
Linear Algebra Problems

Math 504 – 505 Jerry L. Kazdan

Topics

1 Basics
2 Linear Equations
3 Linear Maps
4 Rank One Matrices
5 Algebra of Matrices
6 Eigenvalues and Eigenvectors
7 Inner Products and Quadratic Forms
8 Norms and Metrics
9 Projections and Reflections

10 Similar Matrices
11 Symmetric and Self-adjoint Maps
12 Orthogonal and Unitary Maps
13 Normal Matrices

14 Symplectic Maps
15 Differential Equations
16 Least Squares
17 Markov Chains
18 The Exponential Map
19 Jordan Form
20 Derivatives of Matrices
21 Tridiagonal Matrices
22 Block Matrices
23 Interpolation
24 Dependence on Parameters
25 Miscellaneous Problems

The level of difficulty of these problems varies wildly. Some are entirely appropriate for a
high school course. Others definitely inappropriate.

Although problems are categorized by topics, this should not be taken very seriously. Many
problems fit equally well in several different topics.

Note: To make this collection more stable no new problems will be added in the future.
Of course corrections and clarifications will be inserted. Corrections and comments are
welcome. Email: kazdan@math.upenn.edu

I have never formally written solutions to these problems. However, I have frequently used
some in Homework and Exams in my own linear algebra courses – in which I often have
written solutions. See my web page: https://www.math.upenn.edu/~kazdan/

Notation: We occasionally write M(n,F) for the ring of all n × n matrices over the field F ,

where F is either R or C . For a real matrix A we sometimes use that the adjoint A∗ is the
transpose and write AT .

1 Basics

1. [1] At noon the minute and hour hands of a clock coincide.

a) What in the first time, T1 , when they are perpendicular?

b) What is the next time, T2 , when they again coincide?
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2. [2] Which of the following sets are linear spaces?

a) {X = (x1, x2, x3) in R3 with the property x1 − 2x3 = 0}
b) The set of solutions ~x of A~x = 0, where A is an m× n matrix.

c) The set of 2× 2 matrices A with det(A) = 0.

d) The set of polynomials p(x) with
∫ 1
−1 p(x) dx = 0.

e) The set of solutions y = y(t) of y′′ + 4y′ + y = 0.

f) The set of solutions y = y(t) of y′′ + 4y′ + y = 7e2t .

g) Let Sf be the set of solutions u(t) of the differential equation u′′−xu = f(x). For
which continuous functions f is Sf a linear space? Why? [Note: You are not
being asked to actually solve this differential equation.]

3. [3] Which of the following sets of vectors are bases for R2?

a). {(0, 1), (1, 1)}
b). {(1, 0), (0, 1), (1, 1)}
c). {(1, 0), (−1, 0}

d). {(1, 1), (1, −1)}
e). {((1, 1), (2, 2)}
f). {(1, 2)}

4. [4] For which real numbers x do the vectors: (x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1),
(1, 1, 1, x) not form a basis of R4? For each of the values of x that you find, what
is the dimension of the subspace of R4 that they span?

5. [5] Let C(R) be the linear space of all continuous functions from R to R .

a) Let Sc be the set of differentiable functions u(x) that satisfy the differential equa-
tion

u′ = 2xu+ c

for all real x . For which value(s) of the real constant c is this set a linear subspace
of C(R)?

b) Let C2(R) be the linear space of all functions from R to R that have two continuous
derivatives and let Sf be the set of solutions u(x) ∈ C2(R) of the differential
equation

u′′ + u = f(x)

for all real x . For which polynomials f(x) is the set Sf a linear subspace of C(R)?

c) Let A and B be linear spaces and L : A → B be a linear map. For which vectors
y ∈ B is the set

Sy := {x ∈ A |Lx = y}

a linear space?
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6. [6] Let Pk be the space of polynomials of degree at most k and define the linear map
L : Pk → Pk+1 by Lp := p′′(x) + xp(x).

a) Show that the polynomial q(x) = 1 is not in the image of L . [Suggestion: Try
the case k = 2 first.]

b) Let V = {q(x) ∈ Pk+1 | q(0) = 0} . Show that the map L : Pk → V is invertible.
[Again, try k = 2 first.]

7. [7] Compute the dimension and find bases for the following linear spaces.

a) Real anti-symmetric 4× 4 matrices.

b) Quartic polynomials p with the property that p(2) = 0 and p(3) = 0.

c) Cubic polynomials p(x, y) in two real variables with the properties: p(0, 0) = 0,
p(1, 0) = 0 and p(0, 1) = 0.

d) The space of linear maps L : R5 → R3 whose kernels contain (0, 2,−3, 0, 1).

8. [8]

a) Compute the dimension of the intersection of the following two planes in R3

x+ 2y − z = 0, 3x− 3y + z = 0.

b) A map L : R3 → R2 is defined by the matrix L :=

(
1 2 −1
3 −3 1

)
. Find the

nullspace (kernel) of L .

9. [9] If A is a 5× 5 matrix with detA = −1, compute det(−2A).

10. [10] Does an 8-dimensional vector space contain linear subspaces V1 , V2 , V3 with no
common non-zero element, such that

a). dim(Vi) = 5, i = 1, 2, 3? b). dim(Vi) = 6, i = 1, 2, 3?

11. [11] Let U and V both be two-dimensional subspaces of R5 , and let W = U ∩ V .
Find all possible values for the dimension of W .

12. [12] Let U and V both be two-dimensional subspaces of R5 , and define the set
W := U + V as the set of all vectors w = u + v where u ∈ U and v ∈ V can be any
vectors.

a) Show that W is a linear space.

b) Find all possible values for the dimension of W .
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13. [13] Let A be an n × n matrix of real or complex numbers. Which of the following
statements are equivalent to: “the matrix A is invertible”?

a) The columns of A are linearly independent.

b) The columns of A span Rn .

c) The rows of A are linearly independent.

d) The kernel of A is 0.

e) The only solution of the homogeneous equations Ax = 0 is x = 0.

f) The linear transformation TA : Rn → Rn defined by A is 1-1.

g) The linear transformation TA : Rn → Rn defined by A is onto.

h) The rank of A is n .

i) The adjoint, A∗ , is invertible.

j) detA 6= 0.

14. [14] Call a subset S of a vector space V a spanning set if Span(S) = V . Suppose
that T : V →W is a linear map of vector spaces.

a) Prove that a linear map T is 1-1 if and only if T sends linearly independent sets
to linearly independent sets.

b) Prove that T is onto if and only if T sends spanning sets to spanning sets.

2 Linear Equations

15. [15] Solve the given system – or show that no solution exists:

x + 2y = 1

3x + 2y + 4z = 7

−2x + y − 2z =− 1

16. [16] Say you have k linear algebraic equations in n variables; in matrix form we write
AX = Y . Give a proof or counterexample for each of the following.

a) If n = k there is always at most one solution.

b) If n > k you can always solve AX = Y .

c) If n > k the nullspace of A has dimension greater than zero.

d) If n < k then for some Y there is no solution of AX = Y .
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e) If n < k the only solution of AX = 0 is X = 0.

17. [17] Let A : Rn → Rk be a linear map. Show that the following are equivalent.

a) For every y ∈ Rk the equation Ax = y has at most one solution.

b) A is injective (hence n ≤ k ). [injective means one-to-one]

c) dim ker(A) = 0.

d) A∗ is surjective (onto).

e) The columns of A are linearly independent.

18. [18] Let A : Rn → Rk be a linear map. Show that the following are equivalent.

a) For every y ∈ Rk the equation Ax = y has at least one solution.

b) A is surjective (hence n ≥ k ). [surjective means onto]

c) dim im(A) = k .

d) A∗ is injective (one-to-one).

e) The columns of A span Rk .

19. [19] Let A be a 4× 4 matrix with determinant 7. Give a proof or counterexample for
each of the following.

a) For some vector b the equation Ax = b has exactly one solution.

b) For some vector b the equation Ax = b has infinitely many solutions.

c) For some vector b the equation Ax = b has no solution.

d) For all vectors b the equation Ax = b has at least one solution.

20. [20] Let A : Rn → Rk be a real matrix, not necessarily square.

a) If two rows of A are the same, show that A is not onto by finding a vector y =
(y1, . . . , yk) that is not in the image of A . [Hint: This is a mental computation if
you write out the equations Ax = y explicitly.]

b) What if A : Cn → Ck is a complex matrix?

c) More generally, if the rows of A are linearly dependent, show that it is not onto.

21. [21] Let A : Rn → Rk be a real matrix, not necessarily square.

a) If two columns of A are the same, show that A is not one-to-one by finding a vector
x = (x1, . . . , xn) that is in the nullspace of A .

b) More generally, if the columns of A are linearly dependent, show that A is not
one-to-one.

5



22. [22] Let A and B be n× n matrices with AB = 0. Give a proof or counterexample
for each of the following.

a) Either A = 0 or B = 0 (or both).

b) BA = 0

c) If detA = −3, then B = 0.

d) If B is invertible then A = 0.

e) There is a vector V 6= 0 such that BAV = 0.

23. [23] Consider the system of equations

x+ y − z = a

x− y + 2z = b.

a) Find the general solution of the homogeneous equation.

b) A particular solution of the inhomogeneous equations when a = 1 and b = 2
is x = 1, y = 1, z = 1. Find the most general solution of the inhomogeneous
equations.

c) Find some particular solution of the inhomogeneous equations when a = −1 and
b = −2.

d) Find some particular solution of the inhomogeneous equations when a = 3 and
b = 6.

[Remark: After you have done part a), it is possible immediately to write the solutions
to the remaining parts.]

24. [24] Solve the equations

2x+ 3y + 2z =1

x+ 0y + 3z =2

2x+ 2y + 3z =3

for x , y , and z .

Hint: If A =

2 3 2
1 0 3
2 2 3

 , then A−1 =

−6 −5 9
3 2 −4
2 2 −3

 .

25. [25] Consider the system of linear equations

kx + y + z =1

x + ky + z =1

x + y + kz =1

.

For what value(s) of k does this have (i) a unique solution? (ii), no solution?
(iii) infinitely many solutions? (Justify your assertions).
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26. [26] Let A =

(
1 1 −1
1 −1 2

)
.

a) Find the general solution Z of the homogeneous equation AZ = 0.

b) Find some solution of AX =

(
1
2

)
c) Find the general solution of the equation in part b).

d) Find some solution of AX =

(
−1
−2

)
and of AX =

(
3
6

)
e) Find some solution of AX =

(
3
0

)
f) Find some solution of AX =

(
7
2

)
. [Note: ( 7

2 ) = ( 1
2 ) + 2 ( 3

0 )].

[Remark: After you have done parts a), b) and e), it is possible immediately to write
the solutions to the remaining parts.]

27. [27] Consider the system of equations

x+ y − z = a

x− y + 2z = b

3x+ y = c

a) Find the general solution of the homogeneous equation.

b) If a = 1, b = 2, and c = 4, then a particular solution of the inhomogeneous equa-
tions is x = 1, y = 1, z = 1. Find the most general solution of these inhomogeneous
equations.

c) If a = 1, b = 2, and c = 3, show these equations have no solution.

d) If a = 0, b = 0, c = 1, show the equations have no solution. [Note:
(

0
0
1

)
=(

1
2
4

)
−
(

1
2
3

)
].

e) Let A =

 1 1 −1
1 −1 2
3 1 0

 . Find a basis for ker(A) and image (A).

28. [28] Let A be a square matrix with integer elements. For each of the following give a
proof or counterexample.

a) If det(A) = ±1, then for any vector y with integer elements there is a vector x
with integer elements that solves Ax = y .

b) If det(A) = 2, then for any vector y with even integer elements there is a vector x
with integer elements that solves Ax = y .
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c) If all of the elements of A are positive integers and det(A) = +1, then given any
vector y with non-negative integer elements there is a vector x with non-negative
integer elements that solves Ax = y .

d) If the elements of A are rational numbers and det(A) 6= 0, then for any vector
y with rational elements there is a vector x with rational elements that solves
Ax = y .

3 Linear Maps

29. [29]

a) Find a 2× 2 matrix that rotates the plane by +45 degrees (+45 degrees means 45
degrees counterclockwise).

b) Find a 2× 2 matrix that rotates the plane by +45 degrees followed by a reflection
across the horizontal axis.

c) Find a 2× 2 matrix that reflects across the horizontal axis followed by a rotation
the plane by +45 degrees.

d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.

e) Find the inverse of each of these maps.

30. [30]

a) Find a 3 × 3 matrix that acts on R3 as follows: it keeps the x1 axis fixed but
rotates the x2 x3 plane by 60 degrees.

b) Find a 3 × 3 matrix A mapping R3 → R3 that rotates the x1 x3 plane by 60
degrees and leaves the x2 axis fixed.

31. [31] Consider the homogeneous linear system Ax = 0 where

A =

1 3 0 1
1 3 −2 −2
0 0 2 3

 .

Identify which of the following statements are correct?

a) Ax = 0 has no solution.

b) dim ker A = 2

c) Ax = 0 has a unique solution.
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d) For any vector b ∈ R3 the equation Ax = b has at least one solution.

32. [32] Find a real 2× 2 matrix A (other than A = I ) such that A5 = I .

33. [33] Proof or counterexample. In these L is a linear map from R2 to R2 , so its
representation will be as a 2× 2 matrix.

a) If L is invertible, then L−1 is also invertible.

b) If LV = 5V for all vectors V , then L−1W = (1/5)W for all vectors W .

c) If L is a rotation of the plane by 45 degrees counterclockwise, then L−1 is a rotation
by 45 degrees clockwise.

d) If L is a rotation of the plane by 45 degrees counterclockwise, then L−1 is a rotation
by 315 degrees counterclockwise.

e) The zero map (0V = 0 for all vectors V) is invertible.

f) The identity map (IV = V for all vectors V) is invertible.

g) If L is invertible, then L−10 = 0.

h) If LV = 0 for some non-zero vector V , then L is not invertible.

i) The identity map (say from the plane to the plane) is the only linear map that is
its own inverse: L = L−1 .

34. [34] Let R , M , and N be linear maps from the (two dimensional) plane to the plane
given in terms of the standard i, j basis vectors by:

Ri = j , Rj = −i M i = −i , M j = j Nv = −v for all vectors v

a) Describe (pictures?) the actions of the maps R, R2, R−1, M, M2, M−1 and N
[compare Problem 48]

b) Describe the actions of the maps RM, MR, RN, NR, MN , and NM [here we
use the standard convention that the map RM means first use M then R ]. Which
pairs of these maps commute?

c) Which of the following identities are correct—and why?

1) R2 = N 2) N2 = I 3) R4 = I 4) R5 = R
5) M2 = I 6) M3 = M 7) MNM = N 8) NMN = R

d) Find matrices representing each of the maps R, R2, R−1, M , and N .

NEW PROBLEM

e) [Symmetries of a Square] Consider a square centered at the origin in the plane
R2 with its vertices at A, B, C, D . It has the following obvious symmetries:
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Rotation I by 0 degrees (identity map)
Rotation R by 90 degrees counterclockwise
Rotation R2 by 180 degrees counterclockwise
Rotation R3 by 270 degrees counterclockwise
Reflection G across the horizontal (x) axis
Reflection M across the vertical (y ) axis
Reflection S across the diagonal AC
Reflection T across the diagonal BD

B

x

y
A

D

O

C

Show that the square has no other symmetries.

Also, show that SR = G , SR2 = T , and SR3 = M .

NEW PROBLEM

f) Investigate the symmetries of an equilateral triangle in the plane.

[See https://en.wikipedia.org/wiki/Dihedral_group for more on the symme-
tries of regular polygons by the valuable device of representing the symmetries as
matrices. See also:

https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Symmetry_

(Vallance)

35. [35] Give a proof or counterexample the following. In each case your answers should
be brief.

a) Suppose that u , v and w are vectors in a vector space V and T : V → W is a
linear map. If u , v and w are linearly dependent, is it true that T (u), T (v) and
T (w) are linearly dependent? Why?

b) If T : R6 → R4 is a linear map, is it possible that the nullspace of T is one
dimensional?

36. [36] Identify which of the following collections of matrices form a linear subspace in
the linear space Mat 2×2(R) of all 2× 2 real matrices?

a) All invertible matrices.

b) All matrices that satisfy A2 = 0.

c) All anti-symmetric matrices, that is, AT = −A .

d) Let B be a fixed matrix and B the set of matrices with the property that ATB =
BAT .

37. [37] Identify which of the following collections of matrices form a linear subspace in
the linear space Mat 3×3(R) of all 3× 3 real matrices?

a) All matrices of rank 1.
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b) All matrices satisfying 2A−AT = 0.

c) All matrices that satisfy A

1
0
0

 =

0
0
0

 .

38. [38] Let V be a vector space and ` : V → R be a linear map. If z ∈ V is not in
the nullspace of ` , show that every x ∈ V can be decomposed uniquely as x = v + cz ,
where v is in the nullspace of ` and c is a scalar. [Moral: The nullspace of a linear
functional has codimension one.]

39. [39] For each of the following, answer TRUE or FALSE. If the statement is false in even
a single instance, then the answer is FALSE. There is no need to justify your answers
to this problem – but you should know either a proof or a counterexample.

a) If A is an invertible 4× 4 matrix, then (AT )−1 = (A−1)T , where AT denotes the
transpose of A .

b) If A and B are 3× 3 matrices, with rank(A) = rank(B) = 2, then rank(AB) = 2.

c) If A and B are invertible 3× 3 matrices, then A+B is invertible.

d) If A is an n× n matrix with rank less than n , then for any vector b the equation
Ax = b has an infinite number of solutions.

e) ) If A is an invertible 3 × 3 matrix and λ is an eigenvalue of A , then 1/λ is an
eigenvalue of A−1 ,

40. [40] For each of the following, answer TRUE or FALSE. If the statement is false in even
a single instance, then the answer is FALSE. There is no need to justify your answers
to this problem – but you should know either a proof or a counterexample.

a) If A and B are 4× 4 matrices such that rank (AB) = 3, then rank (BA) < 4.

b) If A is a 5×3 matrix with rank (A) = 2, then for every vector b ∈ R5 the equation
Ax = b will have at least one solution.

c) If A is a 4× 7 matrix, then A and AT have the same rank.

d) Let A and B 6= 0 be 2× 2 matrices. If AB = 0, then A must be the zero matrix.

41. [41] Let A : R3 → R2 and B : R2 → R3 , so BA : R3 → R3 and AB : R2 → R2 .

a) Show that BA can not be invertible.

b) Give an example showing that AB might be invertible (in this case it usually is).

42. [42] Let A , B , and C be n× n matrices.
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a) If A2 is invertible, show that A is invertible.

[Note: You cannot naively use the formula (AB)−1 = B−1A−1 because it pre-
sumes you already know that both A and B are invertible. For non-square matrices,
it is possible for AB to be invertible while neither A nor B are (see the last part
of the previous Problem 41).]

b) Generalization. If AB is invertible, show that both A and B are invertible.

If ABC is invertible, show that A , B , and C are also invertible.

43. [43] Let A be a real square matrix satisfying A17 = 0.

a) Show that the matrix I −A is invertible.

b) If B is an invertible matrix, is B −A also invertible? Proof or counterexample.

