first explain
the ideas in Billera and Lee’s work. Then we will move on to Kalai’s
lower bound for the number of triangulated spheres, and look at some
properties of his construction.

2. Preliminaries

2.1. Simplicial polytopes. In a d-polytope, we call a (d− 1) dimen-
sional face a facet, and a 0-dimensional face (one point) a vertex. If
a polytope is spanned by d + 1 affinely independent vertices, we call
it a d-simplex. Any face of a simplex is itself a simplex. Fixing the
number of vertices, a simplex is the polytope with the ‘most’ number
of faces, as any j + 1 (j < d) vertices will generate a j-face. So, any
two facets intersect with each other, and the intersection will always
be a (d− 2)-face.

A simplicial polytope is less restrictive than a simplex. We call a
polytope simplicial when all its facets are simplices.

2.2. Simplicial complex. A complex is a finite collection of polytopes
that contains all the faces of its polytopes and that the intersection of
two of its polytopes is a face in each of them. We define the f -vector of
a complex in the obvious way, and call its inclusion-maximal polytopes
facets. The dimension of the complex is the largest dimension of its
facets. A Complex is pure if all the facets are of the same dimension.

We call a complex simplicial if every facet is a simplex. For example,
the boundary complex of a simplicial polytope is naturally a simplicial
complex. Sometimes a simplicial complex is abstractly represented as
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a collection of point sets. We denote a facet by the set of its vertices,
and every subset of this set is also in the collection. Conversely, it
can be shown that every abstract simplicial complex has a geometric
realization. In the following we identify the abstract representation of
a simplicial complex with its geometric version.

2.3. h-vectors. For a (d − 1)-dimensional simplicial complex ∆, we
define its f -polynomial and h-polynomial in the following way: Let

f(∆, t) =
d−1∑

j=−1

fjt
t+1,(2.1)

h(∆, t) =
d∑

i=0

hit
i = (1− t)df(

t

1− t
)(2.2)

the series of coefficient in the h-polynomial is called the h-vector (h0, h1, ..., hd),
or explicitly expressed as

hi =
i∑

j=0

(−1)i−j

(
d− j
d− i

)
fj−1, 0 ≤ i ≤ d,(2.3)

fj =

j+1∑
i=0

(
d− i

d− j − 1

)
hi, −1 ≤ j ≤ d− 1(2.4)

Particularly, f0 = h1 + d, h0 = 1, fd−1 =
∑d

i=0 hi.
When we mention the h-vector of a simplicial polytope we actually

mean its boundary complex. If h is the h-vector of some simplicial
polytope, we write h ∈ h(Pd

s ), where Pd
s is the collection of all sim-

plicial polytopes. In [6] there is a simple proof that hi satisfy the
Dehn-Sommerville equation:

(2.5) hi = hd−i, 0 ≤ i ≤ n, n = dd/2e.

This equation can be generalized for h-vectors of all simplicial spheres,
though the proof method is different from the case of polytopes.

We define the g-vector of a simplicial complex as g0 = 1, gi = hi −
hi−1, 1 ≤ i ≤ n. When the Dehn-Sommerville equations hold there is
a bijection between the f -vector and the g- vector: f = g � M , some
properties of the matrix M is analyzed in [4].
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2.4. Pseudopower relations. For any given positive integers h and
i, h can be written uniquely in the form

h =

(
ni

i

)
+

(
ni−1

i− 1

)
+ . . . +

(
nj

j

)
,(2.6)

(2.7)

where ni > ni−1 > . . . > nj ≥ j ≥ 1. Then define

h<i> =

(
ni + 1
i + 1

)
+

(
ni−1 + 1

i

)
+ . . . +

(
nj + 1
j + 1

)
,

called the ith pseudopower of h.

2.5. Shelling. For a polytope F we write F as the set of all its subsets,
which is then a complex. We say a pure d-simplicial complex ∆ is
shellable if its facets can be ordered F1, F2..., Fω so that for 2 ≤ k ≤ ω,

if we put ∆k := ∪k
i=1Fi, then Fk ∩∆k = ∪sk

j=1G
k
j , where Gk

j are distinct
(d− 1) sets of ∆ and sk ≥ 1. By convention we put s1 = 0.

