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Theorem

J. Korevaar

1. Introduction and Overview

There are several interesting functions in number theory
whose tables look quite irregular, but which exhibit sur-
prising asymptotic regularity asx — c=. A notable example
is the function m(x) which counts the number of primesp
not exceeding x.

1.1, The Famous FPrime Number Theorem

nx)= % 1~2 a5 x-eo

ps<x logx

(1.1)

was surmised already by Legendre and Gauss. However, it
took a hundred years before the first proofs appeared, one
by Hadamard and one by de la Vallée Poussin (1896). Their
and all but one of the subsequent proofs make heavy use
of the Riemann zeta function. (The one exception is the
long so-called elementary proof by Selberg [11] and Erdos
[41)

For Re s > 1 the zeta function is given by the Dirichlet
series

D. J. Newman

On Newman’s Quick Way to the Prime Number

f(s)=°1§—1;.

n

(1.2a)

By the unique representation of positive integers n as
products of prime powers, the series may be converted
to the Euler product (cf. [5])

1 1 1 1
§(3)=(1+;§+p?+”')(1+7+‘5 )

-m .

(1.2b
pl—p7° )

The above function element is analytic for Re s > 1 and
can be continued across the line Re s = 1 (Fig. 1). More
precisely, the difference

$6) -

can be continued analytically to the half-plane Re s > 0
(cf. § B.1in the box on p. 111) and in fact to all of €. The
essential property of ¢(s) in the proofs of the prime num-
ber theorem is its non-vanishing on the line Re s = 1

Res = 1

Res >1

NN

Figure 1




(cf. § B.2). [The zeta function has many zeros in the strip
0< Re s < 1. Riemann’s conjecture (1859) that they all

lie on the central line Res= 5 remains unproven to this
day.]

For about fifty years now, the standard proofs of the
prime number theorem have involved some form of
Wiener’s Tauberian theory for Fourier integrals, usually
the Ikehara-Wiener theorem of § 1.2 (see Wiener [14]
and cf. various books, for example Doetsch [2],
Chandrasekharan [1], Heins [6]). Thus the proof of the
prime number theorem has remained quite difficult
until the recent breakthrough by D. J. Newman [10].

In 1980, he succeeded in replacing the Wiener theory
in the proof by an ingenious application of complex inte-
gration theory, involving nothing more difficult than
Cauchy’s integral formula, together with suitable estim-
ates. We present Newman’s method in § 2 (applying it to
Laplace integrals instead of Dirichlet series). In this
method, the Ikehara-Wiener Tauberian theorem is replaced
by a poor man’s version which also readily leads to the
prime number theorem.

Excellent accounts of the history of the prime number
theorem and the zeta function may be found in the
books of Landau [9], Ingham [7], Titchmarsh [13] and
Edwards [3].

1.2. A Gem from Ingham’s Work

Newman’s method leads directly to the following pretty
theorem which is already contained in work of Ingham
[8]. However, Ingham used Wiener’s method to prove his
(more general) results.

Auxiliary Tauberian theorem. Let F(z) be bounded on
(0, =) and integrable over every finite subinterval, so that
the Laplace transform

| G(z) =°f; F(t)e *'dt (1.3)

is well-defined and analytic throughout the open half-plane
Re z > 0. Suppose that G(z) can be continued analytically
to a neighborhood of every point on the imaginary axis.
Then

}; F(t)dt exists (1.4)

as an improper integral [and is equal to G(0)].

Under the given hypothesis, the Laplace integral (1.3) will
converge everywhere on the imaginary axis. For the con-

109

clusion (1.4), it is actually sufficient that G(z) have a con-
tinuous extension to the closed half-plane Re z 2 0 which
is smooth at z = 0: see § 2.

At first glance, the above theorem looks quite different
from the

Tkehara-Wiener theorem [14]: Let f(x) be nonnegative
and nondecreasing on [ 1, e) and such that the Mellin
transform

80(9) =] 375 = 1) +5 ] flep™ e

exists for Re s > 1. Suppose that for some constant ¢, the
function

¢
go(s) — —
s 1

has a continuous extension to the closed half-plane
Re s 1. Then

f&)x—~c as

X > o,

This is an extremely useful theorem, but what could we
do with the auxiliary theorem in the same direction? We
will show that the latter has a corollary which is just as
good for the application that we want to make.