44. [44] Suppose that A is an n× n matrix and there exists a matrix B so that

AB = I.

Prove that A is invertible and BA = I as well.

45. [45] Let A be a square real (or complex) matrix. Then A is invertible if and only if
zero is not an eigenvalue. Proof or counterexamla-May21-22.pdfple.

46. [46] Let M(3,2) be the linear space of all 3 × 2 real matrices and let the linear map
L :M(3,2) → R5 be onto. Compute the dimension of the nullspace of L .

47. [47] Think of the matrix A =

(
a b
c d

)
as mapping one plane to another.

a) If two lines in the first plane are parallel, show that after being mapped by A they
are also parallel – although they might coincide.

b) Let Q be the unit square: 0 < x < 1, 0 < y < 1 and let Q′ be its image under this
map A. Show that the area(Q′) = |ad− bc| . [More generally, the area of any region
is magnified by |ad− bc| (ad− bc is called the determinant of a 2× 2 matrix]

48. [48] a) Find a 2×2 matrix A that in the stan-
dard basis is the indicated transformation of
the letter F (here the smaller F is transformed
to the larger one):

b). Find a linear map of the plane that inverts
this map, that is, it maps the larger F to the
smaller.
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49. [49] Linear maps F (X) = AX , where A is a matrix, have the property that F (0) =
A0 = 0, so they necessarily leave the origin fixed. It is simple to extend this to include
a translation,

F (X) = V +AX,

where V is a vector. Note that F (0) = V .

Find the vector V and the matrix A that describe each of the following mappings [here
the light blue F is mapped to the dark red F ].

a). b).

c). d).
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50. [50] Find all linear maps L : R3 → R3 whose kernel is exactly the plane { (x1, x2, x3) ∈
R3 | x1 + 2x2 − x3 = 0 } .

51. [51] Let A be a matrix, not necessarily square. Say V and W are particular solutions
of the equations AV = Y1 and AW = Y2 , respectively, while Z 6= 0 is a solution
of the homogeneous equation AZ = 0. Answer the following in terms of V , W , and
Z.

a) Find some solution of AX = 3Y1 .

b) Find some solution of AX = −5Y2 .

c) Find some solution of AX = 3Y1 − 5Y2 .

d) Find another solution (other than Z and 0) of the homogeneous equation AX = 0.

e) Find two solutions of AX = Y1 .

f) Find another solution of AX = 3Y1 − 5Y2 .

g) If A is a square matrix, then detA =?

h) If A is a square matrix, for any given vector W can one always find at least one
solution of AX = W? Why?

52. [52] Let V be an n-dimensional vector space and T : V → V a linear transformation
such that the image and kernel of T are identical.

a) Prove that n is even.

b) Give an example of such a linear transformation T .

53. [53] Let V,W be two-dimensional real vector spaces, and let f1, . . . , f5 be linear
transformations from V to W . Show that there exist real numbers a1, . . . , a5 , not all
zero, such that a1f1 + · · ·+ a5f5 is the zero transformation.

54. [54] Let V ⊂ R11 be a linear subspace of dimension 4 and consider the family A of
all linear maps L : R11− > R9 each of whose nullspace contain V .

Show that A is a linear space and compute its dimension.

55. [55] Let L be a 2× 2 matrix. For each of the following give a proof or counterexam-
ple.

a) If L2 = 0 then L = 0.

b) If L2 = L then either L = 0 or L = I .

c) If L2 = I then either L = I or L = −I .
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56. [56] Find all four 2× 2 diagonal matrices A that have the property A2 = I .

Geometrically interpret each of these examples as linear maps.

57. [57] Find an example of 2× 2 matrices A and B so that AB = 0 but BA 6= 0.

58. [58] Let A and B be n×n matrices with the property that AB = 0. For each of the
following give a proof or counterexample.

a) Every eigenvector of B is also an eigenvector of A .

b) At least one eigenvector of B is also an eigenvector of A .

59. [59]

a) Give an example of a square real matrix that has rank 2 and all of whose eigenvalues
are zero.

b) Let A be a square real matrix all of whose eigenvalues are zero. Show that A is
diagonalizable (that is, similar to a possibly complex diagonal matrix) if and only
if A = 0.

60. [60] Let P3 be the linear space of polynomials p(x) of degree at most 3. Give a
non-trivial example of a linear map L : P3 → P3 that is nilpotent, that is, Lk = 0 for
some integer k . [A trivial example is the zero map: L = 0.]

61. [61] Say A ∈M(n,F) has rank k . Define

L := {B ∈M(n,F) | BA = 0 } and R := {C ∈M(n,F) | AC = 0 }.

Show that L and R are linear spaces and compute their dimensions.

62. [62] Let A and B be n× n matrices.

a) Show that the rank (AB) ≤ rank (A). Give an example where strict inequality can
occur.

b) Show that dim(kerAB) ≥ dim(kerA). Give an example where strict inequality
can occur.

63. [63] Let P1 be the linear space of real polynomials of degree at most one, so a typical
element is p(x) := a+bx , where a and b are real numbers. The derivative, D : P1 → P1
is, as you should expect, the map DP (x) = b = b + 0x . Using the basis e1(x) := 1,
e2(x) := x for P1 , we have p(x) = ae1(x) + be2(x) so Dp = be1 .

Using this basis, find the 2× 2 matrix M for D . Note the obvious property D2p = 0
for any polynomial p of degree at most 1. Does M also satisfy M2 = 0? Why should
you have expected this?
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64. [64] Let P2 be the space of polynomials of degree at most 2.

a) Find a basis for this space.

b) Let D : P2 → P2 be the derivative operator D = d/dx . Using the basis you picked
in the previous part, write D as a matrix. Compute D3 in this situation. Why
should you have predicted this without computation?

65. [65] Let P3 be the space of polynomials of degree at most 3 and let D : P3 → P3 be
the derivative operator.

a) Using the basis e1 = 1, e2 = x , e3 = x2 , ε4 = x3 find the matrix De representing
D .

b) Using the basis ε1 = x3 , ε2 = x2 , ε3 = x , ε4 = 1 find the matrix Dε representing
D .

c) Show that the matrices De and Dε are similar by finding an invertible map S :
P3 → P3 with the property that Dε = SDeS

−1 .

66. [66]

a) Let {e1, e2, . . . , en} be the standard basis in Rn and let {v1, v2, . . . , vn} be another
basis in Rn . Find a matrix A that maps the standard basis to this other basis.

b) Let {w1, w2, . . . , wn} be yet another basis for Rn . Find a matrix that maps the {vj}
basis to the {wj} basis. Write this matrix explicitly if both bases are orthonormal.

67. [67] Consider the two linear transformations on the vector space V = Rn :

R = right shift: (x1, . . . , xn)→ (0, x1, . . . , xn−1)

L = left shift: (x1, . . . , xn)→ (x2, . . . , xn, 0).

Let A ⊂ End (V ) be the real algebra generated by R and L. Find the dimension of A
considered as a real vector space.

68. [68] Let S ⊂ R3 be the subspace spanned by the two vectors v1 = (1,−1, 0) and
v2 = (1,−1, 1) and let T be the orthogonal complement of S (so T consists of all the
vectors orthogonal to S ).

a) Find an orthogonal basis for S and use it to find the 3× 3 matrix P that projects
vectors orthogonally into S .

b) Find an orthogonal basis for T and use it to find the 3× 3 matrix Q that projects
vectors orthogonally into T .

c) Verify that P = I −Q . How could you have seen this in advance?
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69. [69] Given a unit vector w ∈ Rn , let W = span {w} and consider the linear map
T : Rn → Rn defined by

T (x) = 2 ProjW (x)− x,

where ProjW (x) is the orthogonal projection onto W . Show that T is one-to-one.

70. [70] [The Cross Product as a Matrix]

a) Let v := (a, b, c) and x := (x, y, z) be any vectors in R3 . Viewed as column
vectors, find a 3× 3 matrix Av so that the cross product v × x = Avx .

Answer:

v × x = Avx =

 0 −c b
c 0 −a
−b a 0

xy
z

 ,

where the anti-symmetric matrix Av is defined by the above formula.

b) From this, one has v × (v × x) = Av(v × x) = A2
vx (why?). Combined with the

cross product identity u× (v ×w) = 〈u, w〉v − 〈u, v〉w , show that

A2
vx = 〈v, x〉v − ‖v‖2x.

c) If n = (a, b, c) is a unit vector, use this formula to show that (perhaps surprisingly)
the orthogonal projection of x into the plane perpendicular to n is given by

x− (x · n)n = −A2
nx = −

−b2 − c2 ab ac
ab −a2 − c2 bc
ac bc −a2 − b2

x

(See also Problems 193, 233, 234, 235, 273).

71. [71] Let V be a vector space with dimV = 10 and let L : V → V be a linear
transformation. Consider Lk : V → V , k = 1, 2, 3, . . . . Let rk = dim(ImLk), that is,
rk is the dimension of the image of Lk , k = 1, 2, . . . .

Give an example of a linear transformation L : V → V (or show that there is no such
transformation) for which:

a) (r1, r2, . . .) = (10, 9, . . .); b) (r1, r2, . . .) = (8, 5, . . .); c) (r1, r2, . . .) = (8, 6, 4, 4, . . .).

72. [72] Let S be the linear space of infinite sequences of real numbers x := (x1, x2, . . .).
Define the linear map L : S → S by

Lx := (x1 + x2, x2 + x3, x3 + x4, . . .).

a) Find a basis for the nullspace of L . What is its dimension?
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b) What is the image of L? Justify your assertion.

c) Compute the eigenvalues of L and an eigenvector corresponding to each eigenvalue.

73. [73] Let A be a real matrix, not necessarily square.

a) If A is onto, show that A∗ is one-to-one.

b) If A is one-to-one, show that A∗ is onto.

74. [74] Let A : Rn → Rn be a self-adjoint map (so A is represented by a symmetric
matrix). Show that (imageA)⊥ = ker(A) and image (A) = (ker A)⊥ .

75. [75] Let A be a real matrix, not necessarily square.

a) Show that both A∗A and AA∗ are self-adjoint.

b) Show that both A∗A and AA∗ are positive semi-definite.

c) Show that kerA = kerA∗A . [Hint: Show separately that kerA ⊂ kerA∗A and
kerA ⊃ kerA∗A . The identity 〈~x, A∗A~x〉 = 〈A~x, A~x〉 is useful.]

d) If A is one-to-one, show that A∗A is invertible

e) If A is onto, show that AA∗ is invertible.

f) Show that the non-zero eigenvalues of A∗A and AA∗ agree. Generalize. [General-
ization: see Problem 124].

g) Show that image (AA∗) = (ker AA∗)⊥ = (kerA∗)⊥ = imageA .

76. [76] Let L : Rn → Rk be a linear map. Show that

dim ker(L)− dim(kerL∗) = n− k.

Consequently, for a square matrix, dim kerA = dim kerA∗ . [In a more general setting,
ind (L) := dim ker(L)−dim(kerL∗) is called the index of a linear map L . It was studied
by Atiyah and Singer for elliptic differential operators.]

77. [77] Let ~v and ~w be vectors in Rn . If ‖~v‖ = ‖~w‖ , show there is an orthogonal matrix
R with R~v = ~w and R~w = ~v .
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4 Rank One Matrices

78. [78] Let A = (aij) be an n× n matrix whose rank is 1. Let v := (v1, . . . , vn) 6= 0 be
a basis for the image of A .

a) Show that aij = viwj for some vector w := (w1, . . . , wn) 6= 0.

b) If A has a non-zero eigenvalue λ1 , show that

c) If the vector z = (z1, . . . , zn) satisfies 〈z, w〉 = 0, show that z is an eigenvector
with eigenvalue λ = 0.

d) If trace (A) 6= 0, show that λ = trace (A) is an eigenvalue of A . What is the
corresponding eigenvector?

e) If trace (A) 6= 0, prove that A is similar to the n× n matrix
c 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

 ,

where c = trace (A)

f) If trace (A) = 1, show that A is a projection, that is, A2 = A .

g) What can you say if trace (A) = 0?

h) Show that det(A+ I) = 1 + detA .

79. [79] Let A be the rank one n × n matrix A = (vivj), where ~v := (v1, . . . , vn) is a
non-zero real vector.

a) Find its eigenvalues and eigenvectors.

b) Find the eigenvalues and eigenvectors for A+ cI , where c ∈ R .

c) Find a formula for (I +A)−1 . [Answer: (I +A)−1 = I − 1
1+‖~v‖2A .]

80. [80] [Generalization of Problem 79(b)] Let W be a linear space with an inner product
and A : W → W be a linear map whose image is one dimensional (so in the case of
matrices, it has rank one). Let ~v 6= 0 be in the image of A , so it is a basis for the
image. If 〈~v, (I +A)~v〉 6= 0, show that I +A is invertible by finding a formula for the
inverse.

Answer: The solution of (I +A)~x = ~y is ~x = ~y − ‖~v‖2

‖~v‖2 + 〈~v, A~v〉
A~y so

(I +A)−1 = I − ‖~v‖2

‖~v‖2 + 〈~v, A~v〉
A.
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5 Algebra of Matrices

81. [81] Which of the following are not a basis for the vector space of all symmetric 2× 2
matrices? Why?

a)

(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
b)

(
3 3
3 3

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
c)

(
1 1
1 0

)
,

(
1 2
2 −3

)
,

(
0 1
1 1

)
d)

(
1 1
1 1

)
,

(
1 1
1 0

)
,

(
−2 −2
−2 1

)
e)

(
1 0
0 0

)
,

(
−1 −1
−1 −1

)
,

(
1 0
0 1

)
f)

(
1 0
0 0

)
,

(
−1 2
2 −1

)
,

(
1 0
0 1

)

82. [82] For each of the sets S below, determine if it is a linear subspace of the given real
vector space V . If it is a subspace, write down a basis for it.

a) V = Mat3×3(R), S = {A ∈ V | rank(A) = 3} .
b) V = Mat2×2(R), S = {

(
a b
c d

)
∈ V | a+ d = 0} .

83. [83] Every real upper triangular n × n matrix (aij) with aii = 1, i = 1, 2, . . . , n is
invertible. Proof or counterexample.

84. [84] Let L : V → V be a linear map on a vector space V .

a) Show that kerL ⊂ kerL2 and, more generally, kerLk ⊂ kerLk+1 for all k ≥ 1.

b) If kerLj = kerLj+1 for some integer j , show that kerLk = kerLk+1 for all k ≥ j .
Does your proof require that V is finite dimensional?

c) Let A be an n × n matrix. If Aj = 0 for some integer j (perhaps j > n), show
that An = 0.

85. [85] Let L : V → V be a linear map on a vector space V and z ∈ V a vector with
the property that Lk−1z 6= 0 but Lkz = 0. Show that z , Lz , . . . Lk−1z are linearly
independent.

86. [86] Let A , B , and C be any n× n matrices.
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a) Show that trace(AB) = trace(BA).

b) Show that trace(ABC) = trace(CAB) = trace(BCA).

c) trace(ABC)
?
= trace(BAC). Proof or counterexample.

87. [87] There are no square matrices A , B with the property that AB−BA = I . Proof
or counterexample.

Remark: In quantum physics, the operators Au = du/dx and Bv(x) = xv(x) do
satisfy (AB −BA)w = w .

88. [88] Let A and B be n×n matrices. If A+B is invertible, show that A(A+B)−1B =
B(A+B)−1A . [Don’t assume that AB = BA ].

89. [89] [Schur’s Lemma] Let A be an n × n matrix. If AB = BA for all invertible
matrices B , show that A = cI for some scalar c .

90. [90]

a) For non-zero real numbers one uses
1

a
− 1

b
=
b− a
ab

. Verify the following analog for

invertible matrices A , B :

A−1 −B−1 = A−1(B −A)B−1.

[The following version is also correct: A−1 −B−1 = B−1(B −A)A−1. ].

b) Let A(t) be a family of invertible real matrices depending on the real parameter t
and assume they are invertible. Show that the inverse matrix A−1(t) is invertible
and give a formula for the derivative of A−1(t) in terms of A′(t) and A−1(t). Thus
one needs to investigate

lim
h→0

A−1(t+ h)−A−1(t)
h

.

91. [91] Let A(t) be a family of real square matrices depending smoothly on the parameter
t .

a) Find a formula for the derivative of A2(t).

b) Find an example where A2(t)′ 6= 2AA′ .

92. [92] Let A : R` → Rn and B : Rk → R` . Prove that

rankA+ rankB − ` ≤ rankAB ≤ min{ rankA, rankB }.

[Hint: Observe that rank (AB) = rankA|Image (B) .]
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93. [93]

a) Let U ⊂ V and W be finite dimensional linear spaces and L : V → W a linear
map. Show that

dim(kerL|U ) ≤ dim kerL = dimV − dim Im(L)

b) [Frobenius] Let A , B , and C be matrices so that the products AB and BC are
defined. Use the obvious

dim(kerA|ImBC) = dim ImBC − dim ImABC

and the previous part to show that

rank(BC) + rank(AB) ≤ rank(ABC) + rank(B).

6 Eigenvalues and Eigenvectors

94. [94]

a) Find a 2× 2 real matrix A that has an eigenvalue λ1 = 1 with eigenvector E1 =(
1
2

)
and an eigenvalue λ2 = −1 with eigenvector E2 =

(
2
1

)
.

b) Compute the determinant of A10 +A .

95. [95] Give an example of a matrix A with the following three properties:

i). A has eigenvalues −1 and 2.

ii). The eigenvalue −1 has eigenvector

1
2
3

 .

iii). The eigenvalue 2 has eigenvectors

1
1
0

 and

0
1
1

 .

96. [96] Let A be a square matrix. If the eigenvectors v1 ,. . . vk have distinct eigenvalues,
show that these vectors are linearly independent.

97. [97] Let A be an invertible matrix with eigenvalues λ1 , λ2 , . . . ,λk and corresponding
eigenvectors ~v1 , ~v2 , . . . ,~vk . What can you say about the eigenvalues and eigenvectors
of A−1? Justify your response.
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98. [98] Two matrices A , B can be simultaneously diagonalized if there is an invertible
matrix that diagonalizes both of them. In other words, if there is a (possibly complex)
basis in which both matrices are diagonalized.

a) If A and B can be simultaneously diagonalized, show that AB = BA .

b) Conversely, if AB = BA , and if one of these matrices, say A , has distinct eigenval-
ues (so the eigenspaces all have dimension one), show they can be simultaneously
diagonalized.

Suggestion: Say λ is an eigenvalue of A and ~v a corresponding eigenvector:
A~v = λ~v . Show that B~v satisfies A(B~v) = λB~v and deduce that B~v = c~v for
some constant c (possibly zero). Thus, the eigenvectors of A are also eigenvectors
of B . Why does this imply that (in this case where A has distinct eigenvalues) in
a basis where A is diagonal, so is B?

Remark: This result extends to any two commuting n×n matrices A and B , assuming
that A and B can each be diagonalized.

99. [99] Let A be an n× n real self-adjoint matrix and v an eigenvector with eigenvalue
λ . Let W = span {v} .
a) If w ∈W , show that Aw ∈W
b) If z ∈W⊥ , show that Az ∈W⊥ .