An equivalent statement for shelling of simplicial complex is: for
every j < k, Fj ∩ Fk ⊆ Fi ∩ Fk, i < k and Fi ∩ Fk is a facet of Fk.

2.6. Order. Let Φ(n) denote the set of all monomials in the variables
{Y1, Y2, . . . , Yu} with degree no more than n. Put Y0 = 1. For an
monomial m ∈ Φ(n), m can be extended uniquely in the form

Ye1Ye2 . . . Yen , 0 ≤ e1 ≤ e2 ≤ . . . ≤ en ≤ u.

If we fix an order on the indeterminates Yei
as indicated by their index,

we can then define a reverse lexicographic order on the monomials:
m = Ye1Ye2 . . . Yen < m′ = Ye′1

Ye′2
. . . Ye′n iff for some k, Yek

< Ye′k
and

for all j, k < j ≤ n, Yek
= Ye′k

. It is a total order on Φ(n), and
can be defined on other collection of n-tuples (with elements listed in
non-decreasing order) as well.

For two monomials m and m′, define m <* m′ if m < m′ and
deg m ≤ deg m′. Given a set of monomials M , we call it an order
ideal of monomials (or OIM for short) iff it contains every devisor of
its members.

2.7. Cyclic polytope. The cyclic polytope is an important type of
polytopes with many applications. Let c(t) = (t, t2, t3...td+1) be the
moment curve in Rd+1, select ν > d + 1 distinct points vi = c(ti), t1 <
t2 < . . . < tν . Denote V = {v1, v2, ..., vν}. Then C(ν, d+1) = conv V is
a simplicial polytope with the vertices exactly V . Moreover, it can be
shown that the face lattice of C(ν, d + 1) is independent of the choices
of ti. (see e.g. [10][18])
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Let W be a proper subset of V . For W ′ ⊆ W , W ′ = {vi, vi +1..., vj},
i < j we follow the notations in [3] and say W ′ is a contiguous subset
of W if

i > 1; j < ν; vi−1, vj+1 6∈ W.

When i = 1 and vj+1 6∈ W , W ′ is called the left end-set. When j = ν,
vj+1 6∈ W , W ′ is the right end-set. In the case W ′ is a contiguous set
or right end-set, we call vi−1 the antecedent of W ′. Of course W can
be written uniquely as W1 ∪W2 ∪ . . .∪Wq, where W1, Wq are end-sets
(possibly empty), the rest are contiguous sets.

With these notations we can have a characterization of all facets in
C(ν, d+1) (Gale’s evenness criterion): W is a facet iff |W | = d+1 and
all contiguous subsets in W (not including end-sets) are even.

3. Sufficiency of McMullen’s Conditions

3.1. The g-conjecture. This was the once conjectured characteriza-
tion of h-vectors of a simplicial polytope, now known as the g-theorem:

Theorem 3.1. h ∈ h(Pd
s ) iff the following three conditions hold:

hi = hd−i, 0 ≤ i ≤ n,(3.1)

hi+1 ≥ hi, 0 ≤ i ≤ n− 1,(3.2)

h0 = 1, hi+1 − hi ≤ (hi − hi−1)
<i>, 1 ≤ i ≤ n− 1.(3.3)

When the h-vector satisfies McMullen’s condition we call the corre-
sponding g-vector an M -sequence.

Next we will proceed an outline of the proof of sufficiency of the
theorem. First we will establish a Lemma casting some light on the
geometric meaning of h-vectors. The h-vector is connected with the
shelling of the complex, yet the relationship is invariant with specific
shelling order:

Lemma 3.2. Let ∆ be a shellable (d−1)-simplicial complex, h(∆1, t) =
1, h(∆k, t) = h(∆k−1, t) + tsk for 2 ≤ k ≤ ω, where ∆k are defined as
in subsection 2.5. Hence hi(∆) = |{k : sk = i}|, for 0 ≤ i ≤ d.

