JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 2 - FEBRUARY 200;

The Biot—-Savart operator for application to knot theory,
fluid dynamics, and plasma physics

Jason Cantarella®
Department of Mathematics, University of Georgia, Athens, Georgia 30605

Dennis DeTurck® and Herman Gluck®
Department of Mathematics, David Rittenhouse Laboratory, University of Pennsvlvania,
Philadelphia, Pennsylvania 19104-6395

(Received 27 May 1999; accepted for publication 19 September 2000)

The writhing number of a curve in 3-space is the standard measure of the extent to
which the curve wraps and coils around itself; it has proved its importance for
molecular biologists in the study of knotted DNA and of the enzymes which affect
it. The helicity of a vector field defined on a domain in 3-space is the standard
measure of the extent to which the field lines wrap and coil around one another; it
plays important roles in fluid dynamics and plasma physics. The Biot—Savart op-
erator associates with each current distribution on a given domain the restriction of
its magnetic field to that domain. When the domain is simply connected, the
divergence-free fields which are tangent to the boundary and which minimize en-
ergy for given helicity provide models for stable force-free magnetic fields in space
and laboratory plasmas; these fields appear mathematically as the extreme eigen-
fields for an appropriate modification of the Biot—Savart operator. Information
about these fields can be converted into bounds on the writhing number of a given
piece of DNA. The purpose of this paper is to reveal new properties of the Biot—
Savart operator which are useful in these applications. © 2001 American Institute
of Physics. [DOL: 10.1063/1.1329659]

I. INTRODUCTION

Let () be a compact domain with smooth boundary in 3-space, and let VF({2) be the space of
smooth vector fields on Q with the L? inner product (V,W)=[qV-Wd(vol). By ‘‘smooth,”
equivalently C*, we mean that derivatives of all orders exist and are continuous.

If we think of the smooth vector field V on () as a distribution of electric current, then the
Biot—Savart formula

BS(V)(y) = (1/4m) fQV(x>><<y—x)/|y—xP d(vol,)

gives the resulting magnetic field BS(V) throughout 3-space. If we restrict this magnetic field to
the domain (), then we get the Biot—Savart operator,

BS:VE(Q)— VF(Q).

Theorem A: The equation VXBS(V)=V holds in Q if and only if V is divergence-free and
tangent to the boundary of ().
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It is well known that curl is a left inverse to the Biot—Savart operator when the input field V
is divergence-free and tangent to the boundary. The new information is that this result holds in no
other cases. The impact of this is that eigenvalue problems for the Biot—Savart operator, which are
central to the study of helicity, cannot in general be converted to eigenvalue problems for curl
(that is, to a system of partial differential equations).

Theorem B: The kernel of the Biot—Savart operator is precisely the space of gradient vector
fields which are orthogonal to the boundary of §).

Actually, somewhat more is true. If V is a smooth gradient vector field defined on () and
orthogonal to its boundary, then its magnetic field BS(V)=0 throughout 3-space. Conversely, if V
is a smooth vector field defined on {) whose magnetic field BS(V)=0 in (2, then V is a gradient
field orthogonal to the boundary of (), and hence BS(V)=0 throughout 3-space.

Theorem C: The image of the Biot—Savart operator is a proper subspace of the image of
curl, whose orthogonal projection into the subspace of *fluxless knots’’ is one-to-one.

Vector fields on the domain ) which are divergence-free and tangent to its boundary are
called fluid knots; we explain this terminology in Sec. IV. Fluxless knots are fluid knots with zero
flux through every cross-sectional surface (3.,9%) C (£2,dQ2). The above theorems lead to several
interesting examples of ‘‘impossible’’ magnetic fields. Nevertheless, Theorem C falls short of
giving a precise characterization of the image of the Biot—Savart operator, and hence of those
fields in a domain ) which are magnetic fields of current distributions within ().

Theorem D: The Biot-Savart operator is a bounded operator, and hence extends to a
bounded operator on the L? completion of its domain, where it is both compact and self-adjoint.

The eigenfields of this operator which correspond to its extreme eigenvalues turn out to be the
vector fields in {) with minimum energy for given helicity. If we start with a vector field V which
is divergence-free and tangent to the boundary of its domain (), that is, a fluid knot, then its
magnetic field BS(V), though divergence-free, will in general not be tangent to the boundary of
Q. In such a case, we simply modify the Biot-Savart operator BS by following it by orthogonal
projection back to the subspace of fluid knots. The eigenfields of this modified Biot—Savart
operator which correspond to its extreme eigenvalues are then the fluid knots in {) with minimum

energy for given helicity. When the domain () is simply connected, these energy-minimizers
model the stable plasma fields in ().

il. PRELIMINARIES
A. Writhing, helicity, and the Biot—-Savart operator

The writhing number Wr(K) of a smooth curve K in 3-space, defined by the formula
Wr(K)=(1/47r)f (dx/dsXdyldt)-(x—y)/|x—y]® ds dt, 2.1)
KXK

was introduced by Cilugireanu'™ in 1959-1961 and named by Fuller* in 1971, and is the
standard measure of the extent to which the curve wraps and coils around itself.

The helicity H(V) of a smooth vector field V on the domain () in 3-space, defined by the
formula

H(V)=(1/47f)fn QV(x)><V(y)-(x—y)/lx—y|3 d(vol,) d(vol,), 22)

was introduced by Woltjer’ in 1958 and named by Moffatt® in 1969. and is the standard measure
of the extent to which the field lines wrap and coil around one another.
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Clearly, helicity for vector fieids is the analogue of writhing number for knots.
The helicity of V is closely related to its image under the Biot—Savart operator,

H(V)=(1/4W)fn QV(X) XV(y)-(x=y)|x=y> d(vol,) d(vol,)
=f V(y){(l/47r)f V(x) X(y—x)/ly—x]> d(vol,)|d(vol,)
QO Q
=an(Y)'BS(V)(Y) d(vol,)

= fQV-BS(V) d(vol),

so the helicity of V is just the L? inner product of V and BS(V),
H(V)=(V,BS(V)). (2.3)
It is because of this formula that the Biot—Savart operator,
BS:VF(})— VF({}), (2.4)

plays such a prominent role in the study of writhing of knots and helicity of vector fields.

