Math 210 Jerry L. Kazdan

A Markov Chain Example

A Markov chain example. In an experiment you are placed in a
five room “house” (see Figure 3). Every hour the doors are opened j
and you must move from your current room to one of the adjacent | { 5 -
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rooms. Assuming the rooms are all equally attractive, what per-
centage of the time will you spend in each room? (The extent to |,

which the experimental percentage differs from this measures the
desirability of each room).

To solve this problem one introduces the 5x5 transition matriz M = (m;;) of this
Markov [1856-1922] chain: if you are currently in room j, then m;; is the probability
you will next be in room 7 (CAUTION: some mathematicians interchange the roles of
¢ and j). For this, we number the rooms, say clockwise beginning in the upper left
corner with ps referring to the center room. Then, for instance, miy = mgy = msy = %
since if you are in room 2, it is equally likely that you will next be in rooms 1, 3, or

5, but you won’t be in rooms 2 or 4. Proceeding similarly we obtain
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The elements of M are non-negative and the sum of every column is 1: no matter
where you are now, at the next step you will certainly be in one of the rooms.

It is useful to introduce column probability column vectors P = (p1, ... ,ps) with
the property that p; gives the probability of being in the ;™ room at a given time.
Then 0 < p; <1 and > p; = 1. If Py describes the probabilities of your current
location, then P,ext = M P,ow, gives the probabilities of your location at the next
time interval. Thus, if one begins in Room 1, then P, = (1,0,0,0,0), and after the
first hour P, = (0, %, 0, %, %) = MP,. In the same way, at the end of the second hour
Py:=MP, = M?P,, and P, := MP,_, = M*P,.

For a matrix M arising in a Markov process (non-negative elements and the sum
of each column is one), if X is any eigenvalue of M* (and hence M), then |A| < 1.
To see this, let v := (v1,...,v,) be a corresponding eigenvector, M*v = Av, with
largest component vy, that is, |v;| < |vg|. Then |[(A — myx)vr| = |Z#k mirv;| <
(E#k m)|vg|. Since Y .mg = 1 then |A — mpi| < 1 — myy. Consequently |A| <
|A — mgg| + myr < 1 (this reasoning is a special case of Gershgorin’s theorem).

Moreover, if we assume all the elements of M are positive, then equality [A] =1
occurs only if A =1 and v; = v = ... = v,. Thus |[A| < 1 except for the one
dimensional eigenspace corresponding to A = 1.



In seeking the long-term probabilities, we are asking if the probability vectors
P, = M*Py, k = 1,2,... converge to some “equilibrium” vector P independent
of the initial probability vector FPy. If so, then in particular P = lim M**' P, =
lim MM*Py = M P, that is, P = MP so P is an eigenvector of M with eigenvalue
1. Moreover, choosing Py to be any standard basis vector e; and since the 3% column
of M" is M"e; — P, it follows that M* — M., where all the columns of M, are the
same eigenvector P. In addition, still assuming convergence to equilibrium, every
eigenvector of M with eigenvalue A = 1 must be a multiple of P.

Although A =1 is always an eigenvalue of M (since it is an eigenvalue of M*
with eigenvector (1, ...,1)), the limit M*P, does not always exist. For example,
it does not exist for the transition matrix M = (? 1) for a two room “house.” If
M = I, then the limit of M*P, exists but is not independent of Py. However the
limit M* P, does exist and is independent of the initial probability vector Py if all of
the elements of M —or some power of M —are positive. In this case M is called the
transition matrix of a regular Markov Chain.

If M is diagonalizable, the convergence of M* P, to a limiting vector independent
of Fy follows from the above information on its eigenvalues. For the general case one
must work harder. At the end of these notes TI'll give the simplest proof 1 know
that does not assume M is diagonalizable. In our case all the elements of M? are
positive since after two steps there is a positive probability that one will be in each
of the rooms. It remains to find this limiting probability distribution P by solving
P=MP.