Proof. We use induction on dimension d ≥ 1. For d = 1, the facets
are distinct points. From the second points on, the intersection with
the union of previous points will always be the empty set, which by
definition is a (trivial) face in ∆. So for k ≥ 2, sk = 1, which suggests
h(∆, t) = 1 + (f0 − 1)t. The assertion is true.
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Now, for d > 1, the f -vectors of ∆k and ∆k−1 have the following
relationship:

(3.4) f(∆k, t) = f(∆k−1, t) + f(Fk, t)− f(∪sk
j=1G

k
j , t)

By equation 2.2, we deduce

(3.5) h(∆k, t) = h(∆k−1, t) + h(Fk, t)− (1− t)h(∪sk
j=1G

k
j , t)

Now, as Fk is a simplex, ∂Fk is a (d− 2)-complex with facets shellable
in any order. (Next we write ∆1 for Fk, as they are combinatorially
the same.) Fixing a shelling order in ∆1, for the kth facet F ′

k, we have
s′k = k − 1, 1 ≤ k ≤ d. By the induction on dimension,

(3.6) h(∪k
j=1F

′
j , t) =

k−1∑
i=0

ti, 1 ≤ k ≤ d.

We count the faces in ∆1, (this time including F1.) Obviously

fk =

(
d

k + 1

)
.

So

(3.7) f(∆1, t) = (1 + t)d ⇒ h(∆1, t) = 1.

In equation 3.5, we get

h(∆k, t) = h(∆k−1, t) + 1− (1− t)

sk−1∑
i=0

ti = h(∆k−1, t) + tsk

�

Remark. There is a geometric interpretation of the h-vectors in [18].
Note that the h-vectors are defined in such a way that we can also
link it with the Betti number of some manifold (induced by the sim-
plicial polytope) and the Hilbert function of some graded algebra. See
[6][13][16].

Now with Lemma 3.2, we can construct a simplicial complex whose
h-vector is a given M -sequence (and with redundant zeroes).

First, consider the case h1 = 1. By condition 3.2, 3.3 in Theorem 3.1,
h2 = h3 = . . . = hd = 1. Observe directly this is the h-vector of (the
boundary of) a d-simplex. Next we will assume h1 > 1.

Let g = (g0, g1, g2, . . . , gn) be an M -sequence. Define ν ′ = g1 + 2n,
U = {u1, u2, . . . , uν′}. When d is odd, define V ′ = {v1, v2}, and when
d is even V ′ = {v1}. Let V = V ′ ∪ U be ν = d + g1 + 1 distinct
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points with increasing time t on the (d+1) dimensional moment curve.
C(ν, d + 1) = conv V . F ′ be a 2n-subset of U in the form:

F ′ = {ui1 , ui1+1} ∪ {ui2 , ui2+1} ∪ . . . ∪ {uin , uin+1}, ij+1 > ij + 1

namely a disjoint union of pairs of consecutive members in U . F =
V ′ ∪ F ′. Then F satisfies Gale’s evenness criterion, it is a facet in
C(ν, d + 1). Call the collection of all facets in the form F as E .

Let Φ(n) denote the set of all monomials in g1 variables with degree
no more than n. We will build a bijection α between E and Φ(n): for

F = V ′ ∪ {ui1 , ui1+1} ∪ {ui2 , ui2+1} ∪ . . . ∪ {uin , uin+1},
define

α(F ) = Ye1Ye2 . . . Yen , ej = ij − 2j + 1, 1 ≤ j ≤ n.

Intuitively ej is the ‘amount’ by which the jth pair in F ′ is ‘displaced’
from its left-most position. We can see the series ej are non decreasing,

so the map α is well defined. And whenever we have a monomial in
Φ(n) we can write it in the extended form, then it is easy to define the
inverse map, α−1. See the following example:

Example 3.3. Suppose d = 8, n = 4, g1 = 3, the vertices on the
moment curve are {v1, u1, u2, . . . , u11}.
Take the monomial Y1Y2Y3, which is Y0Y1Y2Y3 in the extended form, so

α−1(Y0Y1Y2Y3) = {v1} ∪ {u1, u2} ∪ {u4, u5} ∪ {u7, u8} ∪ {u10, u11}.