B. Applications: A quick guide to the literature

For a glance at the prehistory of the writhing number, see Gauss’s half-page note’ (1833) on
an integral formula for the linking number of two disjoint closed curves in 3-space. Rewrite his
expression in modern notation and let the two curves coincide and you will have the formula for
the writhing number.

The writhing number has proved its importance for molecular biologists in the study of
knotted duplex DNA and of the enzymes which affect it; see White,® Fuller,” Bauer, Crick, and
White,'® Wang,!! Sumners,'?>"'* and Cantarella, Kusner, and Sullivan.'?

For an overview of the connection between knot theory and electrodynamics, see
Lomonaco. 6 :

Woltjer’s formula for the helicity of a vector field arose from his interest in force-free mag-
netic fields. These are magnetic fields which are everywhere parallel to the current flows which
give rise to them, so that the Lorentz force on the flowing charged particles is zero. Because the
gross magnetic field in the Crab Nebula appeared to be steady over a number of years, Woltjer
believed it to be force-free, and studied"’ it in great detail. Two early papers on force-free mag-
netic fields are Lundquist'® and Chandrasekhar~Kendall.'” Two more recent papers are Laurence
and Avellaneda® and Tsuji.>! Marsh’s book? has an extensive and up-to-date bibliography on this
subject.

For a study of the connection between writhing and helicity, see Berger and Field” and
Moffatt and Ricca.?*?

For the connection between helicity and the ordinary and asymptotic Hopf invariants, see
Whitehead?® and Arnold.?

For an introduction to the spectral theory of the Biot—Savart operator and its use in determin-
ing upper bounds for writhing and helicity, see Ref. 28. For explicit computation of extreme
eigenfields, see Refs. 29 and 30. For an analysis of isoperimetric problems connected with the
Biot—Savart operator, see Ref. 31. For application to the qualitative study of stable plasma flows,
see Cantarella.’” For an overview of our work, see our survey paper.*?

For further information on related spectral problems for the curl operator, see Yoshida and
Giga.3* ’ :

—a
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For the connection between this spectral theory and plasma physics, see Yoshida.®

For a study of magnetic field generation in electrically conducting fluids, see the book by
Moffatt. 36

For connections with dynamo theory, see the survey article by Childress.”’

For many papers on the connections with the dynamics of fluids and plasmas, see the books
by Moffatt and Tsinober>® and by Moffatt, Zaslavsky, Comte, and Tabor.”

For the connections between force-free fields, contact topology and fluid dynamics, see Etnyre
and Ghrist.*°

C. The Hodge decomposition theorem

In this section we present the Hodge Decomposition Theorem for vector fields on bounded
domains in R3, which we will use throughout the paper. Although we state it below for the space
VF(Q) of smooth vector fields on {) with the usual L? inner product, it holds just as well for the
L? completions of VF({}) and of the various subspaces described below.

The papers of Weyl*! and Friedrichs,* the notes of Blank, Friedrichs, and Grad,*”® and the
book of Schwarz** are all good references; an exposition of this theorem in the form given below
appears in Ref. 45.

Hodge Decomposition Theorem: We have a direct sum decomposition of VF(Q)) into five
mutually orthogonal subspaces,

VF(Q)=FK ® HK & CG @ HG & GG,

with
kgr curl= HK & CG @ HG & GG,
image grad= CG @ HG & GG,
image curl=FK & HK & CG,
| ker div=FK & HK & CG @ HG,
where

FK= Fluxless Knots={V-V=0, V-n=0, all interior fluxes= 0},
HK=Harmonic Knots={V-V=0,VXV=0, Vn =0},
CG=Curly Gradients={V=V¢, V-V=0, all boundary fluxes=0},
HG=Harmonic Gradients={V=V ¢, V-V=0, ¢ locally constant on 9},
GG=Grounded Gradients={V=V ¢, ¢|;n=0},
and furthermore,
HK=H,(Q;R)=H,(£),00;R)=Re"s °f o2,
HG=H,(Q;R)=H,(Q,J(2:R)=R¥ components of 300)~(# components of Q)
We need to explain the meanings of the conditions which appear in the statement of this

theorem.

The outward pointing unit vector field orthogonal to d1 is denoted by n, so the condition
V-n=0 indicates that the vector field V is tangent to the boundary of {2.
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Let 3 stand generically for any smooth surface in { with 92 C 9Q). Earlier, when commenting
on the statement of Theorem C, we indicated this by writing (2.9%)C (£),0Q). Now, orient 5 by
picking one of its two unit normal vector fields n. Then. for any vector field V on (), we can define
the flux of V through 2 to be the value of the integral ®=[<V-n d(area).

Assume that V is divergence-free and tangent to &{). Then the value of this flux depends only
on the homology class of . in the relative homology group H,(Q,3€Q;Z). For example, if Q is an
n-holed solid torus, then there are disjoint oriented cross-sectional disks 3 ,...,2,,, positioned so
that cutting () along these disks will produce a simply-connected region. The fluxes ®, veons @, Of
V through these disks determine the flux of V through any other cross-sectional surface.

If the flux of V through every smooth surface X in Q with §2 CJQ vanishes, we say *‘g/I
interior fluxes=0."’ Then,

FK={Ve VF(Q):V-V=0, V-n=0, all interior fluxes=0} (2.5)

will be the subspace of fluxless knots, already mentioned when explaining the statement of Theo-
rem C.

The subspace,
HK={Ve VF(Q):V-V=0,VXV=0, V-n=0} (2.6)

of harmonic knots is isomorphic to the absolute homology group H,();R) and also, via Poincaré

duality, to the relative homology group H,({),dQ;R), and is thus a finite-dimensional vector
space, with dimension equal to the genus of ).