1.3. A Poor Man’s Ikehara-Wiener Theorem

We will establish the following

Corollary to the auxiliary theorem. Let f(x) be non-
negative, nondecreasing and 0(x) on [1, =), so that its
Mellin transform

#(s) =sf fE)xs Ldx (15)

is well-defined and analy tic throughout the half-plane
Re s > 1. Suppose that for some constant ¢, the function

g(s) - *S“‘fj'l“ (1.6)

can be continued analytically to a neighborhood of every
point on the line Res = 1. Then

(1.7)

X >,

f&x)x—>c as
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Derivation from the auxiliary theorem. Let f(x) and g(s)
satisfy the hypotheses of the corollary. We setx = e’ and
define

e.—tf(et) —Cc= F(t):

so that F(¢) is bounded on (0, «). Its Laplace transform
will be

Ge) =1 {ef(e) — e} e~¥dt
0

= F fep2ax - £=
1 z

C
+1)—=—c}.
gz+1) Z ¢

R
z+1

Thus by the hypothesis of the corollary, G(z) can be con-
tinued analytically to a neighborhood of every point on
the imaginary axis. We may now apply the auxiliary
theorem from § 1.2.

What does its conclusion tell us? Setting # = log x we
find that the improper integrals

}; (et e") — c} dr =°f: ﬁﬂx‘T"_’idx (1.8)

exist. Using the fact that f(x) is an increasing function,
one readily derives that f(x) ~ cx in the sense of (1.7).

Indeed, suppose for a moment that lim sup f(x)/x >¢
(= 0). Then there would be a positive constant § such that
for certain arbitrarily large numbers y

FO)> (¢ +28)y.
IF would follow .that .

f(x)>(c+2§)y>(c-+6)x for y<x<py -

where p.=(c+28)/(c+8). But then

Py -

f Md >f dx =5 logp
x?

Yy o

for those same numbers y, contradicting the existence of
(1.8).

One similarly disposes of the contingency lim inf
J(x)/x < c (in this case ¢ would have to be positive and
one would consider intervals fy <x <y with § < 1
where f(x) < (c — 8)x). Thus f(x)/x > c.

14. Corollary‘ = Prime Number Theorem

This step is routine to number theorists. One takes
f(x) = Y(x), where y(x) is that well-known function from

prime number theory,

yix)= 2 logp (1.9)

PP <x

(the summation is over all prime powers not exceeding x).
It is a simple fact (first noticed by Chebyshev) that
m(x) = 0(x/log x) or equivalently, Y(x) = 0(x) (cf. § B.4
in the box for more details). Thus f(x) is as the corollary
wants it.

What about its Mellin transform g(s)? A standard
calculation based on the Euler product in (1.2) shows that

. §®
g(s)—-——g-_—(gj, Res>1

(cf. § B.3). Since {(s) behaves like 1/(s — 1) around s = 1
the same is true for g(s). The analyticity of {(s) at the
points of the line Re s = 1 (different from s = 1) and its
non-vanishing there imply that g(s) can be continued
analytically to a neighborhood of every one of those
points (cf. §§ B.1, B.2). Thus

>

&(s) - s—}_—l

has an analytic continuation to a neighborhood of the
closed half-plane Re s = 1.
The conclusion of the corollary now tells us that

Yx)/x—>1 as

- 0O
x k4

and thlS is equivalent to the prime number theorem (1.1
(cf. § B4).

2. Newman’s Beautiful Method

2.1. Proof of the Auxiliary. Tauberian Theorem

Let F(¢) be bounded on (0, %) and such that its Laplace

transform G(z) can be continued to a function (still

called G(z)) which is analytic in a neighborhood of the

closed half-plane Re z > 0. We may and will assume that
[F(HI<1, t>o0.