Back to our definition, if we denote the total number of ‘displaced’
pairs in F as δ(F ), we have δ(F ) =deg α(F ). Further, if we give both
E and Φ(n) the reverse lexicographic order, α is order preserving.

Another important fact is that whenever we have an M -sequence,
there is an order ideal of monomials associated with it. We cite the
following Lemma from [3] without proof.



8 CONSTRUCTION TECHNIQUES IN POLYTOPES

Lemma 3.4. Let g = (g0, g1, g2, . . .) be a finite (or infinite) sequence of
non negative integers. For each i ≥ 0 let Mi be the first gi monomials
of degree i in the variables Y0, Y1, Y2, . . .. Define M = ∪i≥0Mi. Then
M is an order ideal of monomials iff g is an M-sequence.

Now, consider the order ideal of monomials M constructed above.
For a monomial m, if there is an m′ ∈ M , such that m < m′ and
deg m = deg m′, we know m ∈ M , because elements of the same
degree in M forms an initial set. When m < m′ and deg m < deg m′,
we would easily find a devisor m̄ of m′ such that deg m̄ = deg m and
m < m̄. Thus whenever m <* m′ for some m′ ∈ M we would have
m ∈ M .

If we write B = α−1(M) in the reverse lexicographic order {F1, F2..., Fω},
actually we would get a shelling order of the simplicial complex
∆ = ∪ω

i=1Fi :

Lemma 3.5. ∆ is shellable with facets in reverse lexicographical order
F1, F2..., Fω, and sk = δ(Fk). Hence

hi(∆) = gi, 0 ≤ i ≤ n; 0, n + 1 ≤ i ≤ d + 1

Proof. Fixing k, 2 ≤ k ≤ ω, we will produce δ(Fk) elements F k
1 , F k

2 ..., F k
δ(F )

in B, such that:
(i) they all come before Fk ;
(ii) Fk ∩ F k

j are distinct sets of cardinality d ;

(iii) for all i, i ≤ k − 1, Fk ∩ Fi ⊆ Fk ∩ F k
j for some j ;

Denote p = δ(Fk). In Fk there are exactly p ‘displaced’ pairs:

Fk = V ′ ∪ {u1, u2, ..., u2n−2p} ∪ {uin−p+1 , uin−p+1+1} ∪ . . . {uin , uin+1},

where in−p+1 > 2n− 2p + 1.
Put Gk

j = Fk\{uij+1}, n− p + 1 ≤ j ≤ n. If uj′ is the antecedent to
the contiguous group containing uij+1, we write

F k
j−n+p = {uj′} ∪Gk

j−n+p

then F k
i ∈ E , 1 ≤ i ≤ p ; Fk ∩ F k

j = Gk
j are p distinct sets of card d.

As F k
j < Fk and δ(F k

j ) ≤ δ(Fk), obviously α(F k
j ) <* α(Fk). Recall

M is an order ideal of monomials constructed in Lemma 3.4, we have
α(F k

j ) ∈ M . Thus F k
j ∈ B.

For any Fi < Fk in B, there is at least one uij+1 6∈ Fi∩Fk, n− p+1 ≤
j ≤ n. Then Fi ∩ Fk ⊆ F k

j−n+p ∩ Fk.
Notice sk = δ(Fk) = deg α(Fk). In our construction

|{k : deg α(Fk) = i}| = gi. Thus from Lemma 3.5, hi(∆) = gi, 0 ≤ i ≤
n; 0, n + 1 ≤ i ≤ d + 1. �
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So we have built a simplicial complex whose h-vector is a given M -
sequence g (and redundant zeroes). Now we show the boundary of ∆
will provide us with a simplicial complex whose h-vector is the corre-
sponding h-vector of g.