The orthogonal direct sum of these two subspaces,
K(2)=FK&HK 2.7

is the subspace of VF(QQ) consisting of all divergence-free vector fields defined on Q and tangent
to its boundary. These are the vector fields that represent current flows in the standard versions of
the laws of Magnetostatics.

We called these vector fields fluid knots in the Introduction, and pause to explain this termi-
nology. Given a knot in 3-space, we can choose a thin tubular neighborhood of the knot to be our
domain (), and then choose a divergence-free vector field V in (), for example orthogonal to the
cross-sectional disks and hence tangent to the boundary. In this way, questions about the geometry
of the knot can sometimes profitably be reformulated as questions about the vector field V, our

“fluid knot.”” We did exactly this in our paper” when deriving an upper bound for the writhing
number of a knot of given length and thickness.

If V is a vector field defined on 2, we will say that all boundary fluxes of V are zero if the flux
of V through each component of ) is zero. Then,

CG={Ve VF(Q1):V=V¢, V-V=0, all boundary fluxes=0} , 2.8)

will be called the subspace of curly gradients because these are the only gradients which lie in the
image of curl.

Next we define the subspace of harmonic gradients,
HG={Ve VF(Q):V=Vg, V.V=0, ¢ locally constant on 9}, 2.9)

meaning that ¢ is constant on each component of 3. This subspace is isomorphic to the absolute
homology group H,({};R) and also, via Poincaré duality, to the relative homology group
H,(£2,0Q;R), and is hence a finite-dimensional vector space, with dimension equal to the number
of components of &) minus the number of components of Q.

The definition of the subspace of grounded gradients,

GG={Ve VF(Q):V=Vo, ¢|;0=0}, (2.10)

is self-explanatory.
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A vector field V belongs to the subspace HG @ GG of VF({Q) if and only if it is the gradient
of a smooth function ¢ on ) which is constant on each component of &2, or equivalently, is a
gradient vector field which is orthogonal to 6€). Theorem B asserts that these vector fields form the
kernel of the Biot—Savart operator.

The five orthogonal direct summands of VF({2) can be characterized as follows:

FK=(ker curl)!,

HK=(ker curl) N(image grad)*,
CG=(image grad) N(image curl),
HG= (ker div) N(image curl)',
GG=(ker div)*.

These characterizations bear witness to the geometric and analytic significance of the summands.
We end this section with examples of vector fields from each of the five summands.

1. FK=fluxless knots
Let €) be a round ball of radius 1, centered at the origin in 3-space. Consider the vector field

V=—yi+xj.

This is the velocity field for rotation of 3-space about the z-axis at constant angular speed. It is
divergence-free and tangent to the boundary of the ball (), and hence belongs to the subspace FK
of fluxless knots, because there are no harmonic knots on a ball.

2. HK=harmonic knots
Let € be a solid torus of revolution about the z-axis. Using cylindrical coordinates (r,¢,z),
consider the vector field

V=(1/r)¢,

which is the magnetic field due to a steady current running up the z-axis. It is divergence-free and
curl-free and tangent to the boundary of the solid torus {2, and hence belongs to the subspace HK
of harmonic knots.

3. CG=curly gradients

Let ) be a round ball of radius 1, centered at the origin. Consider the harmonic function z, and
the gradient field

V=Vz=k.

This vector field is divergence-free and has zero flux through the one and only component of 4},
hence it belongs to the subspace CG of curly gradients.

4. HG=harmonic gradients

Let () be the region between two concentric round spheres, say of radius 1 and 2, centered at
the origin. Using spherical coordinates (r.6,¢), consider the harmonic function 1/r, and its
gradient vector field

V=V (1/r)=(—Ur*)#,
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just the inverse square central field. Since the harmonic function 1/r is constant on each compo-
nent of J(1. the vector field V belongs to the subspace HG of harmonic gradients. We may think
of V as the electric field between two concentric spheres held at different potentials.

5. GG=grounded gradients

Let () be a round ball of radius 1. centered at the origin. Consider the function given by
r*—1=x>+y?+2z>~1. and the vector field

V=V(ri-1)=2xi+2vj+2zk.

Since the function r*— 1 has constant value zero on the boundary of Q, the vector field V belongs
to the subspace GG of grounded gradients. We may view V as an electric field with interior
-charges inside a conducting boundary.

lll. STANDARD INFORMATION ABOUT THE BIOT-SAVART OPERATOR
A. The basic facts

Given a smooth vector field V on Q. the vector potential A(V) for BS(V) is defined by the
formula,

A(V)(y)=(1/4w)an(x)/|y-x| d(vol,). 3.1)

Here is the classically known information about the Biot—Savart operator and its vector
potential. Note that some of the assertions below hold for any vector field VeVF({)), while others
need the more restrictive assumption that V is divergence-free and tangent to the boundary of Q,
in other words, that V lies in the subspace K(Q) of fluid knots.

Standard Information: Let Q) be a compact domain in 3-space with smooth boundarv .
Let V be a smooth vector field defined on ). Then

(1) BS(V) and A(V) are well-defined on all of 3-space, that is, the improper integrals defining
them converge everywhere; '

(2) BS(V) and A(V) are of class C* on Q. and on the closure ' of R* — Q. BS(V) is continuous
on R®, but its derivatives typically suffer jump discontinuities as one crosses ). A(V) is of
class C' on R, but its second derivatives typically suffer jump discontinuities as one crosses
m;

(3) AA(V)==V in Q and AA(V)=0 in Q', where A is the vector Laplacian;

(4) VX A(V)=BS(V) on R%;

(5) If VeK(Q), then A(V) is divergence-free on R>;

(6) V-BS(V)=0 in Q and in Q';

(7) If VeK(Q), then VXBS(V)=V in Q and VXBS(V)=0 in Q';

(8) If VeK(Q), then [BS(V)-ds=0 for all closed curves C on ) which bound in R® —Q; '

(9) In general, A(V) decays at » like 1/r and BS(V) decays at = like 1/r?; however, if VeK(Q2),
then A(V) decays at = like 1/r* and BS(V) decays at = like 1/r>.