100. [100] Let A =

1 1 2
1 1 2
1 1 2

 .

a) What is the dimension of the image of A? Why?

b) What is the dimension of the kernel of A? Why?

c) What are the eigenvalues of A? Why?

d) What are the eigenvalues of B :=

4 1 2
1 4 2
1 1 5

? Why? [Hint: B = A+ 3I ].

101. [101] Diagonalize the matrix

A =

1 0 2
0 1 0
2 0 1


by finding the eigenvalues of A listed in increasing order, the corresponding eigenvec-
tors, a diagonal matrix D , and a matrix S such that A = SDS−1 .
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102. [102] If a matrix A is diagonalizable, show that for any scalar c so is the matrix
A+ cI .

103. [103] Let A =

(
a b− a
0 b

)
a) Diagonalize A .

b) Use this to compute Ak for any integer k ≥ 0.

104. [104] An n × n matrix is called nilpotent if Ak equals the zero matrix for some
positive integer k . (For instance, ( 0 1

0 0 ) is nilpotent.)

a) If λ is an eigenvalue of a nilpotent matrix A , show that λ = 0. (Hint: start with
the equation A~x = λ~x .)

b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix.
[Hint: use Part a).]

c) Let A be the matrix that represents T : P5 → P5 (polynomials of degree at most
5) given by differentiation: Tp = dp/dx . Without doing any computations, explain
why A must be nilpotent.

105. [105] Identify which of the following matrices have two linearly independent eigen-
vectors.

A =

(
1 0
0 1

)
, B =

(
1 1
0 1

)
, C =

(
1 1
0 2

)
, D =

(
1 1
2 2

)
,

E =

(
0 0
1 0

)
, F =

(
0 0
0 0

)
, G =

(
1 2
2 0

)
, H =

(
3 0
1 −3

)
.

106. [106] Find an orthogonal matrix R that diagonalizes A :=

 1 −1 0
−1 1 0

0 0 2


107. [107] This problem is a rich source of classroom examples that are computationally

simple.

Let a , b , c , d , and e be real numbers. For each of the following matrices, find their
eigenvalues, corresponding eigenvectors, and orthogonal matrices that diagonalize them.

A =

(
a b
b a

)
, B =

a b 0
b a 0
0 0 c

 , C =


a b 0 0 0
b a 0 0 0
0 0 c d 0
0 0 d c 0
0 0 0 0 e

 .
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108. [108] Let A be a square matrix. Proof or Counterexample.

a) If A is diagonalizable, then so is A2 .

b) If A2 is diagonalizable, then so is A .

109. [109] Let A be an m× n matrix, and suppose ~v and ~w are orthogonal eigenvectors
of ATA . Show that A~v and A~w are orthogonal.

110. [110] Let A be an invertible matrix. If V is an eigenvector of A , show it is also an
eigenvector of both A2 and A−2 . What are the corresponding eigenvalues?

111. [111] True or False – and Why?.

a) A 3× 3 real matrix need not have any real eigenvalues.

b) If an n× nmatrix A is invertible, then it is diagonalizable.

c) If A is a 2 × 2 matrix both of whose eigenvalues are 1, then A is the identity
matrix.

d) If ~v is an eigenvector of the matrix A , then it is also an eigenvector of the matrix
B := A+ 7I .

112. [112] Let L be an n × n matrix with real entries and let λ be an eigenvalue of L .
In the following list, identify all the assertions that are correct.

a) aλ is an eigenvalue of aL for any scalar a .

b) λ2 is an eigenvalue of L2 .

c) λ2 + aλ+ b is an eigenvalue of L2 + aL+ bIn for all real scalars a and b .

d) If λ = a + ib , with a, b 6= 0 some real numbers, is an eigenvalue of L , then
λ̄ = a− ib is also an eigenvalue of L .

113. [113] Let C be a 2 × 2 matrix of real numbers. Give a proof or counterexample to
each of the following assertions:

a) det(C2) is non-negative.

b) trace(C2) is non-negative.

c) All of the elements of C2 are non-negative.

d) All the eigenvalues of C2 are non-negative.

e) If C has two distinct eigenvalues, then so does C2 .

114. [114] Let A ∈M(n,F) have an eigenvalue λ with corresponding eigenvector v .

True or False
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a) −v is an eigenvector of −A with eigenvalue −λ .

b) If v is also an eigenvector of B ∈ M(n,F) with eigenvalue µ , then λµ is an
eigenvalue of AB .

c) Let c ∈ F . Then (λ+ c)2 is an eigenvalue of A2 + 2cA+ c2I .

d) Let µ be an eigenvalue of B ∈M(n,F), Then λ+ µ is an eigenvalue of A+B .

e) Let c ∈ F . Then cλ is an eigenvalue of cA .

115. [115] Suppose that A is a 3 × 3 matrix with eigenvalues λ1 = −1, λ2 = 0 and
λ3 = 1, and corresponding eigenvectors

~v1 =

1
0
2

 , ~v2 =

−1
1
0

 , ~v3 =

0
0
1


a) Find the matrix A .

b) Compute the matrix A20 .

116. [116] Let A be a square matrix and p(λ) any polynomial. If λ is an eigenvalue of
A , show that p(λ) is an eigenvalue of the matrix p(A) with the same eigenvector.

117. [117] Let ~e1 , ~e2 , and ~e3 be the standard basis for R3 and let L : R3 → R3 be a
linear transformation with the properties

L(~e1) = ~e2, L(~e2) = 2~e1 + ~e2, L(~e1 + ~e2 + ~e3) = ~e3.

Find a vector ~v such that L(~v) = k~v for some real number k .

118. [118] Let M be a 2 × 2 matrix with the property that the sum of each of the rows
and also the sum of each of the columns is the same constant c . Which (if any) any of
the vectors

U :=

(
1
0

)
, V :=

(
0
1

)
, W :=

(
1
1

)
,

must be an eigenvector of M ?

119. [119] Let A and B be n×n complex matrices that commute: AB = BA . If λ is an
eigenvalue of A , let Vλ be the subspace of all eigenvectors having this eigenvalue.

a) Show there is an vector v ∈ Vλ that is also an eigenvector of B , possibly with a
different eigenvalue.
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b) Give an example showing that some vectors in Vλ may not be an eigenvectors of
B .

c) If all the eigenvalues of A are distinct (so each has algebraic multiplicity one), show
that there is a basis in which both A and B are diagonal. Also, give an example
showing this may be false if some eigenvalue of A has multiplicity greater than one.

120. [120] Let A be a 3×3 matrix with eigenvalues λ1, λ2 , λ3 and corresponding linearly
independent eigenvectors V1 , V2 , V3 which we can therefore use as a basis.

a) If X = aV1 + bV2 + cV3 , compute AX , A2X , and A35X in terms of λ1 , λ2 , λ3 ,
V1 , V2 , V3 , a , b and c (only).

b) If λ1 = 1, |λ2| < 1, and |λ3| < 1, compute limk→∞A
kX . Explain your reasoning

clearly.

121. [121] Let Z be a complex square matrix whose self-adjoint part is positive definite,
so Z + Z∗ is positive definite.

a) Show that the eigenvalues of Z have positive real part.

b) Is the converse true? Proof or counterexample.

122. [122] The characteristic polynomial of a square matrix is the polynomial p(λ) =
det(λI −A).

a) If two square matrices are similar, show that they have the same characteristic
polynomials.

b) Conversely, if two matrices have the same characteristic polynomials, are they sim-
ilar? Proof or counterexample.

123. [123] Show that p(λ) = λn + an−1λ
n−1 + · · ·+ a0 is the characteristic polynomial of

the matrix

A =


0 1 0 · · · 0
0 0 1 0

...
. . .

...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 ,

0 that is, det(λI − A) = p(λ). In particular, every polynomial is the characteristic
polynomial of a matrix.

If λ is an eigenvalue of A show that (1, λ, λ2, . . . , λn−1) is a corresponding eigenvector.

The above matrix is called the companion matrix of p(λ). It arises naturally when writ-
ing a linear n th order ordinary differential equation as a system of first order equations.
Gershgorin’s Theorem (Problem 134g) can be applied to this matrix to find simple, but
useful, estimates of the roots of any polynomial.
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124. [124] [AB and BA are not so different].

a) For square n×n matrices, if either A or B are invertible, show that AB and BA
are similar.

Give a 2× 2 example with AB = 0 but BA 6= 0, thus they are not similar.

For the remainder of this problem, let A be an n×k real matrix and B a k×n real matrix
(an important special case if when B = A∗ ). Then both AB and BA are square matrices.
AB and BA still share some properties.

b) If λ 6= 0 is an eigenvalue of AB , show it is also an eigenvalue of BA . In particular,
the non-zero eigenvalues of A∗A and AA∗ agree.

c) If v1, . . . , vk are linearly independent eigenvectors of BA corresponding to the same
eigenvalue, λ 6= 0, show that Av1, . . . , Avk are linearly independent eigenvectors of
AB corresponding to λ . Thus the eigenspaces of AB and BA corresponding to a
non-zero eigenvalue have the same geometric multiplicity.

d) (This gives a sharper result to part (b)). We seek a formula relating the character-
istic polynomials pAB(λ) of AB and pBA(λ) of BA , respectively. Show that

λkpAB(λ) = λnpBA(λ).

In particular if A and B are square, then AB and BA have the same characteristic
polynomial.

[Suggestion: One approach uses block matrices: if A is n×k , let P =

(
λIn A
B Ik

)
and Q =

(
In 0
−B λIk

)
, where Im is the m × m identity matrix. Then use

det(PQ) = det(QP ). (see Problems 289 and 290.) ]

125. [125] [Reciprocal Matrices1] Let α1, . . . , αn be positive real numbers and let
A = (aij) where aij = αi/αj . Say as much as you can about the eigenvalues and
eigenvectors of A .

126. [126] Compute the value of the determinant of the 3×3 complex matrix X , provided
that tr (X) = 1, tr (X2) = −3, tr (X3) = 4. [Here tr (A)denotes the the trace, that is,
the sum of the diagonal entries of the matrix A .]

127. [127] Let A :=

 4 4 4
−2 −3 −6

1 3 6

 . Compute

a) the characteristic polynomial,

1T.L.Saaty used these matrices to help understand real life decision processes. See http://www.ams.org/
notices/201302/rnoti-p192.pdf
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b) the eigenvalues,

c) one of the corresponding eigenvectors.

128. [128] Let A be a square matrix. In the following, a sequence of matrices Cj converges
if all of its elements converge.
Prove that the following are equivalent:
(i) Ak → 0 as k →∞ [each of the elements of Ak converge to zero].
(ii) All the eigenvalues λj of A have |λj | < 1.
(iii) The matrix geometric series

∑∞
0 Ak converges to (I −A)−1 .

129. [129] Let A be a square matrix and let ‖B‖ be any norm on matrices [one example
is ‖B‖ = max

i,j
|bij | ]. To what extent are the conditions in the previous problem also

equivalent to the condition that ‖Ak‖ → 0?

130. [130]

a) Prove that the set of invertible real 2 × 2 matrices is dense in the set of all real
2× 2 matrices.

b) The set of diagonalizable 2× 2 matrices dense in the set of all real 2× 2 matrices.
Proof or counterexample?

131. [131]

a) Identify all possible eigenvalues of an n × n matrix A that satisfies the matrix
equation: A− 2I = −A2 . Justify your answer.

b) Must A be invertible?

132. [132] [Spectral Mapping Theorem] Let A be a square matrix.

a) If A(A− I)(A− 2I) = 0, show that the only possible eigenvalues of A are λ = 0,
λ = 1, and λ = 2.

b) Let p any polynomial. Show that the eigenvalues of the matrix p(A) are precisely
the numbers p(λj), where the λj are the eigenvalues of A .

133. [133] Let A = (aij) be an n×n matrix with the property that its absolute row sums
are at most 1, that is, |ai1| + · · · + |ain| ≤ 1 for all i = 1, . . . , n . Show that all of its
(possibly complex) eigenvalues are in the unit disk: |λ| ≤ 1.

[Suggestion: Let v = (v1, . . . , vn) 6= 0 be an eigenvector and say vk is the largest
component, that is, |vk| = maxj=1,...,n |vj | . Then use the k th row of λv = Av , that is,
λvk = ak1v1 + · · ·+ aknvn ].
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Remark: This is a special case of: “for any matrix norm, if ‖A‖ < 1 then I − A is
invertible.” However, the proof of this special case can be adapted to give a deeper
estimate for the eigenvalues of a matrix. See Problem 134

134. [134] [Gershgorin] Let A = (aij) be an n × n matrix with eigenvalue λ (possible
complex) and corresponding eigenvector v = (v1, . . . , vn) 6= 0 and say vk is the largest
component of v , that is, |vk| = maxj=1,...,n|vj | . Then the k th row of Av = λv can be
written as

(λ− akk)vk =
∑
j 6=k

akjvj .

a) Show that |λ − akk| ≤
∑
j 6=k
|akj | , That is, λ lies in the disk Dk in the complex

plane centered at akk with radius Rk :=
∑

j 6=k|akj | . These are called Gershgorin
disks. Although k is unknown, every eigenvalue of A must lie in at least one of
these disks.

b) The same eigenvalue estimate is true if we use the absolute column sums. Why?

c) Use Gershgorin disks to crudely estimate the eigenvalues of

10 + 2i 1 1
2 4 1
0 0.1 7i

 .

d) For the tridiagonal matrix in Problem 285 with α = 2 and β = 1 compare the
exact eigenvalues with the estimate found using Gershgorin disks.

e) Although each eigenvalue is in some Gershgorin disk, some disks may not contain
an eigenvalue. Show how this is illustrated by the matrices ( 0 1

4 0 ) and
(
1 −2
1 −1

)
2

Another instructive example is
(
1 −1
1 −1

)
.

f) Say one of the Gershgorin disks does not intersect any of of the others. Show that
this disk has exactly one eigenvalue. [Suggestion: Let C be the diagonal matrix
consisting of the diagonal elements of A and let

A(t) = (1− t)C + tA = C + t(A− C), 0 ≤ t ≤ 1,

so A(0) = C and A(1) = A . Use that the eigenvalues of A(t) depend continuously
on t (Problem 298).]

g) For any polynomial p(z) = zn + an−1z
n−1 + · · · + a1z + a0 Gershgorin’s theorem

applied to the columns of the companion matrix (Problem 123) gives the following
interesting estimate for the roots of the polynomial. Let M = maxj=0,...,n−1{|aj |} .
Then all the roots of p are in the disk {|z| ≤ 1 + M} . [Of course one can prove
this directly without Gershgorin’s theorem.]

Remark: In practice, a valuable numerical method for estimating the eigenvalues
of a matrix does not attempt to find the roots of the characteristic polynomial, but

2https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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instead finds a sequence of similar matrices (so they have the same eigenvalues as
A) whose off-diagonal elements get very small and use Gershgorin’s estimate.

135. [135] Say the matrix A has a simple eigenvalue λ0 and corresponding eigenvector ~v0 .
Show there is no vector ~z linearly independent of ~v0 with the property A~z = λ0~z+ c~v0
for any value of the scalar c .

7 Inner Products and Quadratic Forms

136. [136] Let V , W be vectors in the plane R2 with lengths ‖V ‖ = 3 and ‖W‖ = 5.
What are the maxima and minima of ‖V +W‖? When do these occur?

137. [137] Let V , W be vectors in Rn .

a) Show that the Pythagorean relation ‖V +W‖2 = ‖V ‖2 + ‖W‖2 holds if and only
if V and W are orthogonal.

b) Prove the parallelogram identity ‖V +W‖2 + ‖V −W‖2 = 2‖V ‖2 + 2‖W‖2 and
interpret it geometrically. [This is true in any real inner product space].

138. [138 Prove Thales’ Theorem: an angle inscribed in a semicircle is a right angle. Prove
the converse: given a right triangle whose vertices lie on a circle, then the hypotenuse
is a diameter of the circle.

[Remark: Both Thales’ theorem and its converse are valid in any inner product space].

139. [139] Let A = (−6, 3), B = (2, 7), and C be the vertices of a triangle. Say the
altitudes through the vertices A and B intersect at Q = (2,−1). Find the coordinates
of C .

[The altitude through a vertex of a triangle is a straight line through the vertex that is perpen-

dicular to the opposite side — or an extension of the opposite side. Although not needed here,

the three altitudes always intersect in a single point, sometimes called the orthocenter of the

triangle.]

140. [140] Find all vectors in the plane (through the origin) spanned by V = (1, 1 − 2)
and W = (−1, 1, 1) that are perpendicular to the vector Z = (2, 1, 2).
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141. [141] For real c > 0, c 6= 1, and distinct points ~p and ~q in Rk , consider the points
~x ∈ Rk that satisfy

‖~x− ~p‖ = c‖~x− ~q‖.

Show that these points lie on a sphere, say ‖~x − ~x0‖ = r , so the center is at ~x0 and
the radius is r . Thus, find center and radius of this sphere in terms of ~p, ~q and c .

What if c = 1?

142. [142] In R3 , let N be a non-zero vector and X0 and Z points.

a) Find the equation of the plane through the origin that is orthogonal to N , so N
is a normal vector to this plane.

b) Compute the distance from the point Z to the origin.

c) Find the equation of the plane parallel to the above plane that passes through the
point X0 .

d) Find the distance between the parallel planes in parts a) and c).

e) Let S be the sphere centered at Z with radius r . For which value(s) of r is this
sphere tangent to the plane in part c)?

143. [143] Let U , V , W be orthogonal vectors and let Z = aU + bV + cW , where a, b, c
are scalars.

a) (Pythagoras) Show that ‖Z‖2 = a2‖U‖2 + b2‖V ‖2 + c2‖W‖2 .

b) Find a formula for the coefficient a in terms of U and Z only. Then find similar
formulas for b and c . [Suggestion: take the inner product of Z = aU + bV + cW
with U ].

Remark The resulting simple formulas are one reason that orthogonal vectors are
easier to use than more general vectors. This is vital for Fourier series.

c) Solve the following equations:

x+ y + z + w = 2

x+ y − z − w = 3

x− y + z − w = 0

x− y − z + w = −5

[Suggestion: Observe that the columns vectors in the coefficient matrix are orthog-
onal.]

144. [144] For certain polynomials p(t), q(t), and r(t), say we are given the following
table of inner products:
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〈 , 〉 p q r

p 4 0 8

q 0 1 0

r 8 0 50

For example, 〈q, r〉 = 〈r, q〉 = 0. Let E be the span of p and q .

a) Compute 〈p, q + r〉 .
b) Compute ‖q + r‖ .
c) Find the orthogonal projection ProjEr . [Express your solution as linear combina-

tions of p and q .]

d) Find an orthonormal basis of the span of p , q , and r . [Express your results as
linear combinations of p , q , and r .]

145. [145] Let V be the real vector space of continuous real-valued functions on the closed

interval [0, 1], and let w ∈ V . For p, q ∈ V , define 〈p, q〉 =

∫ 1

0
p(x)q(x)w(x) dx .

a) Suppose that w(a) > 0 for all a ∈ [0, 1]. Does it follow that the above defines an
inner product on V ? Justify your assertion.

b) Does there exist a choice of w such that w(1/2) < 0 and such that the above
defines an inner product on V ? Justify your assertion.

