Complex Analysis

May 13, 1961

- 1. Map the region between the lines x-y=1, x-y=2 conformally onto the upper half-plane, Im $\zeta \ge 0$.
- 2. Find a region in the z-plane in which the function e^{z^2} assumes every value (except zero) exactly once.
- 3. Determine how many linearly independent homogeneous polynomials $P_n(x,y)$ of degree n in two real variables x and y exist such that $\frac{\partial^2 P_n}{\partial x^2} + \frac{\partial^2 P_n}{\partial y^2} = -0$.
- 4. Assuming that the values of $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ is known, compute

$$\int_0^\infty \cos(x^2) \, dx \quad \text{and} \quad \int_0^\infty \sin(x^2) \, dx$$

by looking at these as integrals in the complex plane. Sketch briefly the necessary convergence arguments.

- 5. Find the three power or Laurent series expansions for $\frac{1}{z^2-1}$ such that every point except $z=\pm 1$ is a point of absolute convergence of one of these series.
- 6. Let $f(z) = \frac{z}{e^z 1} = \sum_{n=0}^{\infty} b_n z^n$ be the power series expansion of f(z) in a neighborhood of z = 0. Find $\limsup_{n \to \infty} |b_n|^{1/n}$ and show that $b_{2n+1} = 0$ for $n = 1, 2, 3, \ldots$

Complex Analysis

March 12, 1962

- 1. Find a function w = f(z) mapping the sector $|\arg z| < \alpha < \pi$ conformally onto the unit disk $\{|w| < 1\}$. Describe the behavior of f(z) near z = 0.
- 2. Evaluate the following integrals

a).
$$\oint_{|z|=3} \frac{\sin(z+1)}{z(z+1)} dz$$
, b). $\oint_{|z|=3} \frac{z(z+1)}{\sin(z+1)} dz$, c). $\oint_{|z|=3} z^{2} e^{1/z} dz$.

where the integration is taken counterclockwise.

3. Let $\sum_{n=0}^{\infty} a_n z^n$, $\sum_{n=0}^{\infty} b_n z^n$ have radii of convergence r_a and r_b , respectively. What can be said about the radius of convergence of

a).
$$\sum_{n=0}^{\infty} (a_n + b_n) z^n \quad \text{and} \quad b). \sum_{n=0}^{\infty} a_n b_n z^n ?$$

- 4. Let $\phi(t)$ be a continuous function of t for $0 \le t \le 1$ and let $f(z) := \int_0^1 \frac{z \phi(t)}{t z^2} dt$.
 - a) For which values of z does f(z) represent an analytic function?
 - b) Find the Laurent expansion at infinity.
- 5. Let $f(z) := z + \sum_{n=2}^{\infty} a_n z^n$ have a positive radius of convergence.
 - a) Does there exist a series $g(w) = w + \sum_{n=2}^{\infty} b_n w^n$ satisfying

$$f(g(w)) = w$$
?

- b) Is the series g(w) uniquely determined? Does it have a positive radius of convergence? Why?
- 6. How many roots does the equation $\frac{1}{2}e^z + z^4 + 1 = 0$ possess in the left half-plane Re z < 0? Justify your assertion.

1. a) Find the harmonic function which equals $\overline{z}^5 z^2 + z^3 \overline{z}^2$ on |z| = 1.

Complex Variables

- b) Find the harmonic function which equals $4x^3 y^2$ on |z| = 1.
- 2. Let f(z) be analytic and bounded in the upper half plane and continuous in its closure. Suppose that $|f| \le 1$ on the real axis. Prove |f| < 1 everywhere.
- 3. Assume that $f_n(z)$ is a sequence of analytic functions in $|z| \leq 1$ converging uniformly to $f(z) \neq 0$. If f(0) = 0 and if w is sufficiently close to zero prove that there are positive numbers δ , N such that for all n > N the equation $f_n(z) = w$ has at least one root in $|z| \leq \delta$.
- 4. Let $f(z) \not\equiv 0$ be meromorphic in $|z| \leq 1$ and let a_1, \ldots, a_n , be its zeros in $|z| \le 1$ and b_1, \ldots, b_m its poles in $|z| \le 1$. If $f(0) \ne 0, \infty$ prove that

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log |f(e^{i\theta})| d\theta = \log |f(0)| + \sum_{j=1}^{n} \log \frac{1}{|a_{j}|} - \sum_{k=1}^{m} \log \frac{1}{|b_{k}|}.$$

Hint: Use Blaschke product.

5. Evaluate the Fourier transform of $u(x) = \frac{x}{(1+x^2)^2}$, i.e.

$$\hat{\mathbf{u}}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\mathbf{x} \, e^{-\mathbf{i}\mathbf{x}\xi}}{(1+\mathbf{x}^2)^2} \, \mathrm{d}\mathbf{x} \quad \text{for all } \xi.$$

6. Let p be a polynomial of the form

$$p(z) = z^{n} + a_{n-1}z^{n-1} + ... + a_{0}$$

and let f(z) be analytic for $|z| \le 1$. Prove that

$$|f(0)| \le \max_{|z|=1} |f(z)p(z)|$$
.

Hint: Consider $\frac{f(z)p(z)}{B(z)}$ where B(z) is the Blaschke product corresponding to the roots of p in |z| < 1.