Proofs of most of these basic facts can be found throughout the physics literature (see, for
example, Griffiths*®), with the exception of item (9), which we prove in the Appendix. Item (7)
contains the first half of Theorem A; we will prove that immediately, since it affects the rest of the
paper.

B. Proof of (7)

The argument to follow begins as in Griffiths,*® pp. 215-217, but is then modified to suit our
purpose.
To prove (7), we assume that V is a fluid knot, and must show that
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V. XBS(V)(y)=V(y), when ye(l,
=0, when ye()'.

From now on, we will use the shorthand notation {V(y) in /0 in Q'}, or simply {V(y)/0},
to express these two outcomes.

The above assertion will follow immediately from the next proposition, which will then serve
as a springboard to the rest of the paper.

Proposition 1:

V,XBS(V)(y)={V(y) in Q/0 in Q'}+(1/4w)Vyfﬂ(Vx-V(x))/|y—x| d(vol,)

—(1/47r)VyLQV(x)-n/|y—x| d(area,).

If V is divergence-free, then the second term on the right-hand side vanishes; if V is tangent
to the boundary of (), then the third term on the right-hand side vanishes. If both hold, that is, if
V is a fluid knot, then we get item (7).

We can view the statement of Proposition 1 as Maxwell’s equation,

VXB=J+3dE/ét, (3.2)

as follows.
Let V represent a current distribution throughout the domain (2. At time r=0, let the volume
charge density p throughout ) and the surface charge density o along J{) both be zero. Then set

p=—(V-V)r throughout (1, (3.3)
and B
o=(Vn)r along Q. (3.4)
Equation (3.3) for the volume charge density p is forced on us by the continuity equation,
V-V=—4plot. (3.5)

Likewise, Eq. (3.4) for the surface charge density o is forced on us by a version of the continuity
equation appropriate to the boundary of our domain. The current V is simply carrying charge from
locations within {) and on its boundary to other such locations. Thus the surface charge density
given by (3.4) has a time rate of change equal to the flux density of the current V through the
boundary ).

Now the volume charge throughout () gives rise to a time varying electric field

E (y,1)= (1/471)V).L}(V;V(x))/ly—xl d(volx)}t, (3.6)

and the surface charge along &) gives rise to a time varying electric field,

E(T(.V!t)'=

—(1/477)V\.J )V(x)~n(x)/|y-—x| d(areax)}t, (3.7)
“J s

both fields extending throughout 3-space.
The total electric field

E(y.)=E (v.0)+Eq(y.1) (3.8)
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has a time rate of change
OE/9t=0E ,/dt+ JE,/ot=E,+E,. (3.9)
With this notation, the equation of Proposition 1 condenses to
VXBS(V)={V/O}+E,+E,, (3.10)

which is just Maxwell’s Eq. (3.2). Proving Proposition 1 confirms these interpretations.

Proof of Proposition 1: We must evaluate

VyXBS(V)(y)=Vy><(1/4'rr)L)V(x)x(y—x)/|y—-x|3 d(vol,)

=(1/4m) fQVyX{V(x)X(y——x)/|(y—x)|3} d(vol,). (3.11)

We will need the following formula from vector calculus:
VX(AXB)=(B-V)A—(A-V)B+A(V-B)—B(V-A). (3.12)
Applying this formula to the integrand, we get
V, X {V(x) X (y—x)/ly—x|3}
==y =x*-V,)V(x) = (V(x)- V,)((y=x)/]y = x]?) |
+V) V- (=) y—x)) = (v =)y =x)(V,- V(x)). (3.13)

The first and last terms on the right-hand side are zero, because they involve differentiation with
respect to y of V(x), which depends only on x. Thus,

V, X{V@) X (y =)y =2} =V(0)V,- (= x)/ |y = xI’) = (V(x)- V) ((y = )|y —x[*).
' (3.14)
In the first term on the right-hand side, the second factor
V,-(=x)ly—x) (3.15)

is the divergence of the well known ‘‘inverse square central field.”” Using spherical coordinates
centered at x, this can be written as '

V- #r2=(1r2)(31ar)(r2(1/r2)) =0, (3.16)

away from the origin.

But the integral of V- #/r? over any ball centered at the origin, when converted to a surface
integral via the divergence theorem, is clearly 4,

f V.-#r? d(vol)= f (F/r*)-n d(area)=4. (3.17)
ball sphere
Thus,

V-#ri=4=8(r), (3.18)

where 8°(r) is the three-dimensional delta function; equivalently,
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Y, ((y—)ly—x|) =478 (y—x). (3.19)

Hence,

(1/471')JﬂV(x)Vy((y-x)/Iy—xP) d(vol,) = (1/4) JﬂV(x)411'63(y—x) d(vol,)

=V(y) in /0 in Q'. ‘ (3.20)

Thus far, we have proved that

V,xBS(V)(»)={V(y)/0}— (1/4m) JQ(V(X)'Vy)((y—X)/ly—XI3) d(vol).  (3.21)

Now we focus on the second term on the right-hand side and must show that
~(uam [ (V9= =#) dlvoly)
=(1/4m)V, L)(V,;V(x))ﬂy —x| d(vol,)

—(1/477)ij nV(x)~n/|y—x| d(area,). (3.22)
"Ja
We begin by writing each of the three terms in (3.22) in the form
*(1/4m)V, J (something) d(vol,). (3.23)
Q

Starting with the left-hand side of (3.22), we claim that its integrand can be rewritten as
(V)Y ) (=) y =) =Ty (V(x) -y =)y = ). 6
To see this, we need the formula from vector caiculus,
V(V-W)=V><(V><W)+W><(V><V)+(V-V)W+(W-V)V. (3.25)

We use this with V=V, V=V(x), and W=(y—x)/|y—x|?. Three of the four terms on the
right-hand side of (3.25) will then be zero; the first is zero because V, X W=0; the second is zero
because VX V(x)=0; the fourth is zero because (W-V,) V(x)=0. Thus Vy(V-W)=(V~Vy) W,
which is exactly our claim.