146. [146] Let w(x) be a positive continuous function on the interval 0 ≤ x ≤ 1, n a
positive integer, and Pn the vector space of polynomials p(x) whose degrees are at
most n equipped with the inner product

〈p, q〉 =

∫ 1

0
p(x)q(x)w(x) dx.

a) Prove that Pn has an orthonormal basis p0 , p1 ,. . . ,pn with the degree of pk is k
for each k .

b) Prove that 〈pk, p′k〉 = 0 for each k .

147. [147] [Linear functionals] In Rn with the usual inner product, a linear functional
` : Rn → R is just a linear map into the reals (in a complex vector space, it maps into
the complex numbers C). Define the norm, ‖`‖ , as

‖`‖ := max
‖x‖=1

|`(x)|.
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a) Show that the set of linear functionals with this norm is a normed linear space.

b) If v ∈ Rn is a given vector, define `(x) = 〈x, v〉 . Show that ` is a linear functional
and that ‖`‖ = ‖v‖ .

c) [Representation of a linear functional] Let ` be any linear functional.
Show there is a unique vector v ∈ Rn so that `(x) := 〈x, v〉 .

d) [Extension of a linear functional] Let U ⊂ Rn be a subspace of Rn and ` a
linear functional defined on U with norm ‖`‖U . Show there is a unique extension
of ` to Rn with the property that ‖`‖Rn = ‖`‖U .

[In other words define ` on all of Rn so that on U this extended definition agrees
with the original definition and so that its norm is unchanged].

148. [148] Let A be a positive definite n × n real matrix, b ∈ Rn , and consider the
quadratic polynomial

Q(x) := 1
2〈x, Ax〉 − 〈b, x〉.

a) Show that Q is bounded below, that is, there is a constant m so that Q(x) ≥ m
for all x ∈ Rn .

b) Show that Q blows up at infinity by showing that there are positive constants R
and c so that if ‖x‖ ≥ R , then Q(x) ≥ c‖x‖2 .

c) If x0 ∈ Rn minimizes Q , show that Ax0 = b . [Moral: One way to solve Ax = b is
to minimize Q .]

d) Give an example showing that if A is only positive semi-definite, then Q(x) may
not be bounded below.

149. [149] Let A be a square matrix of real numbers whose columns are (non-zero) or-
thogonal vectors.

a) Show that ATA is a diagonal matrix — whose inverse is thus obvious to compute.

b) Use this observation (or any other method) to discover a simple general formula for
the inverse, A−1 involving only its transpose, AT , and (ATA)−1 . In the special case
where the columns of A are orthonormal, your formula should reduce to A−1 = AT .

c) Apply this to again solve the equations in Problem (143c).

150. [150] [Gram-Schmidt Orthogonalization]

a) Let A :=

1 1
2 0

1
2 1 0
0 0 1

 . Briefly show that the bilinear map R3 × R3 → R defined

by (x, y) 7→ xTAy gives a scalar product.
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b) Let α : R3 → R be the linear functional α : (x1, x2, x3) 7→ x1 + x2 and let
v1 := (−1, 1, 1), v2 := (2,−2, 0) and v3 := (1, 0, 0) be a basis of R3 . Using the
scalar product of the previous part, find an orthonormal basis {e1, e2, e3} of R3

with e1 ∈ span {v1} and e2 ∈ kerα .

151. [151] Let A : Rn → Rk be a linear map defined by the matrix A . If the matrix B
satisfies the relation 〈AX, Y 〉 = 〈X, BY 〉 for all vectors X ∈ Rn , Y ∈ Rk , show that
B is the transpose of A , so B = AT . [This basic property of the transpose,

〈AX, Y 〉 = 〈X, ATY 〉,

is the only reason the transpose is important.]

152. [152] Let V be the linear space of n × n matrices with real entries. Define a linear
transformation T : V → V by the rule T (A) = 1

2(A + AT ). [Here AT is the matrix
transpose of A .]

a) Verify that T is linear.

b) Describe the image of T and find it’s dimension. [Try the cases n = 2 and n = 3
first.]

c) Describe the image of T and find it’s dimension.

d) Verify that the rank and nullity add up to what you would expect. [Note: This
map T is called the symmetrization operator .]

153. [153] Proof or counterexample. Here v , w , z are vectors in a real inner product
space H .

a) Let v , w , z be vectors in a real inner product space. If 〈v, w〉 = 0 and 〈v, z〉 = 0,
then 〈w, z〉 = 0.

b) If 〈v, z〉 = 〈w, z〉 for all z ∈ H , then v = w .

c) If A is an n× n symmetric matrix then A is invertible.

154. [154] In R4 , compute the distance from the point (1,−2, 0, 3) to the hyperplane
x1 + 3x2 − x3 + x4 = 3.

155. [155] Find the (orthogonal) projection of x := (1, 2, 0) into the following sub-
spaces:

a) The line spanned by u := (1, 1,−1).

b) The plane spanned by u := (0, 1, 0) and v := (0, 0,−2)

c) The plane spanned by u := (0, 1, 1) and v := (0, 1,−2)
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d) The plane spanned by u := (1, 0, 1) and v := (1, 1,−1)

e) The plane spanned by u := (1, 0, 1) and v := (2, 1, 0).

f) The subspace spanned by u := (1, 0, 1), v := (2, 1, 0) and w := (1, 1, 0).

156. [156] Let S ⊂ R4 be the vectors X = (x1, x2, x3, x4) that satisfy x1 +x2−x3 +x4 =
0.

a) What is the dimension of S ?

b) Find a basis for the orthogonal complement of S .

157. [157] Let S ⊂ R4 be the subspace spanned by the two vectors v1 = (1,−1, 0, 1) and
v2 = (0, 0, 1, 0) and let T be the orthogonal complement of S .

a) Find an orthogonal basis for T .

b) Compute the orthogonal projection of (1, 1, 1, 1) into S .

158. [158] Let L : R3 → R3 be a linear map with the property that Lv ⊥ v for every
v ∈ R3 . Prove that L cannot be invertible.
Is a similar assertion true for a linear map L : R2 → R2?

159. [159] In a complex vector space (with a hermitian inner product), if a matrix A
satisfies 〈X, AX〉 = 0 for all vectors X , show that A = 0. [The previous problem
shows that this is false in a real vector space].

160. [160] Using the inner product 〈f, g〉 =
∫ 1
−1 f(x)g(x) dx , for which values of the real

constants α, β, γ are the quadratic polynomials p1(x) = 1, p2(x) = α+x p3(x) =
β + γx+ x2 orthogonal? [Answer: p2(x) = x , p3(x) = x2 − 1/3.]

161. [161] Using the inner product of the previous problem, let B = {1, x, 3x2− 1} be an
orthogonal basis for the space P2 of quadratic polynomials and let S = span (x, x2) ⊂
P2 . Using the basis B , find the linear map P : P2 → P2 that is the orthogonal
projection from P2 onto S .

162. [162] Let P2 be the space of quadratic polynomials.

a) Show that 〈f, g〉 = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product for this
space.

b) Using this inner product, find an orthonormal basis for P2 .

c) Is this also an inner product for the space P3 of polynomials of degree at most
three? Why?
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163. [163] Let P2 be the space of polynomials p(x) = a + bx + cx2 of degree at most 2
with the inner product 〈p, q〉 =

∫ 1
−1 p(x)q(x) dx . Let ` be the functional `(p) := p(0).

Find h ∈ P2 so that `(p) = 〈h, p〉 for all p ∈ P2 .

164. [164] Let C[−1, 1] be the real inner product space consisting of all continuous func-
tions f : [−1, 1]→ R , with the inner product 〈f, g〉 :=

∫ 1
−1 f(x)g(x) dx. Let W be the

subspace of odd functions, i.e. functions satisfying f(−x) = −f(x). Find (with proof)
the orthogonal complement of W .

165. [165] Find the function f ∈ span {1 sinx, cosx} that minimizes ‖sin 2x − f(x)‖ ,
where the norm comes from the inner product

〈f, g〉 :=

∫ π

−π
f(x)g(x) dx on C[−π, π].

166. [166]

a) Let V ⊂ Rn be a subspace and Z ∈ Rn a given vector. Find a unit vector X that
is perpendicular to V with 〈X, Z〉 as large as possible.

b) Compute max

∫ 1

−1
x3h(x) dx where h(x) is any continuous function on the inter-

val −1 ≤ x ≤ 1 subject to the restrictions∫ 1

−1
h(x) dx =

∫ 1

−1
xh(x) dx =

∫ 1

−1
x2h(x) dx = 0;

∫ 1

−1
|h(x)|2 dx = 1.

c) Compute min
a,b,c

∫ 1

−1
|x3 − a− bx− cx2|2 dx .

167. [167] [Dual variational problems] Let V ⊂ Rn be a linear space, Q : Rn → V ⊥ the
orthogonal projection into V ⊥ , and x ∈ Rn a given vector. Note that Q = I − P ,
where P in the orthogonal projection into V

a) Show that max
{z⊥V, ‖z‖=1}

〈x, z〉 = ‖Qx‖ .

b) Show that min
v∈V
‖x− v‖ = ‖Qx‖ .

[Remark: dual variational problems are a pair of maximum and minimum problems
whose extremal values are equal.]

168. [168] [Completing the Square]
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a) Let ~x and ~p be points in Rn . Under what conditions on the scalar c is the set

‖~x‖2 + 2〈~p, ~x〉+ c = 0

a sphere ‖~x − ~x0‖ = R ≥ 0? Compute the center, ~x0 , and radius, R , in terms of
~p and c .

b) Let

Q(~x) =
∑

aijxixj + 2
∑

bixi + c

= 〈~x, A~x〉+ 2〈~b, ~x〉+ c

be a real quadratic polynomial so ~x = (x1, . . . , xn), ~b = (b1, . . . , bn) are real vectors
and A = (aij) is a real symmetric n× n matrix. Just as in the case n = 1 (which

you should do first), if A is invertible find a vector ~v (depending on A and ~b) so
that the change of variables ~y == ~x − ~v (this is a translation by the vector ~v ) so
that in the new ~y variables Q has the simpler form

Q = 〈~y, A~y〉+ γ that is, Q =
∑

aijyiyj + γ,

where γ = c− 〈~b, A−1~b〉 .
As an example, apply this to Q(~x) = 2x21 + 2x1x2 + 3x2 − 4.

169. [169] Let A be a positive definite n × n real matrix, ~b a real vector, and ~N a real
unit vector.

a) For which value(s) of the real scalar c is the set

E := { ~x ∈ R3
∣∣ 〈~x, A~x〉+ 2〈~b, ~x〉+ c = 0 }

(an ellipsoid) non-empty? [Answer: c ≤ 〈~b, A−1~b〉 . If n = 1, this of course
reduces to a familiar condition.]

b) For what value(s) of the scalar d is the plane Z := { ~x ∈ R3
∣∣ 〈 ~N, ~x〉 = d } tangent

to the above ellipsoid E (assumed non-empty)?

[Suggestion: First discuss the case where A = I and ~b = 0. Then show how by
a change of variables, the general case can be reduced to this special case. See also
Problem 142].]

[Answer:

d = −〈 ~N, A−1~b〉 ±
√
〈 ~N, A−1 ~N〉

√
〈~b, A−1~b〉 − c.

For n = 1 this is just the solution d = −b±
√
b2−ac
a of the quadratic equation

ax2 + 2bx+ c = 0.]

38



170. [170] More completing the square. Let Z1, . . . , Zk be distinct points in Rn .
Find a unique point X0 in Rn at which the function

Q(X) = ‖X − Z1‖2 + · · ·+ ‖X − Zk‖2

achieves its minimum value by “completing the square” to obtain the identity

Q(X) = k

∥∥∥∥X − 1

k

k∑
n=1

Zn

∥∥∥∥2 +
k∑
j=1

‖Zj |2 −
1

k
‖
k∑
j=1

Zj‖2

[Of course one can also solve this using calculus.]

171. [171] Let v1 . . . vk be vectors in a linear space with an inner product 〈 , 〉 . Define
the Gram determinant by G(v1, . . . , vk) = det (〈vi, vj〉).

a) If the v1 . . . vk are orthogonal, compute their Gram determinant.

b) Show that the v1 . . . vk are linearly independent if and only if their Gram deter-
minant is not zero.

c) Better yet, if the v1 . . . vk are linearly independent, show that the symmetric
matrix (〈vi, vj〉) is positive definite. In particular, the inequality G(v1, v2) ≥ 0 is
the Schwarz inequality.

d) Conversely, if A is any n× n positive definite matrix, show that there are vectors
v1 ,. . . , vn so that A = (〈vi, vj〉).

e) Let S denote the subspace spanned by the linearly independent vectors w1 . . . wk .
If X is any vector, let PSX be the orthogonal projection of X into S , prove that
the distance ‖X − PSX‖from X to S is given by the formula

‖X − ZSX‖2 =
G(X,w1, . . . , wk)

G(w1, . . . , wk)
.

172. [172] (continuation) Consider the space of continuous real functions on [0, 1] with
the inner product, 〈f, g〉 :=

∫ 1
0 f(x)g(x) dx and related norm ‖f‖2 = 〈f, f〉 . Let

Sk := span{xn1 , xn2 , . . . , xnk} , where {n1, n2, . . . , nk} are distinct positive integers.
Let h(x) := x` where ` > 0 is a positive integer – but not one of the nj ’s. Prove that

lim
k→∞
‖h− ZSkh‖ = 0 if and only if

∑ 1

nj
diverges.

This, combined with the Weierstrass Approximation theorem, proves Muntz’s The-
orem: Linear combinations of xn1 , xn2 , . . . , xnk are dense in L2(0, 1) if and only if∑ 1

nj
diverges.

173. [173] Let L : V → W be a linear map between the finite dimensional linear spaces
V and W , both having inner products.
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a) Show that (imL)⊥ = kerL∗ , where L∗ is the adjoint of L .

b) Show that dim imL = dim imL∗ . [Don’t use determinants.]

c) [Fredholm Alternative] Show that the equation Lx = y has a solution if and
only if y is orthogonal to the kernel of L∗ .

174. [174] Let A and B be n× n matrices. If B∗A = 0, show that

a) ImA and ImB are orthogonal.

b) rank(A+B) = rankA+ rankB .

175. [175] Let L : Rn → Rk be a linear map. Show that

dim ker(L)− dim ker(L∗) = n− k.

(ker(L∗) is often called the cokernel of L).

176. [176] Let U , V , and W be finite dimensional vector spaces with inner products. If
A : U → V and B : V → W are linear maps with adjoints A∗ and B∗ , define the
linear map C : V → V by

C = AA∗ +B∗B.

If U
A−−−−→ V

B−−−−→ W is exact [that is, image (A) = ker(B)], show that C : V → V
is invertible.

177. [177] [Bilinear and Quadratic Forms] Let φ be a bilinear form over the finite dimen-
sional real vector space V . φ is called non-degenerate if φ(x, y) = 0 for all y ∈ V
implies x = 0.

True or False

a) If φ is non-degenerate, then ψ(x, y) := 1
2 [φ(x, y) + φ(y, x)] is a scalar product.

b) If φ(x, y) = −φ(y, x) for all x, y ∈ V , then φ(z, z) = 0 for all z ∈ V .

c) If φ is symmetric and φ(x, x) = 0 for all x ∈ V , then φ = 0.

d) Assume the bilinear forms φ and ψ are both symmetric and positive definite. Then
{z ∈ V |φ(x, z)3 + ψ(y, z)3 = 0} is a subspace of V .

e) If φ and ψ are bilinear forms over V , then {z ∈ V |φ(x, z)2 + ψ(y, z)2 = 0} is a
subspace of V .
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8 Norms and Metrics

178. [178] Let Pn be the space of real polynomials with degree at most n . Write p(t) =∑n
j=0 ajt

j and q(t) =
∑n

j=0 bjt
j .

True or False

a) Define d : Pn×Pn → R by d(p, q) :=
∑n

j=0|aj − bj | . Then ‖p‖ = d(p, 0) is a norm
on Pn .

b) For p ∈ Pn let ‖p‖ := 0 when p = 0 and ‖p‖ := max (0, NZ(p)) for p 6= 0. Here
NZ(p) is the set of all the real zeroes of p . Claim: ‖p‖ is a norm on Pn .

c) Define a norm ‖·‖ on Pn by ‖p‖ := maxt∈[0,1]|p(t)| . Then there is a bilinear form
φ on Pn with φ(p, p) = ‖p‖2 for all p ∈ Pn .

d) Let 〈·, ·〉 be a scalar product on Pn and ‖·‖ the associated norm. If α is an
endomorphism of Pn with the property that ‖α(p)‖ = ‖p‖ for all p ∈ Pn , then α
is orthogonal in this scalar product.

e) The real function (p, q) 7→ (pq)′(0), where f ′ is the derivative of f , defines a scalar
product on the subspace {p ∈ Pn | p(0) = 0} .

179. [179] [Inner Products of Matrices] Let A and B be real n × n matrices and
define their inner product by the rule

〈A, B〉 = trace (AB∗) =
∑
i,j

aijbij .

(see also problems 86, 211).

a) Show that this has all the properties of an abstract inner product, namely:

〈A, A〉 ≥ 0 and 〈A, A〉 = 0 if and only if A = 0 (positive definite).

〈A, B〉 = 〈B, A〉 (symmetry)

〈A+B, C〉 = 〈A, C〉+ 〈B, C〉 and 〈αA, B〉 = α〈A, B〉 for any real α (lin-
earity).

b) The above axioms imply that ‖A‖2 := 〈A, A〉 =
∑

ij a
2
ij is a norm. Why? It is

called te Frobenius norm and is often used in numerical linear algebra.

Show that ‖AB‖ ≤ ‖A‖‖B‖ .
Show that ‖RA‖ = ‖A‖ for any orthogonal matrix R . Consequently, if A =
RBR−1 , then ‖A‖ = ‖B‖ .
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9 Projections and Reflections

180. [180] Orthogonal Projections of Rank 1 and n− 1.

a) Let ~v ∈ Rn be a unit vector and P~x the orthogonal projection of ~x ∈ Rn in the
direction of ~v , that is, if ~x = c~v for some real constant c , then P~x = ~x , while if
~x ⊥ ~v , then P~x = 0. Show that P = ~v~vT (here ~vT is the transpose of the column
vector ~v ). In matrix notation, is vi are the components of ~v , then (P )ij = vivj .

b) Continuing, let Q be the orthogonal projection into the subspace perpendicular to
~v . It has rank n− 1 Show that Q = I − P = I − ~v~vT .

c) Let ~u and ~v be orthogonal unit vectors and let R be the orthogonal projection
into the subspace perpendicular to both ~u and ~v . Show that R = I − ~u~uT − ~v~vT .

d) Let Q : R3 → R3 be a matrix representing an orthogonal projection. From the
above formulas, it is a symmetric matrix. If its diagonal elements are 5/6, 2/3,
and 1/2, find Q (it is almost uniquely determined).