Here is where we can use symmetry. Since the four corner rooms are identical,
M must commute with the matrices T;; that interchange the probabilities of being
in the corner rooms, p; and p; for 1 < 1,5 < 4. Since M(T;;P) = T;;MP = T;; P,
we see that T;;P is also a probability eigenvector with eigenvalue A = 1. Thus, by
uniqueness of this probability eigenvector, T;;P = P so “by symmetry” P has the
special form P = (z,z,z,z,y) with 1 = > p;, = 4o + y. The system of equations
P = M P now involves only two unknowns x,y. Its first equation is = = %w + %a: + iy,
that is 4z = 3y. Combined with 4z + y = 1 one finds = = %, y = i. Therefore
25% of the time is spent in the center room and 18.75% in each of the corner rooms.
Symmetry turned a potentially messy computation into a simple one.

PROOF THAT M* CONVERGES

Recall that for the transition matrix M of a Markov chain all of its elements are
non-negative and that the sum of each column is one. M is regular if for some power
N all the elements of MYV are positive.

Theorem If M is the transition matriz of a reqular Markov chain, then as k — oo
the powers M* converge to a matriz My, whose columns are the same, so for any
given row all the elements are the same.



Before proving this, note that we already know that under these assumptions M has
exactly one eigenvector P with eigenvalue 1, so MP = P. P is normalized so that
the sum of its elements is one. Thus, assuming the above convergence is proved, then
each of the columns of M., must just this vector P.

The key to the proof we give here is the

Averaging Lemma: [f one takes a weighted average ¢ = cywy + cawy + -+ -+ c,w, of
real numbers ¢y, ... ,c,, where 0 < v <w; and wy + -+ w, =1, then the average
lies between the mazx and min of the ¢; with the quanlitative estimate

Y Cmax + (1 - V)Cmin S c S (1 - V)Cmax + 7Y Cmin- (1)

This is obvious if ¥ =0, so the new information is when v > 0.

To prove the Lemma, note that the largest weighted average would occur if all
but one of the ¢;’s equals ¢yax and the remaining ¢; equals c¢pin, and this smallest
entry had the smallest weight, . This proves the right-hand side of (1). Here is a
more algebraic version of the same proof. Say cyin = ¢;. Since wy+---+w, = 1 —wy,

¢ = crwy + cQwy + -+ + cpwy, S CminW1 + cmax(er + -+ wn)
= CminW1 + Cmax(1 - wl) = Cmax — [Cmax - cmin]rwl

Cmax — [cmax - cmin]7 = (1 - V)Cmax + YCmin-
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The left-hand side of (1)is proved similarly. This completes the proof of the lemma.

We now apply this to prove the theorem. We first treat the special case where
all the elements of M are positive, so let ¥ > 0 be the smallest element of M.
The plan is to show that the transpose matrices M** converge. Because the sum
of the elements in any row of M* is 1, if v[% = v is any column vector let vl :=
M*3v. Observe that the elements of v[' := M*v are various averages of v. Thus the

(1]

above estimate gives the upper bound for vmax < (1 — ¥)Umax + YVmin and similarly

Vmax + (1 = 7)0min < 011 These imply

ol — oM <11 = 9)vmax + 70min] — [0masx + (1 = 7)vmin]

- (1 - 27)(vmax - vmin)-
Because 0 < 1 — 2y < 1, this shows that applying the matrix M* to a vector

“squeezes” the output vector. Since vl = Mo~ = M**y we can repeat this
contraction to obtain

0 < ofl —ond < (1 =205 = o) < (1= 29) (Vimax — vimin).

max min max min



Thus vl[ﬁ]ax — vr[ﬂn — 0. This shows that each element of the vector M**v converges
to the same number, so

lim M**y =
k—oo

[

for some constant ¢ that depends on v. In particular, to get the 5 column of M*
use the case where v is the ;' standard basis vector. This proves the convergence of

M** and hence of MF.