The first term on the right-hand side of (3.22) is already in the desired form.

The second term on the right-hand side of (3.22) can be rewritten as

j V(x)-n/|y—x| d(areax)=f V,(V(x)/ly—x|) d(vol,), (3.26)
a0 Q

thanks to the divergence theorem.
Now that all the terms in (3.22) have been rewritten in the desired form, we claim that the
integrands on both sides are equal, namely. that

—V(x)(v=x)|y=x]P=(V V) |y—x|= V. (V(x)|y—x|). (3.27)

This is an immediate consequence of the formula
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V-(fA)=(Vf)-A+£(V-A), (3.28)
and the proof of Proposition 1 is complete. ‘
C. Examples

We give three examples to illustrate Proposition 1, each in ‘‘bare bones’’ format, and invite
the interested reader to carry out the supporting calculations.

Example 1: In this example, we start with the vector field
V=0/6z=% (3.29)

on the ball ) of radius a centered at the origin. Note that Ve CG(Q).
Switching to spherical coordinates (r,0,¢), a straightforward computation yields

BS(V)=(a%/3)(sin 6)/r*¢ for r=q
=(1/3)rsin ¢ for r<a. (3.30)

Note that inside the ball, BS(V) coincides with the velocity field of a body rotating with
constant angular velocity about the z-axis.

Next we compute VX BS(V),

VXBS(V)=(a*13){(2 cos /r®)#+ (sin 0/r®)8} for r=a, (3.31)
which is a standard dipole field, while

VXBS(V)=(2/3){(cos 8)#— (sin 6) 8} =(2/3)V for r=<a. (3.32)

We invite the reader to check Proposition 1, equivalently the Maxwell equation (3.10), inside
the domain () by directly computing that E_=(—1/3)V there.

Example 2 (see Example 4 of Sec. I C): In this example, we start with the function f=1/r on

the domain () between the spheres of radii 1 and 2 centered at the origin, and then consider the
vector field

V=Vf=—#/r2 (3.33)

on this domain. Note that the function Jf is harmonic, and is constant on each component of ).
Therefore V lies in the subspace HG(Q) of harmonic gradients inside VF({}). Borrowing once

again from the future proof of Theorem B, we note that V lies in the kernel of the Biot~Savart
operator.

We invite the reader to confirm Maxwell’s equation (3.10) by checking that
E,=#/r* inside Q,
=0  outside ). (3.34)
Example 3 (see Example 5 of Sec. IIC): In this example, we start with the function

f(2,9,2)=x*+y*+22~1=r2—1 on the unit ball {) centered at the origin, and then consider the
vector field ‘

on this ball. Note that V lies in the subspace GG({2) of grounded gradients inside VF({}), and is

therefore (borrowing from the future proof of Theorem B) in the kernel of the Biot—Savart
operator BS. :
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With this in mind, we invite the reader to confirm Maxwell’s equation (3.10) in this case by
computing that

E,=-2rf inside Q)
=—2#/r? outside Q, (3.36)
and that
E,=0 inside ()
=2#/r? outside Q. (3.37)

IV. PROOF OF THEOREM A

Recall the statement:

Theorem A: The equation VX BS(V)=V holds in  if and only if V is divergence-free and
tangent to the boundary of ). '

The condition that V be divergence-free and tangent to the boundary of () can also be written
as VeK({))=FK®HK, the subspace of fluid knots. For the same effort, we will also get

Addendum to Theorem A: The equation VX BS(V)=0 holds in the closure Q}' of R*—Q if
and only if VEFK®HK®HG® GG.

This condition on V is equivalent to V being orthogonal to the subspace CG of curly gradients
in VF(Q). Then we will prove.

Corollary to Theorem A: The vector potential A(V) is divergence-free if and only if V is
divergence-free and tangent to the boundary of ().

A. Proof of Theorem A

Half of Theorem A has already appeared as item (7) in our list of Standard Information, and
was proved in Sec. III B, namely, if VeK(Q))=FK®HK, then VXBS(V)=V in ().

By contrast, if Ve HG®GG, then it would be impossible for VXBS(V) to equal V in Q)
unless V=0, since we know from the Hodge Decomposition Theorem that the image of curl is
FK&@HKa&CG.

It remains to show that if V is in CG, then V XBS(V) can never equal V in {) unless V=0.

The proof will be based on the Maxwell equation,

V,XBS(V)(y)={V(y) in ©/0 in Q’}-—(1/47T)Vyf mV(x)-n(x)/|x—y| d(area,).
4.1)

Following our discussion in Sec. III B, we can write the second term on the right-hand side of
this equation as

E;(y)=—(1/4ﬂ)V,.f aQV(x)-n(x)/|x—y| d(area,). - (42

Although E, is the time rate of change of the electrostatic field E,,, it is also the same as the
electrostatic field due to a charge density o(x)=V(x)-n(x) along ), and so we can treat it as
though it were an electrostatic field.

We write
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where

W)= (Lidm) f V@] darea) (4.4)

Although we have in general been writing our gradient fields with a plus sign, as in the equation

V=V, we write electrostatic fields with a minus sign, E, =~V , to follow standard conven-

tion.
While the electrostatic potential function i for a surface charge distribution o is continuous,

the electrostatic field E, will in general have a jump discontinuity as we cross the surface.