181. [181] A linear map P : X → X acting on a vector space X is called a projection if
P 2 = P (this P is not necessarily an “orthogonal projection”).

a) Show that the matrix P = ( 0 1
0 1 ) is a projection. Draw a sketch of R2 showing the

vectors (1, 2), (−1, 0), and (0, 3) and their images under the map P . Also indicate
both the image, V , and nullspace, W , of P .

b) Repeat this for Q := I − P .

c) If the image and nullspace of a projection P are orthogonal then P is called an
orthogonal projection. Let M = ( 0 a

0 c ). For which real value(s) of a and c is this a
projection? An orthogonal projection?

182. [182] More on general projections, so all one knows is that P : X → X is a linear
map that satisfies P 2 = P . Let V := image(P ) and W := ker(P ).

a) Show that V and W are complementary subspaces, that is, every vector ~x ∈ X
can be written in the form ~x = ~v + ~w , where ~v ∈ V and ~w ∈ W are uniquely
determined. The usual notation is X = V ⊕ W with, in this case, P~x = ~x
for all ~x ∈ V , P~x = 0 for all ~x ∈ W . Thus, P is the projection onto V .
[Suggestion: You can write any x ∈ X uniquely as ~x = (I −P )~x+P~x . In other
words, X = ker(P )⊕ ker(I − P ).]

b) Show that Q := I − P is also a projection, but it projects onto W .

c) If P is written as a matrix, it is similar to the block matrix M =

(
IV 0
0 0W

)
,

where IV is the identity map on V and 0W the zero map on W .

d) Show that dim image (P ) = trace (P ).
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e) If two projections P and P̂ on V have the same rank, show they are similar.

183. [183] [Continuation of Problem 182] If X has an inner product, show that the
subspaces V and W are orthogonal if and only if P = P ∗ . Moreover, if P = P ∗ , then
‖~x‖2 = ‖P~x‖2 + ‖Q~x‖2 , where Q := I − P . P and Q are the orthogonal projections
into V and W , respectively.

184. [184] Let P be a projection, so P 2 = P . If c 6= 1, find a short simple formula for
(I−cP )−1 . [Hint: the formula 1/(1−t) = 1+t+t2+ · · · helped me guess the answer.]

185. [185] [See Problem 182] A linear map R : X → X acting on a vector space X is
called a reflection if R2 = I . Two special cases are when R = ±I .

a) Show that R =
(−1 0

0 1

)
is a reflection. For the vector ~x = (2, 1) draw a sketch

showing both ~x and R~x .

b) Show that the matrix R =
(−1 2

0 1

)
is a reflection. Draw a sketch of R2 showing the

vectors (1, 2), (−1, 0), (and (0, 3) and their images under R . Also indicate both
the subspaces V and W of vectors that are mapped to themselves: R~v = ~v , and
those that are mapped to their opposites: R~w = −~w . [From your sketch it is clear
that in this example V and W are not orthogonal so this R is not an “orthogonal
reflection”.]

c) More generally, show that for any reflection one can write X = V ⊕W so that
R~v = ~v for all ~v ∈ V and R~w = −~w for all ~w ∈ W . Thus, R is the reflection
across V .

d) Show that R is similar to the block matrix M =

(
IV 0
0 −IW

)
, where IV is the

identity map on V .

e) X has an inner product and the above subspaces V and W are orthogonal, then
R is called an orthogonal reflection. Let S =

(−1 c
0 1

)
. For which value(s) of c is

this an orthogonal reflection?

f) Let M :=
(
a b
0 c

)
. For which value(a) of a , b , and c is M a reflection? An

orthogonal reflection?

g) Let ~v ∈ Rn be a unit vector orthogonal to a hyperplane. Show that the linear
map defined by H~x := ~x − 2〈~x, ~v〉~v is the orthogonal reflection of ~x across this
hyperplane. It is self-adjoint (H∗ = H ), orthogonal (H∗ = H−1 ), and involu-
tory (H2 = I ). [Remark: In numerical linear algebra H is often called the
Householder matrix.]

186. [186] [Continuation] More generally, show that for a reflection R , the above subspaces
V and W are orthogonal if and only if R = R∗ . This property characterizes an
orthogonal reflection.
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187. [187] If the matrix R is a reflection (that is, R2 = I ) and c 6= ±1 show that I − cR
is invertible by finding a simple explicit formula for the inverse. [Hint: See Problem
184.]

188. [188] If a real square matrix R is both symmetric and an orthogonal matrix, show
that it an reflection across some subspace.

189. 189[] Show that projections P and reflections R are related by the formula R =
2P − I . This makes obvious the relation between the above several problems.

190. [190] Let X be a linear space and A : X → X a linear map with the property that

(A− αI)(A− βI) = 0, (1)

where α and β are scalars with α 6= β .

This problem generalizes the above Problems 182 and 185 on projections, P 2−P = 0,
and reflections, R2 − I = 0. [See Problem 192 for a related problem where A = D
is the first derivative operator and Lu := (D − αI)(D − βI)u = 0 is a second order
constant coefficient linear differential operator.]

a) If ~v is an eigenvector of A , compute A~v and use this to find the eigenvalues of A .

b) Show that ker(A− αI) ∩ ker(A− βI) = {0} .
c) Show that X = ker(A− αI)⊕ ker(A− βI).

[Suggestion: Several possible approaches. One is to observe that

if P :=
A− αI
β − α

, then P (P − 1) =
(A− αI)(A− βI)

β − α
.

This substitution changes equation (1) to P (P − I) = 0 treated in Problem 182.]

A more direct approach (it is useful in Problem 191) is: if ~x ∈ X , seek vectors
~x1 ∈ ker(A − αI) and ~x2 ∈ ker(A − βI)k so that ~x = ~x1 + ~x2 by computing
(A− αI)~x and (A− βI)~x ].

d) If X = Rn , show it has a basis in which the matrix representing A is the block
diagonal matrix

A =

(
αIk 0
0 βIn−k

)
,

where k = dim ker(A− αI).

e) If X has an inner product and A = A∗ , show that ker(A − αI) and ker(A − βI)
are orthogonal. [See Problems 183 and 186].
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191. [191] [Generalization of Problem 190] Let X be a linear space and A : X → X a
linear map with the property that

(A− α1I)(A− α2I) · · · (A− αkI) = 0,

where the αi are scalars with αi 6= αj for i 6= j .

a) If ~v is an eigenvector of A compute A~v . Use this to find the eigenvalues of A .

b) Show that ker(A− αiI) ∩ ker(A− αjI) = {0} for i 6= j .

c) Show that X = ker(A− α1I)⊕ ker(A− α2I)⊕ · · · ⊕ ker(A− αkI).

]Suggestion: Seek ~x = ~x1 + · · ·+ ~xk , where ~xi ∈ ker(A− αiI), observing that

[(A− α2I) · · · (A− αkI)]~x = (α1 − α2) · · · (α1 − αk)~x1].

This gives ~x1 . There are similar formulas for ~x2 etc.

d) If X = Rn , show it has a basis in which the matrix representing A is the block
diagonal matrix

A =


α1I1 0 0 0

0 α2I2 0 0
... 0

. . .
...

0 0 · · · αkIk

 ,

where Ij is the identity matrix on the subspace ker(A− αjI).]

e) If X has an inner product and A = A∗ , show that ker(A−αiI) and ker(A−αjI)
are orthogonal for i 6= j .

192. [192] This problem applies the ides in Problem 190 to the linear constant coefficient
ordinary differential operator

Lu := (D − αI)(D − βI)u = 0, where α 6= β.

The key observation is Problem 190 also applies immediately to the case where equation
(1) holds only on a subspace. Let X be the linear space of twice differentiable functions
u(t) that satisfy Lu = 0, that is, X = ker(L).

a) Show that ker(D − αI) ∩ ker(D − βI) = {0} .
b) Show that ker(L) = ker(D − αI)⊕ ker(D − βI).

c) If u′′ − 4u = 0, deduce that u(t) = c1e
2t + c2e

−2t for some constants c1 and c2 .
[Remark: To understand ker(D − αI), see Problem 246]

d) Extend this idea to show that if Mu := (D2u−αI)(D2−βI)u , where α 6= β , then

kerM = ker(D2 − αI)⊕ ker(D2 − βI).
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193. [193] [Orthogonal Projections as Matrices. See also Problems 70, 233, 234 ,
235, 273].

Let n := (a, b, c) ∈ R3 be a unit vector and S the plane of vectors (through the origin)
orthogonal to n .

a) Show that the orthogonal projection of x in the direction of n can be written in
the matrix form

〈x, n〉n = (nnT )x =

a2 ab ac
ab b2 bc
ac bc c2

xy
z

 ,

where 〈x, n〉 is the usual inner product, nT is the transpose of the column vector
n , and nnT is matrix multiplication.

b) Show that the orthogonal projection P of a vector x ∈ R3 into S is

Px = x− 〈x, n〉n = (I − nnT )x,

Apply this to compute the orthogonal projection of the vector x = (1,−2, 3) into
the plane in R3 whose points satisfy x− y + 2z = 0.

c) Find a formula similar to the previous part for the orthogonal reflection R of a
vector across S . Then apply it to compute the orthogonal reflection of the vector
v = (1,−2, 3) across the plane in R3 whose points satisfy x− y + 2z = 0.

d) Find a 3× 3 matrix that projects a vector in R3 into the plane x− y + 2z = 0.

e) Find a 3× 3 matrix that reflects a vector in R3 across the plane x− y + 2z = 0.

10 Similar Matrices

194. [194] Let C and B be square matrices with C invertible. Show the following.

a) (CBC−1)2 = C(B2)C−1

b) Similarly, show that (CBC−1)k = C(Bk)C−1 for any k = 1, 2, . . . .

c) If B is also invertible, is it true that (CBC−1)−2 = C(B−2)C−1? Why?

195. [195] Let A =

(
1 4
4 1

)
.

a) Find an invertible matrix C such that D := C−1AC is a diagonal matrix. Thus,
A = CDC−1 .
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b) Compute A50 .

196. [196] Determine whether any of the following three matrices are similar over R :(
2 0
0 2

)
,

(
2 1
0 2

)
,

(
0 2
2 0

)
.

197. [197] Let A =

(
0 0
0 0

)
, and B =

(
0 1
0 0

)
,

a) Are A and B similar? Why?

b) Show that B is not similar to any diagonal matrix.

198. [198]

a) Show that the matrices

(
0 2
0 0

)
and

(
0 1
0 0

)
are similar. [This is a counterexample

to the plausible suspicion “if the matrices A and 2A are similar, then A = 0.”]

b) Let A(s) =

(
0 s
0 0

)
and let M = A(1) =

(
0 1
0 0

)
If s 6= 0, show that A(s) is

similar to M .

Remark: This is a simple and fundamental counterexample to the assertion: “If
A(s) depends smoothly on the parameter s and is similar to M for all s 6= 0, then
A(0) is also similar to M .”

199. [199] Say a matrix A is similar to the matrix B =

(
0 1
0 1

)
. Give a proof or

counterexample for each of the following assertions.

a). A2 = A
b). detA = 0.
c). traceA = 1.

d). λ = 0 is an eigenvalue of A .
e). λ = 1 is an eigenvalue of A .
f). v = (1, 0) is an eigenvector of A .

200. [200] Let V be a finite dimensional linear space. If e = {e1, . . . , en} and ε =
{ε1, . . . , εn} are bases for V , we let Ve and Vε refer to vectors when written using these
bases, respectively. Let L : V → V be a linear map. Using the bases we can represent
L by the matrices Le and Lε (Example: see Problem 65).

Show that the matrices Le and Lε are similar by finding an invertible linear map
S : V → V so that LεS = SLe .
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Remark: The following diagram may help understand this. What we call a “change of
basis” is an example of a fundamental procedure known to everyone, yet often seems ex-
otic when it arises in a mathematical setting. As an illustration, say you have a problem
stated in a “language (Hungarian?)” that is difficult for
you. To work with it, first “translate” it (find S ) into a
“language” that is simpler for you. Solve the translated
version and then translate the solution back (S−1 ). Sym-
bolically, reading from right to left,

QS = SP that is, P = S−1QS

old
P−−−−−−−−−−−−−→

(original version)
old

S

y xS−1

new
Q−−−−−−−−−−→

(new version)
new

The goal is to choose the new setting and S so the new problem Q is easier than
P . Finding a new basis in which a matrix is diagonal is a standard example in linear
algebra.

201. [201] Let A be a square real matrix. For each of the following assertions, either give
a proof or find a counterexample.

a) If A is similar to the identity matrix, then A = I .

b) If A is similar to the zero matrix, then A = 0.

c) If A is similar to 2A , then A = 0.

d) If all the eigenvalues of A are zero, then A = 0.

e) If A is similar to a matrix B with the property B2 = 0, then A2 = 0.

f) If A is similar to a matrix B one of whose eigenvalues is 7, then one eigenvalue of
A is 7.

g) If A is similar to a matrix B that can be diagonalized, then A can be diagonalized.

h) If A can be diagonalized and A2 = 0, then A = 0.

i) If A is similar to a projection P (so P 2 = P ), then A is a projection.

j) If A is similar to a real orthogonal matrix, then A is an orthogonal matrix.

k) If A is similar to a symmetric matrix, then A is a symmetric matrix.

202. [202] Say the square matrix A is similar to B .

a) Is A2 similar to B2? Proof or counterexample.

b) Is I + 3A− 7A4 similar to I + 3B − 7B4? Proof or counterexample.

c) Generalize.

203. [203] A square matrix M is diagonalized by a (possibly complex) invertible matrix S
if SMS−1 is a diagonal matrix. Of the following three matrices, one can be diagonalized
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by an orthogonal matrix, one can be diagonalized but not by any orthogonal matrix,
and one cannot be diagonalized. State which is which — and why.

A =

(
1 −2
2 5

)
, B =

(
1 2
2 −5

)
, C =

(
1 −2
2 −5

)
.

204. [204] Repeat the previous problem for the matrices

A =

(
1 −1
−1 1

)
, B =

(
1 −1
1 −1

)
, C =

(
1 1
−1 1

)
.

205. [205] Let A be the matrix

A =



1 λ 0 0 . . . 0
0 1 λ 0 . . . 0
0 0 1 λ . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . 1 λ
0 0 0 . . . 0 1


Show that there exists a matrix B with BAB−1 = AT (here AT is the transpose of
A).

206. [206] Let A be an n×n matrix with coefficients in a field F and let S be an invertible
matrix.

a) If SAS−1 = λA for some λ ∈ F , show that either λn = 1 or A is nilpotent.

b) If n is odd and SAS−1 = −A , show that 0 is an eigenvalue of A .

c) If n is odd and SAS−1 = A−1 , show that 1 is an eigenvalue of A .

207. [207]

a) Find a 2×2 matrix with entries in the Boolean field F2 that is diagonalizable over
the field F4 of order 4 but not over F2 .

b) Find a 2× 2 matrix with entries in F2 that is not diagonalizable over the field F4 .

208. [208] In Rn , say you are given a vector ~v 6= 0 and let ~e1 = (1, 0, . . . , 0).

a) Find an invertible matrix A that maps ~e1 → ~v .

b) If ~v and ~w are linearly independent vectors in Rn , describe how to find an invertible
matrix A with both A~v = ~w and A~w = ~v .

c) If ~v and ~w are linearly independent vectors in Rn with the same length, describe
how to find an orthogonal matrix r with both R~v = ~w and R~w = ~v .
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209. [209] Let A(t) =

(
1 + t 1
−t2 1− t

)
.

a) Show that A(t) is similar to A(0) for all t .

b) Show that B(t) := A(0) +A′(0)t is similar to A(0) only for t = 0.

210. [210] Let A be a 2× 2 matrix whose trace is 2 and determinant is 1. Must A− I ?

211. [211] Let f be any function defined on n × n matrices with the property that
f(AB) = f(BA) [Example: f(A) = trace (A)]. If A and C are similar, show that
f(A) = f(C).

212. [212] Let h(A) be a scalar-valued function defined on all square matrices A having
the property that if A and B are similar, then h(A) = h(B). If h is also linear, show
that h(A) = c trace (A) where c is a constant.

213. [213] Let {A,B,C, . . .} be linear maps over a finite dimensional vector space V .
Assume these matrices all commute pairwise, so AB = BA , AC = CA , BC = CB ,
etc.

a) Show that there is some basis for V in which all of these are represented simulta-
neously by upper triangular matrices.

b) If each of these matrices can be diagonalized, show that there is some basis for V
in which all of these are represented simultaneously by diagonal matrices.

11 Symmetric and Self-adjoint Maps

214. [214] Proof or Counterexample. Here A is an n× n real symmetric matrix.

a) A is invertible if and only if λ = 0 is not an eigenvalue of A .

b) The eigenvalues of A are all real.

c) If A has eigenvectors v , w corresponding to eigenvalues λ , µ with λ 6= µ , then
〈v, w〉 = 0.

d) If A has linearly independent eigenvectors v and w then 〈v, w〉 = 0.

e) If B is any real (not necessarily square) matrix, then both B∗B and BB∗ are
positive semi-definite.

f) If A is positive definite then it is invertible.
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g) If B is any square matrix, then A := B∗B is positive definite if and only if B is
invertible.

h) If A is positive definite then its diagonal elements are positive.

i) If A is positive definite, then for any 1 ≤ k ≤ n the submatrix Ak consisting of
the first k rows and k columns is positive definite.

j) If A is positive definite then detA > 0. [Suggestion: note that C(t) := tI+(1−t)A
is positive definite for all 0 ≤ t ≤ 1.]

k) If A is positive definite, then for any 1 ≤ k ≤ n the submatrix Ak consisting of
the first k rows and k columns has the property that detAk > 0. [The converse
of this is also true.]

l) If C is a real anti-symmetric matrix (so C∗ = −C ), then 〈v, Cv〉 = 0 for all real
vectors v .

215. [215] Let a, b, c be real numbers, and consider the matrix A =

 a b c
b c b
c b a

 .

a) Explain why all the eigenvalues of A must be real.

b) Show that some eigenvalue λ of A has the property that for every vector v ∈ R3 ,
v ·Av ≤ λ‖v‖2 . (Note: You are not being asked to compute the eigenvalues of A .)

216. [216] True or False.

a) If T is a linear transformation between the linear spaces V and W , then the set
{v ∈ V |T (v) = 0} is a linear subspace of V .

b) The vectors v1, v2, . . . , vn in Rn are linearly independent if, and only if, span {v1, v2, . . . , vn}
is all of Rn .

c) If A is an n× n matrix such that nullity(A) = 0, then A is the identity matrix.

d) If A is an k×n matrix with rank k , then the columns of A are linearly independent.