Observe in ∆ any (d− 1)-face can be at most in two different facets.
We call ∆ a pseudomanifold (see [8]). The boundary of a pseudoman-
ifold is determined by the (d − 1)-faces which are contained in only
one facet. If the (d − 1)-faces as G1, G2, . . . , Gτ , then the boundary
∂∆ = ∪τ

i=1Gi. For the set of faces not in the boundary, we denote
them by ∆o. As ∆ is a shellable complex, by a well known result in [8],
∆ is easily seen to be a topological d-ball. Thus ∂∆ is a (d−1)-sphere,
and h(∂∆) satisfies Dehn-Sommerville equations. (without referencing
to [8], we can still show h(∂∆) satisfies D-S equations, as ∂∆ is in fact
polytopal. See end of this section.)

For the interior faces in ∆o
k, we assert that they come from the inte-

rior faces of ∆o
k−1, plus the faces in Fk which contain ∩sk

j=1G
k
j . Indeed,

when some boundary faces in ∆o
k−1 now turn into interior faces, they

can only belong to (d−1)-faces in common of ∆o
k−1 and Fk, so we need

only care about the new interior faces in Fk. As Fk is a d-simplex,

the intersection of p distinct (d − 1)-faces Gk
j is a (d − p + 1) set,

name it A. If we want to recover A back to a (d − 1)-face, we have
to ‘patch’ p − 1 points outside of it. It turns out we have at most(

d + 1− (d− p + 1)
p− 1

)
= p choices, which are exactly the existing

faces Gk
j in Fk. So any face containing A can not be in a (d − 1)-face

other than Gk
j . But Gk

j are exactly those (d − 1)-faces shared by two

facets in ∆, namely Fk and the F k
j . So a face containing A cannot lie

in the boundary. However, if a face do miss some points from A, then
it must be included in a (d − 1)-face other than Gk

j , thus it is in the
boundary.

Under this criterion, we know newly-added interior faces in ∆k will
have dimension at least d − sk. fj(∆

o
k) = fj(∆

o
k−1), −1 ≤ j < d − sk.

For s = max{sk, 1 ≤ k ≤ ω}, ∆ has no interior face with dimension
(strictly) smaller than d− s:

fj(∆
o) = 0, fj(∆) = fj(∂∆), −1 ≤ j < d− s.

Now if for some q, hi(∆) = 0, q < i ≤ d + 1, which means
|{k : sk = i, i > q}| = 0, we would have the estimation s ≤ q.

Now under our construction, as h(∆) = (g0, g1, ..., gn, 0, ..., 0), ∆ has
no interior face with dimension less than d− n ≥ n:

(f−1(∆), f0(∆), ..., fn−1(∆)) = f−1(∂∆), f0(∂∆), ..., fn−1(∂∆)).
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By equation 2.2,

h(t) = (1− t)d+1f(
t

1− t
) =

d∑
j=−1

fj(1− t)d−jtj+1.

hi is the coefficient of ti, so it is only affected by fj with j < i. Note
that ∂∆ is one dimension less that ∆, so hi is equal to the coefficient
of ti in (1− t)h(∂∆, t). Thus

hi(∆) = hi(∂∆)− hi−1(∂∆), 1 ≤ i ≤ n.

On the other hand,

hi(∆) = gi = hi − hi−1, 1 ≤ i ≤ n; h0 = h0(∆) = h0(∂∆) = 1

we get hi(∂∆) = hi, 0 ≤ i ≤ n. Since h(∂∆) satisfies Dehn-Sommerville
equations, hi with n < i ≤ d are symmetric with the first half, and ∂∆
is the simplicial complex with the given h-vector.