Nevertheless, we have V-E_ =0 in Q and V-E. =0 in Q'. be«
We claim that if V is a nonzero vector field in CG, then E|, cannot be identically zero in Q.
Recall the definition of the subspace CG of curly gradients. A smooth vector field V defined

on {} is in CG if and only if V=V ¢, where ¢ is a harmonic function on (), and where the flux of bo

V through each component of 32 is zero. That is, for each component 9€); of 3, we have zel

f V(x)-n(x) d(a.reax)=f o(x) d(area,)=0. 4.5) Ve
o, oL,

In other words, the total charge on each component of & is zero.
Suppose now that E_ =0 in {). We must show that V=0. B.
First we will show that E, =0 in €)', the closure of R*— Q).
The hypothesis that E,=0 inside { tells us that ¢ must be constant on each component (),

of 30’ =4Q. , "
Now we consider the field ¢E, in €', and compute its divergence (a standard trick in ‘ B¢
electrostatics), -
V-(YE)=(Vy)-E,+y(V-E.)=—E.-E.=—|E.|% (4.6)
Hence, | is
de.
f |E.}? d(vol)=—f V-(yE)) d(vol)=—f YE,-n'd(area), 4.7)
Q' Q' '’ C.
where n’ is the unit outward-pointing normal vector to ', so that n' = —n.
Using the divergence theorem in )’ requires a comment, since one of its components is in
unbounded. That unbounded component should really be approximated by a bounded domain with
one boundary component out near infinity. The flux of ¢E, through this boundary component
goes to zero as it recedes towards infinity, because the area grows like r2, while the field E.,
decays like 1/r? and the potential ¢ decays like 1/r.
With that said, we continue,
f |E!)? d(vol)=—f YE! -n'd(area)=— D, ¢,-f E-n'd(area), 4.8) for
Q' '’ i 0,

since ¢ is constant, say with value ¢;, on each component 9€); of the boundary.
Now, by Gauss’ Law,

fﬂE;-n'd(mea)=ttotal charge ‘‘inside’” 9();
ETO R

H
H

=+ 2 _ o(x) d(area,)=0, 4.9

some j (791
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FIG. 1. Components of the domain 2 and of its complement, '.

because the total charge on each component 9€); of &1 is zero (see Fig. 1).

Thus, fqo/|E.|?d(vol)=0, and hence E.=0 m Q.

Now we have E_=0 in () and also in Q’ Then Gauss’s Law, applied to the typical ‘‘pill
box’’ neighborhood of a point on J€), implies that the surface charge distribution o is 1dent1cally
zero (see Fig. 2).

Since o(x)=V(x)-n(x), this imples that V is tangent to the boundary of (2, and hence
VeK(Q). But K(Q)NCG=0, so V=0.

This completes the proof of Theorem A.

B. Proof of Addendum to Theorem A

- We know that if V lies in K(Q2)=FK®HK, then VXBS(V)= 0 in )’ accordmg to item (7)
in our list of Standard Information from Sec. III A.

Borrowing from the future, we will see in the proof of Theorem B that if VEHGGBGG then
BS(V)=0 throughout 3-space, so that surely VXBS(V)=0 in }'.

This gives us half of the Addendum to Theorem A.

It remains to show that if V is in CG, then VXBS(V) cannot be zero in )’ unless V=0 in Q.

The proof of this is based on the Maxwell equation (4.1), as was the proof of Theorem A; it

is a copy of the argument given there, with the roles of () and ()’ reversed, so we omit further
details.

C. Proof of Corollary to Theorem A

If V is divergence-free and tangent to the boundary of (), then we already know from item (5)
in the list of Standard Information that the vector potential A(V) is divergence-free.

Recall, also from that list, items

(3) AA(V)=-V, and

(4) VX A(V)=BS(V) for all Ve VF(Q).

Now take the second derivative formula,

VX(VXW)=V(V-W)—AW (4.10)

for any vector field W, and rewrite it with A(V) in place of W,

FIG. 2. A typical **pill box’’ neighborhood of a point on 3.
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VX(VXA(V))=V(V-A(V))—AA(V). 4.11)

Using items (3) and (4) above, substitute BS(V) for VX A(V) on the left-hand side, and V for
—AA(V) on the right-hand side, to get

VXBS(V)=V(V-A(V))+ V. 4.12)
If A(V) is divergence-free, then we get
VXBS(V)=V inside (), 4.13)

which by Theorem A implies that Ve K((}).

We conclude that A(V) is divergence-free if and only if Ve K({)), which is exactly the
assertion of the Corollary.

V. PROOF OF THEOREM B
A. Proof of Theorem B, easy direction
Recall the statement:

Theorem B: The kernel of the Biot—Savart operator is precisely the space of gradient vector
fields which are orthogonal to the boundary of ().

The easy direction is to assume that V is a gradient vector field which is orthogonal to the
boundary of () (equivalently, that Ve HG®GG), and then conclude that BS(V)=0. We will do
that here, and will actually show that BS(V)=0 throughout all of 3-space, rather than just in €.

We begin with the following lemma, which is stated without proof on p. 60 of Griffiths.*¢

Lemma 1: Let V be a smooth vector field on the domain (), and let n denote the outward
pointing unit normal vector field to ). Then,

f VXVd(vol)=— f VXn d(area).
(1) N
Proof: Start with the Divergence Theorem,
f V- Vd(vol)= f ' V-n d(area).
Q a0
Then replace V by VX C, where C is any constant vector,
I V-(VXC) d(vol)= f (VXC)-n d(area).

Q £

Writing V- (V X C)=(VXV)-C and moving C outside the integral, the left-hand side becomes
C. f VXV d(vol).