217. [217] Let A and B be symmetric matrices with A positive definite.

a) Show there is a change of variables y = Sx (so S is an invertible matrix) so that
〈x, Ax〉 = ‖y‖2 (equivalently, STAS = I ). One often rephrases this by saying that
a positive definite matrix is congruent to the identity matrix.

b) Show there is a linear change of variables y = Tx so that both 〈x, Ax〉 = ‖y‖2 and
〈x, Bx〉 = 〈y, Dy〉 , where D is a diagonal matrix.

c) If A is a positive definite matrix and B is positive semi-definite, show that

trace (AB) ≥ 0

with equality if and only if B = 0.
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218. [218] [Congruence of Matrices] Two symmetric matrices A , B in M(n,F) are called
congruent if there is an invertible matrix T ∈ M(n,F) with A = T ∗BT (here T ∗ is
the hermitian adjoint of T ); equivalently, if

〈Tx, ATy〉 = 〈x, By〉 for all vectors x, y,

so T is just a change of coordinates.

True or False?

a) Over R the matrix

(
1 0
0 −1

)
is congruent to

(
1 0
0 1

)
.

b) If A and B are congruent over C , then A and B are similar over C .

c) If A is real and all of its eigenvalues are positive, then over R A is congruent to
the identity matrix.

d) Over R if A is congruent to the identity matrix, then all of its eigenvalues are
positive.

219. [219] [Rayleigh Quotient] Let A be an n× n real symmetric matrix with eigen-
values λ1 ≤ · · · ≤ λn and corresponding orthonormal eigenvectors v1, . . . , vn .

a) Show that

λ1 = min
x 6=0

〈x, Ax〉
‖x‖2

and λn = max
x 6=0

〈x, Ax〉
‖x‖2

.

Also, show directly that if v 6= 0 minimizes 〈x, Ax〉/‖x‖2 , then v is an eigenvalue
of A corresponding the minimum eigenvalue of A .

b) Show that

λ2 = min
x⊥v1, x 6=0

〈x, Ax〉
‖x‖2

.

Remark: The Courant-Fischer Min-max Theorem is a useful generalization.
The same ideas can be applied to the eigenvalues of the Laplacian, including the
Schrödinger equation in quantum mechanics.

220. [220] Let A = (aij) be an n×n real symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn
and let C = ( a11 a12a12 a22 ) be the upper-left 2×2 block of A with eigenvalues µ1 ≤ µ2 .

a) Show that λ1 ≤ µ1 and λn ≥ µ2 .

b) Determine the information this gives about the eigenvalues of

4 1 0
1 4 5
0 5 6

 .

221. [221] Let A be a positive definite symmetric matrix.

52



a) Show that it has a unique positive definite square root, that is, a positive definite
matrix C so that C2 = A .

b) Find a linear change of variables so that the points on the ellipsoid 〈x, Ax〉 = 1
become points on the sphere ‖y‖2 = 1.

c) If B is any symmetric matrix (with the same size as A) show there is a linear map
that simultaneously diagonalizes both.

222. [222] Let M = (mij) be a real symmetric n×n matrix and let x = (x1, . . . , xn) ∈ Rn .
Further, let Q(x be the quadratic polynomial

Q(x) =
∑
i,j

mijxixj .

In terms of the rank and signature of M , give a necessary and sufficient condition that
the set {x ∈ Rn | Q(x) = 1 } is bounded and non-empty.

223. [223] Suppose that A is a real n× n symmetric matrix with two equal eigenvalues.
If v is any vector, show that the vectors v , Av ,. . . , An−1v are linearly dependent.

224. [224] Let A be a positive definite n×n matrix with diagonal elements a11 , a22 , . . . ,
ann . Show that

detA ≤
∏

aii.

225. [225] Let A be a positive definite n × n matrix. Show that detA ≤
(

traceA

n

)n
.

When can equality occur?

226. [226] Let Q and M be symmetric matrices with Q invertible. Show there is a matrix
A such that AQ+QA∗ = M .

227. [227] Let the real matrix A be anti-symmetric (or skew-symmetric), that is, A∗ =
−A .

a) Give an example of a 2× 2 anti-symmetric matrix.

b) Show that the diagonal elements of any n × n anti-symmetric matrix must all be
zero.

c) Show that every square matrix can (uniquely?) be written as the sum of a sym-
metric and an anti-symmetric matrix.

d) Show that the eigenvalues of a real anti-symmetric matrix are purely imaginary.

e) Show that 〈V, AV〉 = 0 for every vector V .
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f) If A is an n× n anti-symmetric matrix and n is odd, show that detA = 0 — and
hence deduce that A cannot be invertible.

g) If n is even, show that detA ≥ 0. Show by an example that A may be invertible.

h) If A is a real invertible 2n×2n anti-symmetric matrix, show there is a real invertible
matrix S so that

A = SJS∗,

where J :=

(
0 Ik
−Ik 0

)
; here Ik is the k× k identity matrix. [Note that J2 = −I

so the matrix J is like the complex number i =
√
−1.

228. [228]

a) Compute

∫∫
R2

dx1 dx2
[1 + 〈x, Ax〉]2

, where A is a positive definite (symmetric) 2 × 2

matrix, and x = (x1, x2) ∈ R2 .

Suggestion: If A = I , this is routine using polar coordinates. For the general
case, prove (and use) that every positive definite matrix A has a square root, that
is, there is a positive definite matrix C with C2 = A .

b) Use part a) to compute∫∫
R2

dx dy

(1 + 4x2 + 9y2)2
,

∫∫
R2

dx dy

(1 + x2 + 2xy + 5y2)2
,

∫∫
R2

dx dy

(1 + 5x2 − 4xy + 5y2)2
.

c) Generalizing part a), let h(t) be a given function and say you know that
∫∞
0 h(t) dt =

α . If x = (x1, x2) ∈ R2 and C is a positive definite 2× 2 matrix, show that∫∫
R2

h( 〈x, Cx〉 ) dA =
πα√
detC

.

d) Compute

∫∫
R2

e−(5x
2−4xy+5y2) dx dy .

e) Compute

∫∫
R2

e−(5x
2−4xy+5y2−2x+3) dx dy . [Suggestion: see Problem 168]

229. [229] Let A be an n× n positive definite matrix and b ∈ Rn .

a) Show that ∫∫
Rn

e−[〈x,Ax〉] dx =
πn/2√
detA

.

[This assumes you can already do the special case A = I . For the general case, use
that if A is positive definite it has a positive definite square root: A = C2 .]
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b) Use Problem 168 to generalize this and obtain the formula∫∫
Rn

e−[〈x,Ax〉+〈b, x〉+c] dx =
πn/2√
detA

e〈b, A
−1b〉−c.

230. [230] Let S be any symmetric matrix and A a positive definite matrix.

a) Show that ∫∫
Rn

〈x, Sx〉 e−‖x‖2 dx =
1

2
πn/2trace (S).

b) Show that ∫∫
Rn

〈x, Sx〉 e−〈x,Ax〉 dx =
πn/2trace (SA−1)

2
√

detA
.

12 Orthogonal and Unitary Maps

231. [231] Let the real n× n matrix A be an isometry, that is, it preserves length:

‖Ax‖ = ‖x‖ for all vectors x ∈ Rn. (2)

These are the orthogonal transformations.

a) Show that (2) is equivalent to 〈Ax, Ay〉 = 〈x, y〉 for all vectors x , y , so A preserves
inner products. Hint: use the polarization identity:

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
. (3)

This shows how, in a real vector space, to recover a the inner product if you only
know how to compute the (euclidean) length.

b) Show that (2) is equivalent to A−1 = A∗ .

c) Show that (2) is equivalent to the columns of A being unit vectors that are mutually
orthogonal.

d) Show that (2) implies detA = ±1 and that all eigenvalues satisfy |λ| = 1.

e) If n = 3 and detA = +1, show that λ = 1 is an eigenvalue.

f) Let F : Rn → Rn have the property (2), namely ‖F (x)‖ = ‖x‖ for all vectors
x ∈ Rn . Then F is an orthogonal transformation. Proof or counterexample.

g) Let F : Rn → Rn be a rigid motion, that is, it preserves the distance between
any two points: ‖F (x) − F (y)‖ = ‖x − y‖ for all vectors x, y ∈ Rn . Show that
F (x) = F (0) +Ax for some orthogonal transformation A .
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232. [232] Let A : Rn → Rn be an invertible matrix that permutes the standard basis
vectors. Then A is an orthogonal matrix. Proof or counterexample.

233. [233] Recall (see Problem 193) that u := x− (x · n)n is the projection of x into the
plane perpendicular to the unit vector n . Show that in R3 the vector

w := n× u = n× [x− (x · n)n] = n× x

is orthogonal to both n and u , and that w has the same length as u . Thus n , u , and
w are orthogonal with u , and w in the plane perpendicular to the axis of rotation n .
(See also Problems 70, 234, 235, 273).

234. [234] [Rotations in R3 ] Let n ∈ R3 be a unit vector. Find a formula for the 3× 3
matrix that determines a rotation of R3 through an angle θ with n as axis of rotation
(assuming the axis passes through the origin). Here we outline one approach to find
this formula — but before reading further, try finding it on your own.

a) (Example) Find a matrix that rotates R3 through the angle θ using the vector
(1, 0, 0) as the axis of rotation.

b) More generally, let S be the plane through the origin that is orthogonal to n . If
u ∈ S is a non-zero vector, let w ∈ S be orthogonal to u with ‖w‖ = ‖u‖ (this
determines w except for a factor of ±1). Explain why by varying θ the vectors

z(θ) := cos θ u + sin θw

sweep out the rotations of u in the plane S .

c) Given a vector x use this to show that the map

Rn : x 7→ (x · n)n + cos θ u + sin θw

d) Using Problems 193 and 233 to write u and w , in terms of n and x , show that
the following map rotates x through an angle θ with n as axis of rotation. [Note:
as above one needs more information to be able to distinguish between θ and −θ ].

Rnx = (x · n)n + cos θ [x− (x · n)n] + sin θ (n× x)

= x + sin θ (n× x) + (1− cos θ)[(x · n)n− x].

Thus, using Problem 70, if n = (a, b, c) ∈ R3 deduce that:

Rn = I + sin θ

 0 −c b
c 0 −a
−b a 0

+ (1− cos θ)

−b2 − c2 ab ac
ab −a2 − c2 bc
ac bc −a2 − b2

 .

In the notation of Problem 70 (but using the unit vector n rather than v), this is

Rn = I + sin θ An + (1− cos θ)A2
n (4)

(see more on this in Problems 235, 273).
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e) Use this formula to find the matrix that rotates R3 through an angle of θ using as
axis the line through the origin and the point (1, 1, 1).

235. [235] [The Axis of a Rotation in R3 ]. Given a unit vector n , Problem 234
equation (4) gives a formula for an orthogonal matrix of a rotation with axis of rotation
n .

a) Say you are just given a 3× 3 orthogonal matrix R with detR = 1. How can you
determine the axis of rotation?

The axis of rotation n is encoded in the matrix An . But since A2
n is a symmetric

matrix, then sin θAn is the anti-symmetric part of the orthogonal matrix R in the
decomposition (4). Give the details of this.

b) Apply this procedure to recover the axis of rotation for the orthogonal matrix you
found in Problem 234 (d).

236. [236]

a) Let V be a complex vector space and A : V → V a unitary operator. Show that
A is diagonalizable.

b) Does the same remain true if V is a real vector space, and A is orthogonal?

237. [237] For a complex vector space with a hermitian inner product one can define a
unitary matrix U just as in Problem 231 as one that preserves the length:

‖Uv‖ = ‖v‖

for all complex vectors v .

a) In this situation, for any complex vectors u , v prove the polarization identity

〈u, v〉 =
1

4

[(
‖u+ v‖2 − ‖u− v‖2

)
+ i
(
‖u+ iv‖2 − ‖u− iv‖2

)]
.

b) Extend Problem 231 to unitary matrices.

238. [238] Show that the only real matrix that is orthogonal, symmetric and positive
definite is the identity.

239. [239] Let V be a finite dimensional vector space over Rand W a finite dimensional
vector space over C .

True or False

a) Let α be an endomorphism of W . In a unitary basis for W say M is a diagonal
matrix all of whose eigenvalues satisfy |λ| = 1. Then α is a unitary matrix.
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b) The set of orthogonal endomorphisms of V forms a ring under the usual addition
and multiplication.

c) Let α 6= I be an orthogonal endomorphism of V with determinant 1. Then there
is no v ∈ V (except v = 0) satisfying α(v) = v .

d) Let α be an orthogonal endomorphism of V and {v1, . . . , vk} a linearly independent
set of vectors in V . Then the vectors {α(v1), . . . , α(vk)} are linearly independent.

e) Using the standard scalar product for R3 , let v ∈ R3 be a unit vector, ‖v‖ = 1,
and define the endomorphism α : R3 → R3 using the cross product: α(x) := v×x .
Then the subspace v⊥ is an invariant subspace of α and α is an orthogonal map
on this subspace.

240. [240] Let R(t) be a family of real orthogonal matrices that depend smoothly on the
real parameter t .

a) If R(0) = I , show that the derivative, A := R′(0) is anti-symmetric, that is, A∗ =
−A . [This shows that for the Lie group of orthogonal matrices the corresponding
Lie algebra consists of anti-symmetric matrices.]

b) Let the vector x(t) be a solution of the differential equation x′ = A(t)x , where the
matrix A(t) is anti-symmetric (the Frenet-Serret equations in differential geometry
have this form). Show that its (Euclidean) length is constant, ‖x(t)‖ =const.

If also y′ = A(t)y , show that 〈x(t), y(t)〉 is a constant.

Using this x(t), if we define the map R(t) by R(t)x(0) := x(t), show that R(t) is
an orthogonal transformation.

c) [241] Let A(t) be an anti-symmetric matrix and let the square matrix R(t) satisfy
the differential equation R′ = AR with R(0) an orthogonal matrix. Show that R(t)
is an orthogonal matrix.

d) [] If R(t) is n × n and v ∈ Rn , let x(t) := R(t)v . Show that x′(t) = A(t)x(t),
where A(t) is an anti-symmetric matrix.

13 Normal Matrices

241. [241] A square matrix M is called normal if it commutes with its adjoint: AA∗ =
A∗A . For instance all self-adjoint, all orthogonal matrices, and all diagonal matrices
are normal.

a) Give an example of a normal matrix that is neither self-adjoint nor orthogonal.

b) Show that M is normal if and only if ‖MX‖ = ‖M∗X‖ for all vectors X .
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c) Let M be normal and V and eigenvector with eigenvalue λ . Show that V is also an
eigenvalue of M∗ , but with eigenvalue λ̄ . [Suggestion: Notice that L := M −λI
is also normal.]

d) If M is normal, show that the eigenvectors corresponding to distinct eigenvalues
are orthogonal.

e) If M and N = U−1MU for some unitary matrix U , then N is normal.

f) If M is normal, then there is a unitary matrix U so that U−1MU is a diagonal
matrix.

242. [242] Here A and B are n× n complex matrices.

True or False

a) If A is normal and det(A) = 1, then A is unitary.

b) If A is unitary, then A is normal and det(A) = 1.

c) If A is normal and has real eigenvalues, then A is hermitian (that is, self-adjoint).

d) If A and B are hermitian, then AB is normal.

e) If A is normal and B is unitary, then B̄TAB is normal.

14 Symplectic Maps

243. [243] Let B be a real n× n matrix with the property that B2 = −I .

a) Show that n must be even, n = 2k .

b) Show that B is similar to the block matrix J :=

(
0 Ik
−Ik 0

)
, where here Ik is the

k × k identity matrix. [Hint: Write x1 := 1
2(I −B)x and x2 := 1

2(I +B)x . Note
that x1 + x2 = x . Compute Bx =?].

c) Let C be a real n×n matrix with the property that (C −λI)(C − λ̄I) = 0, where
λ = α + iβ with α and β real and β 6= 0. Show that C is similar to the matrix
K := αI + βJ with J as above.

244. [244] Let J :=

(
0 Ik
−Ik 0

)
, where Ik is the k×k identity matrix. Note that J2 = −I .

A real 2k×2k matrix S is symplectic if it preserves the bilinear form B[x, y] := 〈x, Jy〉 ;
thus B[Sx, Sy] = B[x, y] for all vectors x , y in R2k .

a) Is J itself symplectic?
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b) Show that a symplectic matrix is invertible and that the inverse is also symplectic.

c) Show that the set Sp(2k) of 2k× 2k symplectic matrices forms a group. [In many
ways this is analogous to the orthogonal group].

d) Show that a matrix S is symplectic if and only if S∗JS = J . Then deduce that
S−1 = −JS∗J and that S∗ is also symplectic.

e) Show that if S is symplectic, then S∗ is similar to S−1 . Thus, if λ is an eigenvalue
of S , then so are λ̄ , 1/λ , and 1/λ̄ .

f) Write a symplectic matrix S have the block form S :=

(
A B
C D

)
, where A , B , C ,

and D are k × k real matrices. Show that S is symplectic if and only if

A∗C = C∗A, B∗D = D∗B, and A∗D − C∗B = I.

Show that

S−1 =

(
D∗ −B∗
−C∗ A∗

)
.

g) If S is symplectic, show that detS = +1. One approach is to use the previous
part, picking the block matrices X and Y so that(

I 0
X Y

)(
A B
C D

)
=

(
A B
0 I

)
.

h) Let S(t) be a family of real symplectic matrices that depend smoothly on the real
parameter t with S(0) = I . Show that the derivative T := S′(0) has the property
that JT is self-adjoint.

i) Let the matrix S(t) be a solution of the differential equation S′(t) = TS with S(0)
a symplectic matrix, where T is a real square matrix with the property that JT is
self-adjoint. Show that S(t) is a symplectic matrix.

15 Differential Equations

245. [245] Let ~x(t) =

(
x1(t)
x2(t)

)
be a solution of the system of differential equations

x′1 = cx1 + x2

x′2 =− x1 + cx2
.

For which value(s) of the real constant c do all solutions ~x(t) converge to 0 as t→∞?
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246. [246] Let L be the ordinary differential operator

Lu := (D − a)u,

where Du = du/dt , a is a constant, and u(t) is a differentiable function.

Show that the kernel of L is exactly the functions of the form u(t) = ceat , where c is
any constant. In particular, the dimension of the kernel of L is one.

[Hint: Let v(t) := e−atu(t) and show that v(t) = constant.]

247. [247] Let V be the linear space of smooth real-valued functions and L : V → V the
linear map defined by Lu := u′′ + u .

a) Compute L(e2x) and L(x).

b) Use the previous part to find particular solutions of the inhomogeneous equations

i). u′′ + u = 7e2x, ii). w′′ + w = 4x, iii). z′′ + z = 7e2x − 3x

c) Find the kernel (=nullspace) of L . What is its dimension?

d) Find the most general real solution of each of the equations in part b).

248. [248] Let PN be the linear space of polynomials of degree at most N and L : PN →
PN the linear map defined by Lu := au′′ + bu′ + cu , where a , b , and c are constants.
Assume a 6= 0 and c 6= 0.

a) Compute L(xk).

b) Show that nullspace (=kernel) of L : PN → PN is 0.

c) Show that for every polynomial q(x) ∈ PN there is one and only one solution
p(x) ∈ PN of the ODE Lp = q .

d) Find some solution v(x) of v′′ + v = x2 − 1.

249. [249] Consider the differential equation y(4)−y = ce2x where c is a real constant.

a) Let Sc be the set of solutions of this equation. For which c is this set a vector
space? Why?.

b) For each such c , find this solution space explicitly, and find a basis for it.

