Signature Printed Name

Math 210 December 7, 2006 Exam 2

Jerry L. Kazdan 12:00 — 1:20

DIRECTIONS: Part A (short answer) has 2 problems (5 points each) while Part B has 7 problems (10 points each). To receive full credit your solution should be clear and correct. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides. Please box your answers.

PART A: SHORT ANSWER, 10 POINTS (5 POINTS EACH)

A-1. Suppose x(t) evolves according to the differential equation dx/dt = f(x), where f(x) is the function f(x) graphed below. Describe what happens to x(t) as t gets very large. if x(0) = 1.

A-2. Compute an integer c, where $0 \le c < 23$ so that $48 \equiv c \pmod{23}$.

PART B: 70 POINTS (10 POINTS EACH)

- B-1. You and a friend agree to meet for lunch between 12:00 and 1:00 every day. Suppose you both arrive between 12:00 and 1:00, but at times chosen at random.
 - a) What is the probability distribution function for the amount of time the first to arrive must wait for the other?
 - b) What is the probability density?
 - c) What is the expected waiting time?
 - d) What is the standard deviation of the waiting time?
- B-2. (see the graph on the right)
 - a). If the horizontal axis is x and the vertical axis is y, find the equation for y as a function of x?
 - b). If the horizontal axis is x and the vertical axis is $\log y$, find the equation for y as a function of x.
 - c). If the horizontal axis is $\log x$ and the vertical axis is $\log y$, find y as a function of x.

- B-3. Find a map of the form F(X) = V + AX, where A is a 2×2 matrix and V a vector (so F maps the two dimensional plane to itself) that describes a rotation counterclockwise by 90 degrees followed by a reflection across the vertical axis.
- B-4. A multinational company has branches in the US., Japan, and Europe. In 1990, it had assets of \$5 million: \$3 million are in the U.S. and \$2 million in Europe. Each year 1/2 the U.S. money stays home, 1/4 goes to both Japan and Europe. For Japan and Europe, 1/2 stays home and 1/2 is sent to the U.S.
 - a). Find the transition matrix of this Markov chain.
 - b). Find the limiting distribution of the \$5 million as the world ends.
- B-5. Say a function p(t) satisfies dp/dt = (p-1)(p-3). First graph dp/dt in terms of p and use the result to sketch the graphs in the tp plane of p(t) for t > 0 under each of the following initial conditions:

$$p(0) = -1,$$
 $p(0) = 2,$ and $p(0) = 4.$

- B-6. Let A be a 2×2 matrix with distinct eigenvalues λ_1 , λ_2 and corresponding eigenvectors V_1 , V_2 .
 - a) If $X = aV_1 + bV_2$, compute AX, A^2X , and $A^{35}X$ in terms of λ_1 , λ_2 , V_1 , V_2 , a, and b.
 - b) If $\lambda_1 = 1$ and $|\lambda_2| < 1$, compute $\lim_{k \to \infty} A^k X$. Explain your reasoning.
- B-7. For a crude RSA encryption of a message, you use n = pq, where p = 7 and q = 13.
 - a). Find a public exponent e and a private exponent d.
 - b). Say the entire message Alice want to send you is the number 10. What is Alice's encryption of this message?