Writing (VXC)-n= —(V>< n)-C and again moving C outside the integral, the right-hand side
becomes

—C-f VXn d(area).
a0

Since the left- and right-hand sides are equal for all C, we must have
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JVXV d(vol)=—f VXn d(area),
1) o0

proving the lemma.
Suppose now that V=V ¢ is a gradient vector field on £} which is orthogonal to the boundary,
which means that ¢ is constant on each component 3(); of ). We must show that BS(V)=0.
Begin with the formula for the Biot—Savart operator,

B&VXﬁ=(MMﬂLJmnxbwwﬂb—ﬂ3deQ. 5.1)
Fix y, and let W=(y—x)/|y—x|3. Then,
BS(V) = (1/4m) fn(v¢)xw d(vol). (5.2)

Now consider the vector field ¢W on {} and take its curl,
VX(@W)=(Vo) XW+ o(VXW)=(Ve)XW, (5.3)

since VX W=0. Thus
BS(V)=(1/4m) fQVX((pW) d(vol). (5.4)

We would like to use the preceding lemma to replace the right-hand side of this formula by
the expression

—(1/47r)f Q(ch) Xn d(area). (5.5)
a

But the vector field W does not quite fit the hypothesis of the lemma, since it has an isolated
singularity at the point y (which we can assume is in the interior of (2). However, this singularity
is ‘‘radial;”’ if we surround it by a small sphere, the vector field ¢ W will be orthogonal to the
sphere, and so the integral [(¢W)Xn d(area) over this small sphere will be zero. It follows
immediately that the lemma can be applied in this case, in spite of the singularity.

We do so, and continue

BS(V)=—(1/47r)jQ(<pW)><n d(area)
[

=—(1/4m) D, (pifﬂ WXn d(area), (5.6)
; o,

where ¢; is the constant value of ¢ on 0{};.
Now we claim that, for each i,

WXn d(area) =0. (5.7)
a0, :

To see this, let {2; be the compact domain in 3-space bounded by d{};. Then, using the lemma
once again,
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WXn d(area)=ij VX W d(vol) (5.8)
aQ, Q

with the + or — sign chosen according as n points into or out of ;. In any case, VX W=0, so
the integral vanishes.

Thus BS(V)=0 throughout 3-space.

B. Proof of Theorem B, harder direction

The heart of the argument is the following energy estimate.

Proposition 2: Let Q be a compact domain with smooth boundary in 3-space, and V a smooth
divergence-free vector field defined in Q). Let E., be the electrostatic field due to the charge
distribution o(x)=V(x)-n(x) along Q. Then,

f |E.|? d(vol)sf |V|2 d(vol).
3-space Q

That is, the energy of the electrostatic field E (', throughout all of 3-space is bounded from above
by the energy of the original field V in ().

When V is not required to be divergence-free, the energy of the field E, can be made
arbitrarily large, while keeping the energy of V itself as small as desired: make V(x)-n(x) large
along &, and then quickly taper V off to zero throughout most of (.

Proof of Proposition 2: Given a divergence-free vector field V, we can subtract from V its
orthogonal projection into the space K({})=FK®HK of fluid knots. This will leave the corre-
sponding electrostatic field E,, unchanged, while at worst decreasing the energy in V.

So in proving the proposition, there is no loss in generality in assuming that V is already

orthogonal to this subspace, and hence a gradient vector field...as well as being divergence-free.
Thus we can write

V=V with Ap=0. (5.9
Likewise,
E (y)=—V,¥(y), (5.10)
where
l[l(y)=(1/47r)f QV(x)-n(x)/|x—y| d(area,). (5.11)
x€d

Lemma 2: J |E|2d(vol) = f Wil dnd(area).
3-space aQ

Proof of Lemma 2: This is a standard result in electrostatics; see Griffiths*® pp. 94-95. For
convenience, we give the argument here.

Since the surface charge distribution o along ) is given by

o(x)=V(x)-n(x)=(Ve(x)) n(x)=(9¢/dn)(x), (5.12)

we can rewrite the equation to be proved as

j |E.|? d(vol)=J Yo d(area). (5.13)
3-space i
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This more clearly displays the relation of the integrand on the right-hand side to the field E,; the
function o is the surface charge distribution along 3} which gives rise to the field E’ o whxle the
function ¢ is the electrostatic potential for E_ , that is, E ==Vy.

The proof is a little easier to express if we replace the surface charge distribution o by a
volume charge distribution p in a small neighborhood N(d€)) of o, and let E,=-Vy
be the resulting electrostatic field, because in this situation we can write V- E,=

With this understanding, we must show that

f |E,|* d(vol)= f Yp d(vol). (5.14)
3-space N(6Q))

To prove this, rewrite the integral on the right-hand side as

f Y(V-E}) d(vol). (5.15)
N(oQ})
Next,

V-(YE,) =(V§)-E,+(V-E,)=—|E}|*+ y(V-E}). (5.16)

Hence

j Up d(vol)=f Y(V-E,) d(vol)
N(3Q) N(o)

=j V-(://E;,) d(vol)+j IE‘!’,I2 d(vol). (5.17)
N(3Q) N(3Q)

If, in the integral on the left-hand side above, we replace the neighborhood N(4() by any
larger domain, call it {0*, the value of the integral will not change because p=0 outside N(J€}).
And the equation above will still hold if we replace N(J€2) by Q* in each of the three integrals,

fﬂ*wp d(vol)=fn*V-(¢E;) d(vol)+fn*|E;,|2 d(vol). (5.18)

Apply the divergence theorem to the first integral on the right-hand side, so that we now have

fn*¢p d(vol)=Ln*(¢E;)-n d(area)+fﬂ*|E",|2 d(vol). (5.19)

Visualize the domain {)* growing larger and larger, with its boundary receding towards
infinity. Then ¢ decays like 1/r, while E, decays like 1/r? and the area of 80* grows like r2

Thus the value of the first integral on the nght-hand side decays like 1/r, and so goes to zero in
the limit. Hence

f Yp d(vol)= |E|? d(vol), (5.20)
N(eQ)) 3-space

the desired result for volume charge distributions.
If we compress the neighborhood N(9€)) towards the surface o€}, the above result for volume
charge distributions will tend to the corresponding result for surface charge distributions,

f vo d(area)=j |EL)? d(vol), (5.21)
Q) 3-space

and the lemma is proved.