250. [250]

a) If A is a constant matrix (so it does not depend on t), compute the derivative of
etA with respect to the real parameter t .

b) If M :=

(
cosh t sinh t
sinh t cosh t

)
, find a constant matrix A so that M = etA for all real

t .
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c) If N :=

(
cosh t − sinh t
sinh t cosh t

)
, show there is no constant matrix A so that N = etA .

251. [251] Let A be a square constant matrix. Show that the (unique) solution X(t) of
the matrix differential equation

dX(t)

dt
= AX(t), with X(0) = I

is X(t) = etA . [For eA see problem 271].

252. [252] Let ~x(t) be the solution of the initial value problem

~x ′(t) =

2 0 0
1 2 0
1 0 1

 ~x(t) with ~x(0) =

1
0
1

 .

Compute x3(1).

253. [253] Consider the following system of differential equations subject to the initial
conditions y1(0) = 1, and y2(0) = 3.

dy1
dx

=3y1 − y2
dy2
dx

=y1 + y2

a) Solve this system for y1(x) and y2(x).

b) What is y1(1)?

254. [254] Let ~x(t) =

(
x1(t)
x2(t)

)
be the vector-valued function that solves the initial value

problem

~x ′ =

(
−1 0

4 −1

)
~x, with ~x(0) =

(
1
0

)
.

Compute x2(2).

255. [255] Solve the system of differential equations

dx

dt
=2x+ y

dy

dt
=x+ 2y

for the unknown functions x(t) and y(t), subject to the initial conditions x(0) = 1 and
y(0) = 5.
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256. [256] Determine the general (real-valued) solution ~x(t) to the system ~x ′ = A~x , where

A =

(
7 1
−4 3

)
.

257. [257] Determine the general (real-valued) solution ~x(t) to the system ~x ′ = A~x , where

A =

3 0 0
0 −3 −1
0 2 −1

 .

258. [258] Let A be a 2 × 2 matrix with real entries and we seek a solution ~x(t) of
the vector differential equation ~x ′ = A~x . Suppose we know that one solution of this

equation is given by et
(

sin(2t)
cos(2t)

)
. Find the matrix A and the solution to ~x ′ = A~x

that satisfies ~x(0) =

(
1
0

)
.

259. [259] Carefully determine whether or not the set {3, x− 3, 5x+ e−x} forms a basis
for the space of solutions of the differential equation y′′′ + y′′ = 0.

260. [260] Let x = (x1, . . . , xn) ∈ Rn and make the change of variable y = Sx where
S = (ski) is an invertible constant real matrix. Thus, yk =

∑
i skixi .

a) Under this change of variables show that for a smooth function u(x1, . . . , xn)

∂u

∂xi
=
∑
k

∂u

∂yk
ski and

∂2u

∂xi∂xj
=
∑
k`

∂2u

∂yk∂y`
skis`j .

b) If A := (aij) is a constant real symmetric matrix, show that∑
ij

aij
∂2u

∂xi∂xj
=
∑
k`

bk`
∂2u

∂yk∂y`
,

where
bk` =

∑
ij

skiaijs`j , that is, B = SAST ,

where ST is the transpose of S . Because A is a symmetric matrix, we can always
find an orthogonal matrix S so that B is a diagonal matrix.

c) For each of the differential operators

Lu := 3ux1x1 + 2ux1x2 + 3ux2x2 and Mu := ux1x1 + 4ux1x2 + ux2x2

find changes of coordinates y = Sx so that in the new coordinates these have th e
simpler form αuy1y1 + βuy2y2 .
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261. [261]

a) Let V = (v1, . . . , vn) 6= 0 be a real vector and A be the n×n matrix A = (vivj), so
the product vivj is the ij element of A . Find the eigenvalues of A . [Note: A has
rank one since each column is a multiple of V . Thus λ1 = λ2 = · · · = λn−1 = 0.
What is the trace of A? What is λn?]

Let B = A + cI , where c ∈ R . Compute the eigenvalues and the determinant of
B .

b) If u(x1, x2, . . . , xn) is a given smooth function, let u′′ :=
(

∂2u
∂xi∂xj

)
be its second

derivative (Hessian) matrix. Find all solutions of det(u′′) = 1 in the special case
where u = u(r) depends only on r =

√
x21 + · · ·x2n , the distance to the origin.

c) Let x = (x1, x2, . . . , xn) and A be a square matrix with detA = 1. If u(x) satisfies
det(u′′) = 1 (see above), and v(x) := u(Ax), show that det(v′′) = 1 also.

d) Let u(x1, . . . , xn) = f(a1x1 + · · ·+anxn), where the aj are constants and f(t), t ∈
R , is a smooth function. Show that det u′′(x) = 0.

e) If v(x1, . . . , xn) := c(x21 + · · · + x2n) + f(a1x1 + · · · + anxn) where c is a constant,
compute detu′′(x).

Remark: The differential operator det(u′′) is interesting because its symmetry
group is so large. Partial differential equations involving det(u′′) are called Monge-
Ampère equations.

16 Least Squares

262. [262] Find the straight line y = a+mx that is the best least squares fit to the points
(0, 0), (1, 3), and (2, 7).

Here, “best” is defined customarily as follows. Let Y = f(x) := a + mx . Given the
data points (x1, y1), . . . , (xn, yn), best means picking a and b to minimize

E(a,m) := |f(x1)− y1|2 + |f(x2)− y2|2 + · · ·+ |f(xn)− yn|2,

where we are thinking of y as a function of the independent variable x .

Remark: For many cases, such as when the data are (heightj ,weightj) of the jth

person in a medical experiment, both variables x y are experimental quantities and it
is inappropriate to select one as the independent variable. Another approach is more
useful. See problems 266 and 267 below.
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263. [263] The water level in the North Sea is mainly determined by the so-called M2 tide,
whose period is about 12 hours see [ https://en.wikipedia.org/wiki/Tide ]. The
height H(t) thus roughly has the form

H(t) = c+ a sin(2πt/12) + b cos(2πt/12),

where time t is measured in hours (note sin(2πt/12 and cos(2πt/12) are periodic with
period 12 hours). Say one has the following measurements:

t (hours) 0 2 4 6 8 10

H(t) (meters) 1.0 1.6 1.4 0.6 0.2 0.8

Use the method of least squares as in the previous problem (but replace f(x) by H(t))
to find the best constants a , b , and c in H(t) for this data.

264. [264] Let L : Rn → Rk be a linear map. If the equation Lx = b has no solution,
instead frequently one wants to pick x to minimize the error: ‖Lx − b‖ (here we use
the Euclidean distance). Assume that the nullspace of L is zero.

a) Show that the desired x is a solution of the normal equations L∗Lx = L∗b (here
L∗ is the adjoint of L .). Note that since the nullspace of L is zero, L∗L : Rn → Rn
is invertible (why?).

b) Apply this to find the optimal horizontal line that fits the three data points (0, 1),
(1, 2), (4, 3).

c) Similarly, find the optimal straight line (not necessarily horizontal) that fits the
same data points.

265. [265] Let A : Rn → Rk be a linear map. If A is not one-to-one, but the equation
Ax = y has some solution, then it has many. Is there a “best” possible answer? What
can one say? Think about this before reading the next paragraph.

If there is some solution of Ax = y , show there is exactly one solution x0 of the form
x1 = A∗w for some w , so AA∗w = y (see Problem 75 g). Moreover of all the solutions
x of Ax = y , show that x0 is closest to the origin (in the Euclidean distance).

Remarks:

i). This situation is related to the case where where A is not onto, so there may not
be a solution — but the method of least squares gives an “best” approximation to a
solution.]

ii). A similar, but deeper, application is, given a scalar function ϕ(x) find a vector
field V so that ∇·V = ϕ . Thus one seeks V as the gradient of a function u (called
the potential function), V = ∇u , Thus one wants to solve ∇·∇u = ϕ . There is
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a natural way one can interpret this, ∇·∇u = ϕ , as having the form AA∗u = ϕ .
Using the notation ∆ := ∇·∇ , this equation is ∆u = ϕ where (in three dimensions)
∆u = uxx + uyy + uzz = ϕ . ∆ is called the Laplace operator.

266. [266] Let Zj = (xj , yj), j = 1, . . . , , N be (data) points in the plane R2 , say the
height and shoe size of the jth person in a medical test. Problem: find the straight line
L := {(x, y) ∈ R2 | ax + by = c} that best fits this data in the sense that it minimizes
the function

Q(L) :=
N∑
j=1

[Distance(Zj ,L)]2.

a) Thus, we need to determine the parameters a , b , and c . As should be clear in your
computation, it is simplest to investigate first the special case where

∑N
j=1 Zj = 0.

b) Apply this procedure to the data in Problem 262.

Remark: See the next problem for a generalization.

267. [267] Let P1 , Z2 ,. . . ,ZN be N points (think of them as data) in R3 and let L be
the straight line

L =
{
X ∈ R3 : X = X0 + tV for some t ∈ R

}
,

where X0 ∈ R3 and V ∈ R3 is a unit vector. This problem outlines how to find the
straight line L that best approximates the data points in the sense that it minimizes the
function

E(X0, V ) :=

N∑
j=1

[Distance (Zj ,L)]2.

Determining this line means finding X0 and V .

a) Show that for any point Z ,

[Distance(Z,L)]2 = ‖Z −X0‖2 − 〈Z −X0, V 〉2

so that
E(X0, V ) =

∑
j

‖Zj −X0‖2 −
∑
j

〈Zj −X0, V 〉2

b) In the special case where the “center of mass” Z̄ := 1
k

∑N
j=1 Zj is at the origin, so

Z̄ = 0, show that

E(X0, V ) =
∑
j

‖Zj‖2 −
∑
j

[〈Zj , V 〉2] + N [‖X0‖2 − 〈X0, V 〉2].

How should one choose X0 to minimize E ?
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c) To find the unit vector V , observe that for any Z , then 〈Z, V 〉2 = 〈V, ZZTV 〉 .
Here view P as a column vector so PZT is a 3× 3 matrix.

Use this to show that V is determined by letting it be an eigenvector of the sym-
metric matrix

A :=

N∑
j=1

ZjZ
T
j

corresponding to it’s largest eigenvalue.

d) Reduce the general case to the above special case Z̄ − 0 by letting Wj := Zj − Z̄
and Y0 := X0− Z̄ , so Zj−X0 = Wj−Y0 . [Moral: The center of mass of the points
is on this best straight line.]

e) Find the equation of the line ax + by = c that, in the above sense, best fits the
data points (−1, 3, 0), (0, 1, 0), (1,−1, 0), (2,−3, 0).

f) Let Zj := (zj1, zj2, , zj3) ∈ R3 , j = 1, . . . , N be the coordinates of the jth data
point and T` := (z1`, . . . , zN`), ` = 1, . . . , 3 be the column vector of `th coordinates.
If aij is the ij element of A , show that aij = 〈Ti, Tj〉 . Note that this exhibits A
as a Gram matrix (see Problem 171).

Note: In statistics this approach to understanding a data matrix A = (aij), which is
usually not square, is called principal component analysis or singular value decomposition.

17 Markov Chains3

268. [268] In a large city, a car rental company has three locations: the Airport, the City,
and the Suburbs. One has data on which location the cars are returned daily:

• Rented at Airport: 2% are returned to the City and 25% to the Suburbs.
The rest are returned to the Airport.

• Rented in City : 10% returned to Airport, 10% returned to Suburbs. The rest
are returned to the City.

• Rented in Suburbs: 25% are returned to the Airport and 2% to the city. The
rest are returned to the Suburbs.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs,
what is the long-term distribution of the cars?

Suggestion: Let Dj := (aj , cj , sj) be the number of cars at the Airport, City, and
Suburbs at the beginning of the jth day. Find a matrix M so that Dj+1 = MDj . If
there is an “equilibrium” distribution D = limj→∞Dj , show that D = MD .

3See also problems 313, 314, 315
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269. [269] Let A = (aij) be an n × n matrix with the property that aij ≥ 0 for all
i, j and that the sum of the elements in each of its columns is 1. These are called
transition matrices for Markov Chains. An example is the matrix M in the previous
problem.

a) Let v = (v1, . . . , vn) be any column vector with vj ≥ 0 and the sum of whose
elements is 1. Show that the vector w := Av has the same properties and hence
that for any integer k ≥ 0 the sum of each column of Ak is also 1. Thus Ak is
also the transition matrix for a Markov Chain.

b) Show that λ = 1 is an eigenvalue of A . [Suggestion: Let q be the column vector
all of whose elements are 1. Compute A∗q .]

c) Show that all of the eigenvalues of A satisfy |λ| ≤ 1.[See Problem 133.]

d) If in addition 0 < aij for all i, j , show that Ak , k = 1, 2, . . . converges to some
matrix A∞ and that all of its columns are identical.

This will take some thinking. For me the simplest proof uses the

Averaging Inequality If one takes a weighted average x = c1x1 + c2x2 + · · ·+
cnxn of real numbers x1, . . . , xn , where 0 < γ ≤ cj and c1 + · · · + cn = 1, then
the average lies strictly between the max and min of the xj with the quantitative
estimate

xmin + γ(xmax − xmin) ≤ x ≤ xmax − γ(xmax − xmin).

Apply this to where γ is the smallest element of A .

[Convergence of the Ak may fail if you only assume that aij ≥ 0. Example:
A = ( 0 1

1 0 ) ].

e) Let p be one of the (identical) columns of A∞ . Show that p is a fixed point of A ,
that is, Ap = p and that for any vector v with the properties of part (a) we have
Akv → p , k = 1, 2, . . . .

270. [270] (Franz Pedit) Five mathematicians - Alex, Franz, Jenia, Paul and Rob - sit
around a table, each with a huge plate of cheese. Instead of eating it, every minute
each of them simultaneously passes half of the cheese in front of him to his neighbor on
the left and the other half to his neighbor on the right. Is it true that the amount of
cheese on Franz’s plate will converge to some limit as time goes to infinity?

The next week they meet again, adding a sixth friend, Herman, and follow the same
procedure. What can you say about the eventual distribution of the cheese?
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18 The Exponential Map

271. [271] For any square matrix A , define the exponential eA by the usual power series

eA :=
∞∑
k=0

Ak

k!
.

a) Show that the series always converges.

b) If A is a 3× 3 diagonal matrix, compute eA .

c) If A2 = 0, compute eA .

d) If A2 = A , compute eA .

e) Show that e(s+t)A = esAetA for all real or complex s , t .

f) If AB = BA , show that eA+B = eAeB . In particular, e−AeA = I so eA is always
invertible.

g) If A =

(
0 1
0 0

)
and B :=

(
0 0
0 1

)
, verify that eAeB 6= eA+B .

h) Compute4 eA for the matrix A =


0 1 2 3
0 0 −1 −1
0 0 0 4
0 0 0 0

 .

i) If P is a projection (so P 2 = P ) and t ∈ R , compute etP .

j) If R is a reflection (so R2 = I ) and t ∈ R , compute etR .

k) For real t show that

e

(
0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
.

(The matrix on the right is a rotation of R2 through the angle t).

l) If A is a real anti-symmetric matrix, show that eA is an orthogonal matrix.

m) If a (square) matrix A satisfies A2 = α2I , show that

eA = coshα I +
sinhα

α
A.

n) If a square matrix A satisfies A3 = α2A for some real or complex α , show that

eA = I +
sinhα

α
A+

coshα− 1

α2
A2.

(if A is invertible then A2 = α2I so this formula reduces to the previous part).

What is the corresponding formula if A3 = −α2A?

4The numerical computation of eA is discussed in the illuminating article “Nineteen Dubious Ways to
Compute the Exponential of a Matrix, Twenty-Five Years Later” by Cleve Moler and Charles van Loan,
SIAM Review, Vol, 45, No. 1, Jan, 2003.
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272. [272] If A is a diagonal matrix, show that

det(eA) = etrace (A).

Is this formula valid for any matrix, not just a diagonal matrix?

273. [273]

a) Let v = (a, b, c) be any vector. Using the matrix notation Av =

(
0 −c b
c 0 −a
−b a 0

)
from Problem 70, show that

A3
v = −|v|2Av.

b) Use this (and the definition of eA =
∑

k A
k/k! from Problem 271) to verify that

eAv = I +
sin |v|
|v|

Av +
1− cos |v|
|v|2

A2
v.

Note: this eAv is closely related to the formula for the rotation Rn of Problem 234.
[See Duistermaat and Kolk, Lie Groups, Section 1.4 for an explanation. There the
anti-symmetric matrix Av is viewed as an element of the Lie algebra associated
with the Lie group of 3× 3 orthogonal matrices.] (See also Problems 70, 193, 233,
234, 235).

274. [274] Let A be an n× n upper-triangular matrix all of whose diagonal elements are
zero. Show that the matrix eA is a polynomial in A of degree at most n− 1.

275. [275] Say the square matrix A is similar to B . Is eA similar to eB ? Proof or
counterexample.

19 Jordan Form

276. [276] Show that the following matrices are similar to upper triangular matrix –s but
are not diagonalizable.

a).

(
1 −1
1 −1

)
b).

(
2 −1
1 0

)

277. [277] Let T : R2 → R2 be a linear transformation. Suppose that there exist v 6= 0
and w in R2 such that T (v) = v and T (w) 6= w . Show that T is diagonalizable if and
only if it has an eigenvalue unequal to 1.
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278. [278] [Jordan Normal Form] Let

A :=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 1 4 0 0 0 0 0
0 0 0 2 1 4 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 1 0 4


,

a) In the Jordan normal form for A , how often does the largest eigenvalue of A occur
on the diagonal?

b) For A , find the dimension of the eigenspace corresponding to the eigenvalue 4.

279. [279] Let A ∈ M(4,F), where here F is any field. Let χA = the characteristic
polynomial of A and p(t) := t4 + 1 ∈ F[t] .

True or False?

a) If χA = p , then A is invertible.

b) If χA = p , then A is diagonalizable over F .

c) If p(B) = 0 for some matrix B ∈M(8,F), then P is the characteristic polynomial
of B .

d) There is a unique monic polynomial q ∈ F[t] of degree 4 such that q(A) = 0.

e) A matrix B ∈M(n,F) is always nilpotent if its minimal polynomial is tk for some
integer k ≥ 1.

280. [280] Determine the Jordan normal form of

B :=

−3 −2 0
4 3 0
2 1 −1

 .

281. [281] Let L : V → V be a linear map on a linear space V .

a) Show that ker L ⊂ ker L2 and, more generally, ker Lj ⊂ ker Lj+1 for all j ≥ 1, so
the kernel of Lj can only get larger as j increases.
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b) If ker Lj = ker Lj+1 for some integer j , show that ker Lk = ker Lk+1 for all k ≥ j .
[Hint: Lk+2 = Lk+1L .]

Moral: If at some step the kernel of Lj does not get larger, then it never gets
larger for any k > j .

Does your proof require that V is finite dimensional?

c) Let A be an n×n matrix. If Ak = 0 for some integer k we say that A is nilpotent.
If A : R7 → R7 is nilpotent, show that A7 = 0. [Hint: What is the largest possible
value of dim(kerA)?]

Generalize this to a nilpotent A : Rn → Rn .