- 1. Represent all complex values of $(-1)^i$, and $(1+i)^{2/3}$ in the form a+bi.
- 2. a) For each condition below give an example of a function analytic in $\{0 < |z| < 1\}$ which (i) has a simple pole at z = 0 and vanishes at z = 1/2.
 - (ii) has an essential singularity at z = 0 and a pole of order 2 at z = 1.
 - b) Map the unit circle conformally onto the half-strip $\{\text{Re } w > 0\}, \{|\text{Im } w| < \pi\}.$
- 3. Evaluate the following integrals justifying your answers.

a)
$$\oint \frac{e^{z^2} - e^z}{e^{2z} - 1} dx$$
 on $|z| = 1$.

b)
$$\oint \frac{e^{z^2} - e^z}{e^{2z} - 1} dx$$
 on $|z| = 15$.

c)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2+1)} dx$$

- 4. F is analytic in |z| < 10 and Im $F = \sin \theta$ on |z| = 1. Find F in |z| < 10. Justify your answer.
- 5. Where does the series $\sum_{n=1}^{\infty} \frac{z^n}{n(n+1)}$ converge? Why? Express it in terms of elementary func-
- 6. Prove that there is no function analytic in $|z| \le 1$ such that

$$|f(z)| < 1$$
 on $|z| = 1$, $f(\frac{1}{2}) = 0$, and $f(-\frac{1}{2}) = \frac{19}{20}$

(16

Math. 213a. Due October 25, 1965

1. Determine the constants A and B so that the function

$$\frac{1}{z^2} + \frac{A}{(z-1)^2} + \frac{B}{z(z-1)}$$

has a zero of highest possible order at ...

2. Develop

$$\frac{1}{z(z+1)^2(z+2)^3}$$

in partial fractions.

3. Give a complete proof showing that the reduced form

$$R(z) = \frac{F(z)}{C(z)}$$

of a rational function is unique except for a common constant factor in P and Q. (In other words, if $\Gamma/Q = P_1/Q_1$ and both fractions are reduced, show that $P_1 = cP$, $Q_1 = cQ$ with some constant c).

4. Show first that

$$P(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{a_n + \overline{a}_{n-1} z + \dots + \overline{a}_0 z^n}$$

satisfies |R(z)| = 1 on the unit circle |z| = 1. Next prove that the most general rational function with that property has the above form except for a factor $|c|^m$ with |c| = 1. (Hint: Rember that |z| = 1 gives |z| = 1/z).

5. If $\lim_{n\to\infty} z_n = A$, prove that

$$\lim_{n\to\infty}\frac{1}{n}(z_1+\cdots+z_n)=A_{\epsilon}$$

(Suggestion: Why may one as well assume that A = 0?)

Math. 213a Due October 25, 1965

Page 2

6. Find the radius of convergence of

$$\sum n^p z^n$$
, $\sum \frac{z^n}{n!}$, $\sum n! z^n$, $\sum z^{n!}$

7. If
$$f(z) = \sum_{n=1}^{\infty} a_n z^n$$
, what is $\sum_{n=1}^{\infty} a_n z^n$?

Math, 213a

Homework.

Due Nov. 1, 1965

- 1. Find e^z for $z = -\frac{\pi'i}{2}$, $\frac{3}{4}$ $\pi_i i_3$, $\frac{2}{3}$ $\pi_i i$.
- 2. For what values of z is e^z equal to 2, -1, i, -i/2, -1 + 2i?
- 3. Find the real and imaginary parts of exp (e²).
- 4, Determine all values of 2ⁱ, iⁱ, (-1).²i
- 5. Show that $|\cos z|^2 = \frac{1}{2}$ (cosh 2y + cos 2x) and find a corresponding expression for $|\sin z|^2$.
- 6. Express arc tan w in terms of the logarithm.
- Give a definition of the "angles" in a triangle, and prove that the sum of the angles is π.

Math. 213a

Hour-examination

Dec. 5, 1965

- 1. Expand $\frac{z+1}{z^2(z-1)}$ in partial fractions.
- 2. What are the values of $(1+i)^{\frac{1}{2}}$?
- For what values of z is $\sum_{n=0}^{\infty} n \left(\frac{1-z}{1+z}\right)^n$

convergent, and what is the sum?

- Prove that a continuous function from one metric space to another maps connected sets on connected sets.
- 5. Find the image of the region |1|<|z+1|<2 under the mapping $w=\frac{z^2}{z+1}$. Is the mapping one to one?
- 6. The circle |z-1| = 1 is mapped by $w = \frac{z+i}{2z-1}$. Where is the center of the image circle?
- 7. What is the value of

$$\int_{\gamma} |z|^2 dz$$

where y is the clock-wise boundary of the first quadrant of |z| < 1.

8. In the following integrals C is the circle |z| = 2 in the positive sense. Find

a)
$$\int_C \frac{zdz}{z-1}$$
, b) $\int_C \frac{dz}{z^2-1}$, c) $\int_C \frac{e^zdz}{(z-1)^2}$.

9. What is

$$f(z) = \frac{1}{2\pi i} \int_C \frac{\varphi(\zeta) d\zeta}{\zeta - z}$$

if C is the unit circle (positive sense) and $\varphi(r) = r + r^{-1}$. (Different answers for |z| < 1 and |z| > 1).