For 0 <\ < oo we write
A :
Ga(2) = [ F(t)e™*'dt. Q.0
o
Observe that G, (z) is analytic for all z. We will show that

A =00,

A
Gr0)=f F@)dt+G(0) as
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Some details left out in 1.4
We begin with the necessary facts about the zeta function,

B.1. Analytic continuation of ¢(s). Simple transformations show that for Re s > 2

on wn-1_g¢n § n 20 1 ©  nt1 w ot
(=2 — -2 =0 = -2 =2 n|t - 1= s Sl gy o el
1 a5 1A’ 125 1+ + |n¢ @m+DS) 1 { ¥ dx 5’% ,f; ]x™ " gy =

7 —~s—1
«s{[x]x s—gx, (B.1)

where [x ] denotes the largest integer < x. Since first and final member are analytic for Re s > 1, the integral formula holds throughout that
half-plane. i
1t is reasonable fo compare the integral with

T xS gy = S =14 1 :
s{xx x P P {B.2)

Combination of (B.1) and (B.2) gives
1 oo
f) - — =1 +5 [ ((x] - x)x ™S ldx. (B.3)
- 1

The new integral conveiges and represents an analytic function throughout the half-plane Re s > 0. Thus (B.3) provides an analytic con-
tinuation of the left-hand side to that half-plane.

B.2. Non-vanishing of ¢(s) for Re s > 1. The Euler product in (1.2) shows that £(s) # 0 for Re s > 1. For Re ¢ = 1 we will use Mertens’s
clever proof of 1898. The key fact is the inequality

344 cos0 +cos28=2(1+cos0)?>0, 6real (B.4)
Suppose that ¢(1 + ib) would be equal to 0, where b is real and # 0. Then the auxiliary analytic function
0() = £3() ¢ (s + ib) (s + 2ib)
would have a zero for s = 1: the pole of ¢3(s) could not cancel the zero of ¢}s + ib). It would follow that
log lp(s)|—~> — o as s-1. (B.5)

We now take s real and > 1. By the Euler product,
log |¢(s + if)] = — Re Zlog (1 — p i) =Re Tpmsit+ %— @HsTits %(p3)“s"it+ ...}1=Re ? a5 with a, » 0.
p 14
Thus

log lp(s)i = Re X ayn—5(3 +4n~0 + n—2by =3 g,n5{3 + 4 cos (b log n) + cos (2b log m}t=0
1 1

because of (B.4), contradicting (B.5).

B.3. Representations for ¢'(5)/¢(s). Logarithmic differentiation of the Euler product in (1.2) gives

(B.6)

O,y p*

logp = 2(}7““ + p——ZS +,..)logp = EA(n)n_Sa
§‘(S) D 1 w..p_'s P 1

where A(n) is the von Mangoldt function,
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logp if n=p™,
An) = )
0  if nis not a prime power.

The corresponding partial sum function is equal to ¥ (x):

poy= T logp= X A(). (B.7)
pM<x < x

Proceeding as in (B.1), the series (B.6) leads to the integral representation

5 =s[y0e)x S~ Ydx, Res> 1. (B.8)
£(s) 1

The integral converges and is analytic for Re s > 1 since by (B.7), ¢ (x) <x log x.
B.4. Relation betweern Y (x) and =(x). By (B.7), y (x) counts log p (for fixed p) as many times as there are powers p™ < x, hence

vy= 2 [li’g—"} logp<logx X 1=n(x)logx. (B.9)
log p

ps<x P<X

On the other hand, when 1 <y <x,

r=a0)+ T 1<a()+ D 18P oy, V&)
y<p<x y<p<x logy log y

Taking y = x/log? x one thus finds that

logx< 1 +\U(x) log x

x e
() x logx x logx —2loglogx B.10)
Combination of (B.9) and (B.10) shows that

. log x . Yx)
Ii x) —=1 ifand if lm-—=

m nw(x) " ifand only if lim o 1. (B.11)
We finally indicate a standard proof of the estimate
¥ (x) = 0(x). (B.12)

For positive integral n, the binomial coefficient ( )i must be divisible by all primes pon (n 2”] Hence
2 H .

I p< <22n
n<p<2n n
s0 that
> log p < 2% log 2.
2k—lepak

It follows that

z . logp< 2K +2k=1+ . +1)log2<2Ftleg2
p<2

and hence there is a constant € such that

z log p < Cx.
P<X

Since the prime powers higher than the first contribute at most a term 00x1/2*¢) to y (x), inequality (B 12) follows
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Second idea. Observe the similarity between the bounds
obtained in (2.3) and (2.4)! It will be fzdvanftageous to
multiply G(z) and Gp(z) in (2.2) by e"*. This will not
affect the left-hand side, but in estimating on W, the
exponential e (large on W_) will disappear from (2.3)
and (2.4).