In [3] Billera and Lee further proved that ∂∆ is in fact polytopal,
namely it is combinatorially equivalent to the boundary complex of a
polytope. There is a theorem in [13] Section 5.2, which says whenever
we have a polytope P and a point v outside of it (called an eye) in
general position with all the facets in P , then the faces containing
v in conv({v} ∪ P ) are exactly in the form conv({v} ∪ F ′), where F ′
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belongs both to a facet of P that we can ‘see’ from v and a facet that
we can not see. Billera and Lee allowed the points of the supporting
set V to move on the moment curve (but keeps their order, thus keeps
the combinatorics) and proved that in a proper position we can find
a point v for the eye which ‘sees’ exactly the facets of B. Then the
faces in ∂∆ are reflected by the faces in conv({v} ∪ V ) which contains
v. If then we ‘cut’ the neighborhood of v in conv({v} ∪ V ) with a
codimension 1 hyperplane (called taking the vertex figure), we get a
polytope combinatorially equivalent to ∂∆. See the above picture.

4. A Lower Bound for the Number of Simplicial Spheres

Now we follow Kalai to get a lower bound for the number of simpli-
cial spheres. A simplicial sphere is a d-dimensional simplicial complex
homeomorphic to a d-sphere (or namely a triangulation of a d-sphere.)
A PL sphere is a simplicial sphere piecewise linear homeomorphic to
the boundary of a simplex. And a PL sphere simplicially isomorphic to
the boundary of a simplicial polytope is called a polytopal sphere. Let
c(d, n) be the number of polytopal (d− 1)-spheres with n labelled ver-
tices. In [12] Goodman and Pollack proved log c(d, n) ≤ d(d−1)n log n.
Kalai extended the construction methods we mentioned above and
proved the number of triangulations of Sd−1 with n labelled vertices
s(d, n) has a lower bound

log s(d, n) ≥ 1

(n− d)(d + 1)

(
n− d(d + 2)/2e
d(d + 1)/2e

)
.

Thus, when n or n− d is big, only a small portion of simplicial spheres
are polytopal. More surprisingly, for every d ≥ 5 or b ≥ 4,

lim
n→∞

c(d, n)

s(d, n)
= 0, lim

d→∞

c(d, d + b)

s(d, d + b)
= 0.

Recall in the above section we find a shellable complex (the collec-
tion of facets in a cyclic polytope and that they correspond to an order
ideal of monomials), and know it is a topologically ball. So its bound-
ary forms a sphere. It seems we are very probable to attain a lot of
simplicial spheres as long as we have many order ideal of monomials. In
fact, in Kalai’s modification we can have find many shellable simplicial
balls (and thus simplicial spheres) with a more direct approach.

From now on we identify a facet in a cyclic polytope C(n, d+1) with
a d-set of integers S = {i1, i2, . . . , id}, where i1 < i2 < . . . < id are the
time t of the vertices on the moment curve. When the ball has at most
n vertices, we assume ij are taken from [n] = {1, 2, 3, . . . , n}. Rather
than reverse lexicographic order, now we adopt a partial order :
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S ≤ T, T = {j1, j2, . . . , jd}, iff for every 1 ≤ k ≤ d, ik ≤ jk .
We construct a facet:

F = {i1, i1 + 1} ∪ {i2, i2 + 1} ∪ . . . ∪ {iz, iz + 1},
with z = (d + 1)/2. Denote the set of all facets like this by F . For
simplicity we only consider the case when d is odd. (When d is even
the argument is mostly the same.) Let I be a collection of facets. For
a facet F ′ ∈ I , if when F ≤ F ′ we have F ∈ I , I is called an initial
set (with respect to partial order). An initial set is also a shellable
collection of facets, for we have the following Lemma:

Lemma 4.1. Let B(I ) be the simplicial complex spanned by I . Any
order F1, F2, . . . , Fω of I compatible with the partial order is a shelling
order of B(I ).

The proof is quite similar to Lemma 3.5, we omit it here. We call
B(I ) a squeezed ball, and its boundary a squeezed sphere. Luckily
enough, we have as many simplicial spheres as simplicial balls:

Lemma 4.2. Let B1, B2 be two squeezed balls. If ∂B1 = ∂B2 then
B1 = B2.