282. [282] Let A be an n × n real matrix. If A is nilpotent, that is, Ak = 0 for some
positive integer k , show that An = 0.

20 Derivatives of Matrices

283. [283] Let A(t) = (aij(t)) be a square real matrix whose elements are smooth functions
of the real variable t and write A′(t) = (a′ij(t)) for the matrix of derivatives. [There
is an obvious equivalent coordinate-free definition of the derivative of a matrix using
limh→0[A(t+ h)−A(t)]/h ].

a) Compute the derivative: dA3(t)/dt .

b) If A(t) is invertible, find the formula for the derivative of A−1(t). Of course it will
resemble the 1× 1 case −A′(t)/A2(t).

284. [284] Let A(t) be a square real matrix whose elements are smooth functions of the
real variable t . Assume detA(t) > 0.

a) Show that
d

dt
log detA = trace (A−1A′).

b) Conclude that for any invertible matrix A(t)

d detA(t)

dt
= detA(t) trace [A−1(t)A′(t)].

c) If detA(t) = 1 for all t and A(0) = I , show that the matrix A′(0) has trace zero.

d) Compute:
d2

dt2
log detA(t).
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21 Tridiagonal Matrices

285. [285] Investigate the basic n× n real tridiagonal matrix:

M =



α β 0 . . . 0 0 0
β α β . . . 0 0 0
0 β α . . . 0 0 0

...
. . .

...
0 0 0 . . . α β 0
0 0 0 . . . β α β
0 0 0 . . . 0 β α


= αI + β



0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0

...
. . .

...
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0


= αI + βT,

where T is defined by the preceding formula. This matrix arises in many applications,
such as n coupled harmonic oscillators and solving the Laplace equation numerically.
Clearly M and T have the same eigenvectors and their respective eigenvalues are
related by µ = α+βλ . Thus, to understand M it is sufficient to work with the simpler
matrix T .

Find the eigenvalues, eigenvectors, and determinant. [I found it simplest to find the
eigenvectors first by solving the difference equation vk−1−λvk +vk+1 = 0, k = 1, . . . , n
with the “boundary conditions” v0 = vn+1 = 0. Because this difference equation has
constant coefficients, seek a solution having the special form vk = rk ].

Gershgorin’s Theorem (Problem 134) gives a quick estimate of the eigenvalues.

286. [286] Investigate the following tridiagonal matrices (eigenvalues, eigenvectors, diago-
nalize?):

A :=

(
1 2
0 0

)
, B :=

(
1 2
0 1

)
, C :=

0 1 0
1 0 1
0 −1 0

 .

287. [287] The most general real tridiagonal matrix is

T :=



a1 b1 0 . . . 0 0 0
c1 a2 b2 . . . 0 0 0
0 c1 a3 . . . 0 0 0

...
. . .

...
0 0 0 . . . an−2 bn−2 0
0 0 0 . . . cn−2 an−1 bn−1
0 0 0 . . . 0 cn−1 an


.

and let S be an invertible diagonal matrix with elements s1, . . . , sn on the diagonal.
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a) Compute S−1TS , showing that it is also a tridiagonal matrix with a1, . . . , an on
the diagonal, bk replaced by bksk+1/sk and ck replaced by cksk/sk+1 .

b) If bkck > 0 for all k , show that by an appropriate choice of S the matrix T is
similar to a symmetric matrix. Thus its eigenvalues are all real.

22 Block Matrices

The next few problems illustrate the use of block matrices. (See also Problems 124, 182,
185, 243, and 244.)

Notation: Let M =

(
A B

C D

)
be an (n+ k)× (n+ k) block matrix partitioned into

the n× n matrix A, the n× k matrix B , the k × n matrix C and the k × k matrix D .

Let N =

(
W X

Y Z

)
is another matrix with the same “shape” as M .

288. [288] Show that the naive matrix multiplication

MN =

(
AW+BY AX+BZ

CW+DY CX+DZ

)

is correct.

289. [289] [Inverse of a Block Matrix ]

a) Show that matrices of the above form but with C = 0 are a sub-ring.

b) If C = 0, show that M in invertible if and only if both A and D are invertible –
and find a formula for M−1 involving A−1 , etc.

c) More generally, if A is invertible, show that M is invertible if and only if the matrix
H := D − CA−1B is invertible – in which case

M−1 =

(
A−1 +A−1BH−1CA−1 −A−1BH−1

−H−1CA−1 H−1

)
.

d) Similarly, if D is invertible, show that M is invertible if and only if the matrix
K := A−BD−1C is invertible – in which case

M−1 =

(
K−1 −K−1BD−1

−D−1CK−1 D−1 +D−1CK−1BD−1

)
.
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e) If A = 0 and n > k , show that M cannot be invertible.

If A = 0 and n = k , show that M is invertible if and only if both B and C are
invertible. Moreover

M−1 =

(
−C−1DB−1 C−1

B−1 0

)
.

f) For which values of a , b , and c is the following matrix invertible? What is the
inverse?

S :=



a b b · · · b b
c a 0 0 0
c 0 a 0 0
...

...
. . .

...
c 0 0 · · · a 0
c 0 0 · · · 0 a


.

290. [290] [Determinant of a Block Matrix]

a) If B = 0 and C = 0, show that detM = (detA)(detD ). [Suggestion: One
approach begins with M =

(
A 0
0 I

) (
I 0
0 X

)
for some appropriate matrix X .]

b) If B = 0 or C = 0, show that detM = detA detD . [Suggestion: If C = 0,
compute

(
A B
0 D

) (
I X
0 I

)
for a matrix X chosen cleverly.]

c) If A is invertible, show that detM = detA det(D−CA−1B). As a check, if M is
2× 2, this reduces to ad− bc .

[There is of course a similar formula only assuming D is invertible: detM =
det(A−BD−1C) detD .]

d) Compute the determinant of the matrix S in part (f) of the previous problem.

291. [291] Say a 2n × 2n block matrix M =
(
A B
C D

)
, where A , B , C , and D are n × n

matrices that commute with each other. Prove that M is invertible if and only if
AD −BC is invertible.

292. [292] Let M =

(
A B
0 0

)
be a square block matrix, where A is also a square matrix

but B may be rectangular. .

a) Find the relation between the non-zero eigenvalues of M and those of A . What
about the corresponding eigenvectors?

b) Proof or Counterexample: M is diagonalizable if and only if A is diagonalizable.

293. [293] If a unitary matrix M has the block form M =

(
A B
0 D

)
, show that B = 0

while both A and D must themselves be unitary.

75



294. [294] Let L : V → V be a linear map acting on the finite dimensional linear vector
space mapping V and say for some subspace U ∈ V we have L : U → U , so U is an
L-invariant subspace. Pick a basis for U and extend it to a basis for V . If in this basis
A : U → U is the square matrix representing the action of L on U , show that in this
basis the matrix representing L on V has the block matrix form(

A ∗
0 ∗

)
,

where 0 is a matrix of zeroes having the same number of columns as the dimension of
U and ∗ represent other matrices.

295. [295] Let A , B , and C be n× n matrices.

a) Find the inverse of the 3n× 3n block matrixI A B
0 I C
0 0 I


b) Let P , Q , and R be invertible n× n matrices. ComputeP A B

0 Q C
0 0 R

P−1 0 0
0 Q−1 0
0 0 R−1


and use the result to find a formula for the inverse of the above matrix on the left.

23 Interpolation

296. [296]

a) Find a cubic polynomial p(x) with the properties that p(0) = 1, p(1) = 0, p(3) = 2,
and p(4) = 5. Is there more than one such polynomial?

b) Given any points (x1, y1), (x2, y2), (x3, y3), (x4, y4) with the xi ’s distinct, show
there is a unique cubic polynomial p(x) with the properties that p(xi) = yi .

297. [297] Let a0 , a1 , . . . , an be n+ 1 distinct real numbers and b0 , b1 , . . . , bn be given
real numbers. One seeks an interpolating polynomial p(x) = ckx

k + · · ·+ c1x+ c0 that
passes through these points (aj , bj); thus p(aj) = bj , j = 0, . . . , n .

76



a) If k = n show there exists such a polynomial and that it is unique.

b) If p has the special form p(x) = cn+1x
n+1 + · · ·+ c1x (so k = n+ 1 and c0 = 0),

discuss both the existence and uniqueness of such a polynomial.

c) If p has the special form p(x) = xn+1 + cnx
n + · · · + c1x + c0 , discuss both the

existence and uniqueness of such a polynomial.

24 Dependence on Parameters

In these problems we explore the dependence of the eigenvalues and eigenvectors of a matrix
A on its elements.

298. [298] Show that the eigenvalues of a square matrix depend continuously on the ele-
ments of the matrix.

Because the eigenvalues are the roots of the characteristic polynomial (whose coefficients
clearly depend continuously on the elements of the matrix), the problem is show that
the – possibly complex – roots of a polynomial p(z) = zn + an−1z

n−1 + · · ·+ a1z + a0
depend continuously on the coefficients aj .

In the special cases where the degree of p(z) is at most 4, this is obvious from the
(complicated) explicit formulas for the roots.

Remark: It is NOT enough to prove this only in the special case where p(z1) = 0
since in making the substution w = z − z1 , the coefficients of the new polynomial
depend both on the coefficients aj of the original polynomial and on how z1 depends
on these coefficients – which is known only in the special cases of polynomials of degree
at most 4.

However, after proving that z1 depends continuously on the coefficients, one can use
induction (letting w = z − z1 ) to complete the proof.

The proof of this involves the Fundamental Theorem of Algebra (see also Artin’s Algebra
Prop (5.2.1)).

299. [299] [Wilkinson5] Let p(x) := (x−1)(x−2) · · · (x−20) = x20−210x19 + · · · and let
p(x, t) be the perturbed polynomial obtained by replacing −210x19 by −(210+ t)x19

(think of t as being small). Let x(t) denote the perturbed value of the root x = 10, so
x(0) = 10.

5See the illuminating discussion on pages 943–945 in George E. Forsythe, “Pitfalls in computation, or
why a math book isn’t enough”, American Mathematical Monthly, 77(9), Nov. 1970, pp. 931–956:
https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/GeorgeForsythe.pdf
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a) For |t| sufficiently small, use the implicit function theorem to show that x(t) is a
smooth function of t .

b) Compute the sensitivity of this root as one changes t , that is, compute dx(t)/dt)
∣∣
t=0

.

300. [300] Let A(t) be a self-adjoint matrix whose elements depend smoothly on the
real parameter t . Say λ(t) is an eigenvalue and v(t) a corresponding eigenvector and
assume these are differentiable functions of t for t near 0. Show that the derivative,
λ′ satisfies

λ′ =
〈v, A′v〉
‖v‖2

.

301. [301]

a) If z = c is a multiple root of a polynomial p(z), give an easy example where this
root is not a differentiable function of the coefficients of p .

b) If z = c is a simple root of p (so p(c) = 0 but p′(c) 6= 0), show that locally this root
depends smoothly on the coefficients. [Suggestion: implicit function theorem.]

c) Let A(t) =

(
1 t
t 1

)
, −1 ≤ t ≤ 1 and label the eigenvalues so that λ1(t) ≤

λ2(t). Compute the eigenvalues and corresponding eigenvectors, and graph the
eigenvalues. This primitive example illustrates some of the complications if an
eigenvalue is not simple.

302. [302] If the elements of a square matrix A(t) depend continuously on the real param-
eter t , then, as in Problem 298 the eigenvalues also depend continuously on t . Here is
an example showing that the eigenvectors may not be continuous, even if the matrix is
symmetric and depends smoothly on its elements.

Let A := ( 0 1
1 0 ) and B := ( 1 0

0 2 ) and let ϕ(t) be a smooth function with ϕ(t) = 0 for
t ≤ 0 and ϕ(t) > 0 for t > 0. Define

M(t) = ϕ(−t)A+ ϕ(t)B.

Show that the eigenvectors of M(t), however chosen for t = 0, cannot be continuous
at t = 0. [Note that the positive definite matrix M(t) + 2I has the same property.]

303. [303] Let A(t) be an n× n matrix whose elements depend smoothly on t ∈ R for t
near zero. Say λ0 is a simple eigenvalue for t = 0 and ~v0 a corresponding eigenvector.
Show that for t near 0 the eigenvalue and eigenvector depend smoothly on t in the sense
that there is a unique smooth solution, ~v(t) λ(t), (normalized, say with 〈~v0, ~v(t)〉=1),
of F (~v, λ, t) = 0 where F : Rn × R× R→ Rn+1 is defined by

F (~v, λ, t) :=

(
f(~v, λ, t)
g(~v, λ, t)

)
:=

(
A(t)~v − λ~v
〈~v0, ~v〉 − 1

)
(5)
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where λ(0) = λ0 and ~v(0) = ~v0 . Here 〈~v, ~w〉 = ~vT ~w is the standard inner (dot) product
with ~vT the transpose. This is an outline of a proof6 using the implicit function theorem.

a) Show that the derivative of F with respect to ~v and λ is

F ′(~v, λ, t) =

(
f~v fλ
g~v gλ

)
=

(
A(t)− λI −~v

~vT0 0

)
Here we used 〈~v0, ~v〉 = ~vT0 ~v where ~vT0 is the transpose of ~v0 . Thus, at t = 0

F ′(~v0, λ0, 0) =

(
A(0)− λ0I −~v0

~vT0 0

)
.

b) Use that λ0 is a simple eigenvalue of A(0) to show that ker(F ′(~v0, λ0, 0)) = 0 and
hence that F ′(~v0, λ0, 0) is invertible.

[Suggestion: If if ~w :=
(
~z
r

)
6= 0 is in the kernel of F ′(~v0, λ0, 0), show that

A(0)~z = λ0~z + r~v0 and 〈~v0, ~z〉 = 0. Assume ~z 6= 0. Write A(0) as a matrix in a
basis whose first vector is ~v0 and second is ~z and use that λ0 was assumed to be
a simple eigenvalue of A(0) to contradict ~z 6= 0.]

25 Miscellaneous Problems

304. [304] A tridiagonal matrix is a square matrix with zeroes everywhere except on the
main diagonal and the diagonals just above and below the main diagonal.

Let T be a real anti-symmetric tridiagonal matrix with elements t12 = c1 , t23 = c2 , . . . ,
tn−1n = cn−1 . If n is even, compute det T .

305. [305] [Difference Equations] One way to solve a second order linear difference
equation of the form xn+2 = axn + bxn+1 where a and b are constants is as follows.
Let un := xn and vn := xn+1 . Then un+1 = vn and vn+1 = aun + bvn , that is,(

un+1

vn+1

)
=

(
0 1
a b

)(
un
vn

)
,

which, in obvious matrix notation, can be written as Un+1 = AUn . Consequently,
Un = AnU0 . If one can diagonalize A , the problem is then straightforward. Use this
approach to find a formula for the Fibonacci numbers xn+2 = xn + xn+1 with initial
conditions x0 = 0 and x1 = 1.

6From https://www.math.upenn.edu/~kazdan/504/eigenv.pdf

Other proofs are in the books: Lax, Peter D., Linear Algebra and Its Applications, 2nd. ed., Wiley (2007),
pages 131–132, and Evans, L. C. , Partial Differential Equations, 2nd. ed., Amer. Math. Soc. (2010).
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306. [306] Let P be the vector space of all polynomials with real coefficients. For any
fixed real number t we may define a linear functional L on P by L(f) = f(t) (L is
“evaluation at the point t”). Such functionals are not only linear but have the special
property that L(fg) = L(f)L(g). Prove that if L is any linear functional on P such
that L(fg) = L(f)L(g) for all polynomials f and g , then either L = 0 or there is a c
in R such that L(f) = f(c) for all f .

307. [307] Let M denote the vector space of real n × n matrices and let ` be a linear
functional on M . Write C for the matrix whose ij entry is (1/

√
2)i+j . If `(AB) =

`(BA) for all A,B ∈M , and `(C) = 1, compute `(I).

308. [308] Let b 6= 0. Find the eigenvalues, eigenvectors, and determinant of

A :=


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

 .

309. [309] Let b 6= 0, c 6= 0. Find the eigenvalues, eigenvectors, and determinant of

B :=


a b b · · · b
c a 0 · · · 0
c 0 a · · · 0
...

...
...

. . .
...

c 0 0 · · · a

 .

310. [310] Let S : Rn → Rn be the cyclic permutation map:

S : (x1, . . . , xn)→ (xn, x1, x2, . . . , xn−1).

a) Show that Sn = I . Why does this imply that the eigenvalues of S satisfy λn = 1?
Find the eigenvalues of S .

b) Compute the corresponding eigenvectors of S .

c) Show that in the standard basis for Rn

S =


0 0 0 · · · 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

...
. . .

...
0 0 0 · · · 0 1 0

 .
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311. [311]

a) Let L : V → V be a linear map on the vector space V . If L is nilpotent, so Lk = 0
for some integer k , show that the map M := I − L is invertible by finding an
explicit formula for (I − L)−1 .

b) Apply the above result to find a particular solution of y′ − y = 5x2 − 3. [Hint:
Let V be the space of quadratic polynomials and L := d/dx ].

c) Similarly, find a particular solution of y′′ + y = 1− x2 .

312. [312] [Length of a Day] One year on July 1 in northern Canada I was camping and
the sun set around 11 PM. A year later in Hawaii the sun set at around 7 PM. This
led to the basic question, given the day of the year and the latitude, when does the sun
rise and set? [Then:

Hours of daylight = Sunset − Sunrise,

which is independent of “time zones”.

313. [313] [Wine and Water] You are given two containers, the first containing one liter
of liquid A and the second one liter of liquid B . You also have a cup which has a
capacity of r liters, where 0 < r < 1. You fill the cup from the first container and
transfer the content to the second container, stirring thoroughly afterwords.

Next dip the cup in the second container and transfer k liters of liquid back to the first
container. This operation is repeated again and again. Prove that as the number of
iterations n of the operation tends to infinity, the concentrations of A and B in both
containers tend to equal each other. [Rephrase this in mathematical terms and proceed
from there].

Say you now have three containers A , B , and C , each containing one liter of different
liquids. You transfer one cup form A to B , stir, then one cup from B to C , stir, then
one cup from C to A , stir, etc. What are the long-term concentrations?

Does it make any difference if you do the transfers in the order B → C → A?

314. [314] Snow White distributed 21 liters of milk among the seven dwarfs. The first
dwarf then distributed the contents of his pail evenly to the pails of other six dwarfs.
Then the second did the same, and so on. After the seventh dwarf distributed the
contents of his pail evenly to the other six dwarfs, it was found that each dwarf had
exactly as much milk in his pail as at the start.

a) What was the initial distribution of the milk?

b) Generalize to N dwarfs.

[From: K. Splinder Abstract Algebra with Applications, Vol. 1, page 192, Dekker (1994)]
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315. [315] [Snow White: continuation] Say instead the first dwarf divides his portion
into 7 equal parts, keeps one for himself and distributes the rest to the other dwarfs.
The other dwarfs repeat this. What can you say about the eventual distribution?

Last revised: March 10, 2024. For the most recent version see
https://www.math.upenn.edu/~kazdan/504/la.pdf
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