As an exercise, show that the above theorem also holds if one assumes only that
for some power N all the elements of MY are positive.

Problems

la). If A and B are both n x n transition matrices for Markov chains, does their
product AB also have this property? Proof or counterexample.

b). With A and B as above, if either all the elements of A are positive or all the
elements of B are positive, does this imply that all the elements of AB are positive?
Proof or counterexample.

2. Let M be the transition matrix of a Markov process.
a). Show that the property that “all the elements of M™ are positive” is equivalent
to the statement “it is possible to go from any state to any other in exactly N steps.”

b). Use the example M = (? (1)) to show that the above property is not equivalent to
the statement “it is possible to go from any state to any other in at most N steps.”

3. Let M be the transition matrix of a Markov process with n states sy, ..., s, so
M is an n x n matrix. Say that within the first n steps you cannot go from state s;
to state sy. Does this mean it is impossible to go from state s; to state sy no matter
how many more steps you try? Proof or counterexample.

4. Say A is the matrix of a Markov chain all of whose elements are positive. Construct
a new Markov chain whose transition matrix M agrees with A, except that its first
column has been replaced by the standard column unit vector e; = (1,0,...,0).
Show that for any initial state P (a probability vector) one has limj_.. M*P = ¢;.

This is essentially one model of the spreading of a fatal disease (no one recovers), where
everyone has a positive probability of catching the disease. Eventually everyone dies
of this disease. The ebola virus, for which the death rate is about 80% is alarmingly
close to this.



Solution to Problem 4

Here is one approach. We show that M* converges to a matrix whose first row is
all 1’s and all the other elements are 0. Say M = (m;;) is our given n X n matrix.
The key facts we use are

e Fach element in the first row of M 1is positive: my; > o > 0 where 1 < 53 < n
and 0 < a <1 is the smallest element in the first row of M. [We will not use
the positivity of the other rows.]

e The sum of each column of M is 1: my; +mg; +---+my,; = 1,50 mg; +---+
my,; <1 —a for every j.

Now for £ =1,2,..., the matrix M* has the form

1 bl? bln
Mk — 0 b?? b2n
0 bn2 bnn

where the values of the b;;’s of course depend on k. We want to show that for ¢ > 2
the elements b;; — 0 as £ — oo. Assuming this is done, then since the sum of each
column of M* is 1, this will also show that each of the elements in the first row of
M* each converge to 1.

A key ingredient in the proof is to write M**! = M*M (rather than the equally
reasonable choice M*+! = M M*). Using this

1 by -+ by I mye -+ my,
Mk—{—l _ MkM _ 0 by -+ byp 0 moy -+ my,
0 bng bnn 0 my Mpn

Write M5! = (cij) and let B be the largest of the numbers b;; for ¢ > 2. Since for
g > 2 we know by, = 0, then for + > 2, we have

cij = bigma; + -+ bymy; < Pr(mao; + - 4+ my;) < Br(l — a).

Thus for any ¢ > 2 we know the largest of the ¢;; is at most fi(1 — «), that is,
Bry1 < (1 — a)Bi. Consequently, Bri1 < (1 —a)fB; — 0 as k — oo.

This proves, as desired, that the elements in all but the first row of M* converge
to zero as k tends to infinity.



REMARK Given a probability vector P, let Z, = M*P Then limy_e Zr = €1, so the
first component of Z; converges to 1 and the others to 0. It is easy to see that the
first component of Z; increases monotonically as k increases.

However, the other components of Z; are not necessarily decreasing monotoni-
cally, even though we know they converge to 0 to zero. Here is an example.

1.1 .1 4 .46
Zi=MP=|0 8 8].13]=148
0 .1 .1 3 .06

The second component of Z; = M P is larger than the second component of P, even
though for k large the second component of M* P will converge to 0.