Proof. This Lemma actually means we can recover a squeezed ball from
its boundary. Observe B(I ) is a pseudomanifold. In fact, a (d−1)-face
G ∈ B(I ) has exactly one contiguous group (or end set) that is not
even numbered, so we have at most two directions to add an integer
to the odd numbered contiguous group (and only one direction to the
end-set) to get a facet containing this face. Suppose G ∈ F1, F2, then it
is not hard to see that the two facets are comparable. Assume F1 < F2.
I is an initial set, so when F2 ∈ I , F1 ∈ I , and G will not be in
the boundary. So, when G is a (d − 1)-face in the boundary, F1 must
be a maximal facet in I . Conversely, when F1 is a maximal facet,
there is at least one (d − 1)-face in ∂B(I ), e.g. the face missing the
minimal integer in F1. We know the boundary complex characterizes
all the maximal facets in I , thus the whole I . �

The following Lemma provide further information about the squeezed
sphere:

Lemma 4.3. Let S(I ) = ∂B(I ) be a squeezed sphere. If i is a vertex
of S(I ), then for every j ≤ i, j ∈ S(I ).

Proof. Since there is a facet in I that contains i, for every j ≤ i there
is also a facet containing j. Choose a set which is maximal among all
facets in I containing j, say F . Find in F a pair {ik, ik + 1} which
does not contain j, then F\{ik} ∈ S(I ). �
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Now we can try to estimate how many squeezed spheres can we have.
If we denote by f(d, n) the number of squeezed (d− 1)-spheres with at
most n vertices, by Lemma 4.1 and 4.2 f(d, n) is the number of initial
sets in F . By Lemma 4.3 the number of squeezed (d− 1)-spheres with
exactly n vertices is f(d, n)− f(d, n− 1).

So, all we need to know is the number of initial sets in F . Initial sets
are characterized by their maximal elements. However, in general it is
not easy to presume how many ‘maximal elements’ can we find in an
initial set (or equivalently, how many sets of ‘incomparable elements’
are there). Instead, observe in I that every maximal chain up to the
same element has the same length. I is a ranked poset (in partial
order). Of course any two elements with the same rank can not be
comparable. If we write B(n, d, r) = {S ∈ F , rank(S) = r}, then we
are sure any subset of B(n, d, r) will generate a different initial set. Let

b(n, d, r) = |B(n, d, r)|, b(n, d) = max{b(n, d, r), r ≥ 0},

we have f(n, d) ≥ 2b(n,d).
Suppose F = {i1, i1 + 1} ∪ {i2, i2 + 1} ∪ . . . ∪ {iz, iz + 1}, we can

obtain a maximal chain to F in the following elementary way. From
left to right, in turn move the kth pair to their left-most position, e.g.
if we move {ik, ik + 1} to {2k − 1, 2k}, there are ik − 2k + 1 positions
in between. Now, denote ek = ik − 2k + 1,

rank(F ) =
z∑

k=1

ek.

Let a(m, z, r) be the number of ways to represent r as the sum:

r = e1 + e2 + . . . + ez, 0 ≤ e1 ≤ e2 ≤ . . . ≤ ez ≤ m,

we have b(n, d, r) = a(n− d + 1, z, r). An easy argument shows∑
0≤r≤mz

a(m, z, r) =

(
m + z

z

)
.

For example we have m dots in a line, now use z boards to group them
into z + 1 segments (allow some segments to be empty), with ek being
the number of dots in the first k segments. It is equivalent to say there
are totally m + z positions in a line and choose any z of them to put
the boards. Whatever the sum r is, it will always be in the range from
0 to mz.

Put a(m, z) = max{a(m, z, r), 0 ≤ r ≤ mz}, we have

a(m, z) ≥ 1

1 + mz

(
m + z

z

)
.
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b(n, d) ≥ 1

1 + (n− d− 1)z

(
n− z

z

)
≥ 1

(n− d)z

(
n− z

z

)
.

Now we know f(n, d) ≥ 2b(n,d), write f(n, d) = 2b(n,d) + g(n, d) where
g(n, d) is some positive function corresponding the number of initial
sets not counted in 2b(n,d). We can directly check b(n, d)−1 ≥ b(n−1, d).
As any an initial set build on [n− 1] is also one that built on [n], it is
easy to see g(n, d) ≥ g(n− 1, d). So

f(d, n)− f(d, n− 1) ≥ 2b(n,d)−1 + g(n, d)− g(n− 1, d) ≥ 2b(n,d)−1,

log s(n, d) ≥ 1

(n− d)z

(
n− z

z

)
.