Third idea. Could we also get rid of the troublesome factor
1/|x| in the estimates which is bad near the imaginary
axis? Yes, this can be done by adding the term z/R? to

1/z in (2.2), again without affecting the left-hand side.
(For the experts: this trick is used also in Carleman’s
formula for the zeros of an analytic function in a half-
plane, cf. [12].) The resulting modified formula is

60)-~6xO) =5 [ (GG =G} e“(§+ gi)dZ'

2.5)
Let us start harvesting. On the circle [z[=R,
1eZ o 2_’; (2.6)
Figure 2 z R* R

Thus on W, the integrand I(z) in (2.5) may be estimated

as follows (see (2.3)):
First idea. We try to estimate G(0) — G3(0) with the aid of
Cauchy’s formula. Thus we look for a suitable path of )| < 1 ae e 2X 2
integration W around 0. The simplest choice would be a X R* R?
circle, but we can not go too far into the left half-plane
because we know nothing about G(z) there. So for given The corresponding integral is harmless:
R >0, the positively oriented path W will consist of an
arc of the circle | z| =R and a segment of the vertical l 1 2 1
line Re z = —§ (Fig. 2). Here the number 8 =86(R)>0 IEE Wf+ [)dz1 < 2 R? R = ﬁ! @

is chosen so small that G(z) is analytic on and inside W.
We denote the part of W in Re z > 0 by W., the part
in Re z <0 by W_. By Cauchy’s formula,

Fourth idea. We now turn to the part of (2.5) due to W_.
Since G (z) is analytic for all z, we may replace the integral

I i over W_ involving G5 (z) by the corresponding integra’ over
G(0) — G, (0)= 5 V{ {G(z) — GA(2)} 2 dz. (22) | the semi-circle

wt : {|z|=R}N{Rez<<O
We have the following simple estimates: { }

(Fig. 3). Cauchy’s theorem and inequality (2.4) readily give

forx=Rez >0, |

1 ‘

l=— [ Gx(Z)e“(—+iz— dzl=|—1~ f ...dz|<l.

o0 oo . 1 2mi W z R 2l w* R

1G@) ~ GA@) =1 [ Ft)e ™ dr| <[ e dt=_e™; -
A A

(2.8)
(2.3)
forx=Rez<0, We finally tackle the remaining integral
IG (z)l=|}Ft —2tg <f g Lo (24) L 6@ LA P 29
A o ()e tl\‘{;e t me . B i W z _R2 . -
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Figure 3

By the analyticity of G(z) on W_ there will be a constant
B = B(R, §) such that

<B on W_.

IG()( %

It follows that
1, z
G@)e™ | =+ = || <BeM.
1G@)e (Z R2)|

Hence on the part of W_ where x < — §; <0, the integrand
in (2.9) tends to zero uniformly as A - 0. On the remaining
small part of W_ (we take § ; <8 small), the integrand is
bounded by B. Thus for fixed W, the integral in (2.9) tends
to zero as A > o,

Conclusion. For given € > 0 one may choose R = 1/e. One
next chooses & so small that G(z) is analytic on and inside
W. One finally determines Ay so large that (2.9) is bounded
by € for all A > ¥y. Then by (2.5) and (2.7)—(2.9),

IG(0) — GA(0)| <3¢ for A> N,

In other words, G) (0) = G(0) as A~ oo,

Figure 4

2.2. Relaxing the Conditions on G(z)

In the above proof, it is not really necessary to take G(z)
into the left half-plane. By modifying F(f) on some finite
interval one may assume that G(0) = 0. Then G(z)/z will
be analytic for Re z 2 0 and thus
( + ——) dz,
R?

where S is the segment [iR, —iR] of the imaginary axis
(Fig. 4). For G (0) we integrate over the circle [z| =R
Subtracting, one obtains

1 [ G@E)eM

G0)=0=—
T WU S

60) - GO =1 f (66~ Gye ( *i{)d

—IiR
+ LT Gy dz—— 1, G)-.
2m iR

(2.10)

The first and third integral are just as before. To deal with
the second integral one may apply integration by parts or
the Riemann-Lebesgue lemma.

In order to arrive at (2.10), we have not used any
analyticity of G(z) at points of the imaginary axis. It
would be more than enough to know that G(z)/z can
be extended continuously to Re z > 0. The Riemann-
Lebesgue lemma will then handle the second integral.
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Conclusion. In the auxiliary Tauberian theorem, it is
sufficient to require that {G(z) — G(0)}/z can be extended
continuously to the closed half-plane Re z = 0.
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