The lower bound is obtained.
Further, we say the h-vector of a squeezed sphere necessarily sat-

isfies McMullen’s conditions. We know immediately it satisfies the
Dehn-Sommerville equations since it is a simplicial sphere([6]). Recall
in Section 3 we have defined a map α from a collection of facets to
monomials: α : F → Φ(z). When I is an initial set, it is not hard to
find α(I ) is an order ideal of monomials, e.g.:

Example 4.4. Suppose d = 7, z = 4, Y1Y2Y3 is in α(I ),

F1 = α−1(Y0Y1Y2Y3) = {1, 2} ∪ {4, 5} ∪ {7, 8} ∪ {10, 11}
then, if we look at Y2Y3:

F2 = α−1(Y0Y0Y2Y3) = {1, 2} ∪ {3, 4} ∪ {7, 8} ∪ {10, 11}
we have F2 < F1 in the partial order. Since I is an initial set, F2 ∈
I ⇒ Y2Y3 ∈ α(I ).

When we have an order ideal of monomials M , define ki = |{m ∈ M ,
deg m = i}|, i ≥ 0. We call {k0, k1, . . .} an O-sequence. Note in
Lemma 3.4 we have a numerical characterization of the O-sequence of
a (particularly constructed) order ideal of monomials : the O-sequence
is in fact an M -sequence. While we do not need the full power of the
following theorem to show the same characterization works for general
OIM, as it is fundamental in the proof of Stanley for the necessity of
McMullen’s condition (for polytopes), we cite it here. Here we intro-
duce some terms in commutative algebra, (see [1], [11], [17]). Let R be a
Noetherian commutative ring with identity, graded by the nonnegative
integers N. The additive group of R has a direct sum decomposition:

R = R0 + R1 + R2 + . . . , RiRj ⊆ Ri+j, 1 ∈ R0.

If R0 is a field K we say R is a G-algebra. Since R is Noetherian it is
finitely generated over the field K, and each Ri is a finite dimensional
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vector space over K. If further R is generated by elements in R1, we
call it a standard G-algebra. The Hilbert function of R is defined by
H(R, n) = dimKRi, i ∈ N. In particular, H(R, 0) = 1. We have the
following theorem:

Theorem 4.5. (i) There exist a standard G-algebra R with R0 = K
and Hilbert function H.
(ii) (H(0), H(1), H(2), . . .) is an O-sequence.
(iii) H(0) = 1 and for n ≥ 1, H(n + 1) ≤ H(n)<n>.
(iv) Let g = H(1) and Mn be the first (in reverse lexicographic order)
H(n) monomials of degree n in g variables. M = ∪n≥0Mn is an order
ideal of monomials.

Proof. Note that (iii) ⇔ (iv) is Lemma 3.4. We reference [17] for
(i) ⇔ (ii), and in [7] there is proof of (ii) ⇒ (iv) involving only finite
set arguments. (iv) ⇒ (ii) is trivial. �

So, from (ii) ⇒ (iv) ⇒ (iii) we know the O-sequence of an OIM
is an M -sequence. Use the same arguments as in Section 3 we have
hi(B(I )) = ki for 0 ≤ i ≤ z, where ki is the ith component in the
O-sequence of α(I ), and hi = 0 when i > z. (It is obvious that the
highest degree in α(I ) is z, since there are at most z pairs.) Similarly

(1, h1(S(I ))− h0(S(I )), . . . , hz(S(I ))− hz−1(S(I )) )

= (1, h1(B(I )), . . . , hz(B(I )) )

is an M -sequence. We have proved the h-vector of S(I ) satisfies
McMullen’s conditions. However, we note it is still an open problem
whether McMullen’s conditions hold for all simplicial spheres.
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