894 J. Math. Phys.. Vol. 42, No. 2, February 2001 Cantarella, DeTurck, and Gluck

Completion of the proof of Proposition 2: Now we recall Green's first identity.
Let A=V . Then

V.-A=V.(yVo)=Vi-Vo+tyAe=Vi¢-Vo, (5.22)

since Ap=0.
Thus,

fn—E;-V d(vol)=an¢-V<p d(vol)=an-A d(vol)=LﬂA-n d(area)

=f YyVeo-n d(area)=J Wil on d(area)=f |EL)? d(vol), (5.23)
I2(9) a0 3-space
by the lemma.

Hence,

f |E.|2 d(vol)=f —E_-Vd(vol)
3-space Q

172 v 172
s( [ 1E:p d(von) ( [ v d(von)
(4] Q

1”2 _ 12
s(f |E.|? d(vol)) (f V|2 d(vol)) , (5.24)
3-space O.

and therefore

[ I acon< [ (v awon, 529
3-space [}

as claimed, finishing the proof of Proposition 2.

Completion of the proof of Theorem B: In the previous section, we showed that HG&GG, the
space of gradient vector fields which are orthogonal to the boundary of (2, lies within the kernel
of the Biot—Savart operator BS:VF(Q))— VF(Q).

Now we must show that there is nothing else in the kernel.

We will do this by assuming that V is orthogonal to GG (equivalently, is divergence-free) and
that BS(V)=0, and will show that V must lie in HG.

First we observe that, under these assumptions, V must be a gradient vector field.

To see this, consider the Maxwell equation in {2,

VyXBS(V)(y)=V(y)—( 1/4m)V, LE‘mV(x) -n(x)/|x—y| d(area,), (5.26)

written in the form appropriate for any divergence-free vector field V.

If V had a nonzero component in the subspace FK&HK of fluid knots, then that component
would persist when we computed VXBS(V), since the Maxwell equation tells us that
V XBS(V) differs from V by a gradient vector field. It follows that no such V could possibly be
in the kernel of BS.

So we can assume that V is a gradient vector field, and write V=V ¢. Since V is orthogonal
to GG, the function ¢ must be harmonic. To show that V lies in HG, we must show that the
function ¢ is constant on each component of o).

To start on this, note that the second term on the right-hand side in the Maxwell equation
above is the electrostatic field E/(y), and write that equation more succinctly as
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VXBS(V)=V+E.. (5.27)

Now if BS(V)=0, then E_=—V in ().

It follows that £, must be identically zero outside ) because, by Proposition 2, it simply has
no more energy.

This, in turn, implies that the electrostatic potential function ¢ for the field E, must be
constant on each component of J(}.

But the three equations,

E_=-Vy¢ (everywhere), (5.28)
V=Ve¢ (inside (), (5.29
E_=-V (inside (), (5.30)
tell us that
Ve=V¢ (inside Q), | (5.31)
and hence that
=y + some constant (5.32)

on each component of (), where the constant may depend on the component.

Thus ¢ inherits from ¢ the property of being constant on each component of aﬂ and hence
V=V ¢ must lie in HG, the desired conclusion.

This completes the proof of Theorem B.

In fact, we have actually proved a bit more.

Theorem B': The kernel of VX BS, the composition of the curl and Biot—Savart operators, is
also the space of gradient vector fields which are orthogonal to the boundary of ().

This follows, with no further argument, because the only way we used the hypothesis that

BS(V)=0 in this section was to set VXBS(V)=0 on the left-hand side of the Maxwell equation
(5.27).

VI. PROOF OF THEOREM C
A. Statement and proof of Theorem C

Recall the statement:

Theorem C: The image of the Biot—Savart operator is a proper subspace of the image of
curl, whose orthogonal projection into the subspace of ‘‘fluxless knots’’ is one-to-one.

This will follow immediately from Theorems B and B’ and (borrowing from the future) from
Theorem D.

Proof:
Keep in mind the Hodge decomposition,

VF(Q1)=FK&HK®& CGaHG® GG. (6.1)

We know from Theorem B that the kernel of the Biot—Savart operator BS is the subspace
HGoGG of VF(Q)).

We know from Theorem D that this operator is self-adjoint.

It follows that the image of BS lies within the orthogonal complement of its kernel. that is.
within the subspace FK®HK® CG, which is precisely the image of curl.
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Alternatively, the formula VX A(V)=BS(V), which appeared as item (4) on our list of
Standard Information in Sec. III A, also tells us that the image of BS lies within the image of curl.
Now it follows from Theorems B and B’ together that

Image(BS)N Ker(curl)={0}, (6.2)

and since, by the Hodge Decomposition Theorem, the kernel of curl is HK® CG® HG® GG, the
orthogonal projection of the image of BS into FK must be one-to-one.

From this it also follows that the image of the BS is a proper subspace of the image of curl.
This completes the proof of Theorem C.

B. Impossible magnetic fields

We are looking for smooth vector fields U on a compact, smoothly bounded domain £} in
3-space, for which it is impossible to find a smooth vector field V on satisfying the equation
U=BS(V). We will call such a field U an impossible magnetic field.

Of course, Eq. (6.2) tells us that any nonzero vector field U in HK& CGOHGH GG is an
impossible magnetic field.

But here is a more interesting example.
Consider the velocity vector field U of a ‘‘speeding bullet,”’ as pictured below (see Fig. 3).
We visualize the unit ball ) in 3-space as a lead bullet sitting in a cartridge which has been

shot directly upwards from a rifled barrel, so that it spins as it moves forward. In cylindrical
coordinates r, ¢, z, the velocity vector field U is given by

U=r¢+3. (6.3)

Note that the first summand r lies in FK, while the second summand # lies in CG.

Now look back to Example 1 in Sec. Il C. There we started with the vector field V=2 on the
unit ball  and computed its magnetic field within the ball,

FIG. 3. An impossible magnetic field on the unit ball ().
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BS(V) =(1/3)rsin 8¢ (spherical coordinates)
=(1/3)r$ (cylindrical coordinates). (6.4)

So of course (settling back to cylindrical coordinates),
BS(3V)=r¢. (6.5)

But this magnetic field on the unit ball ‘‘poisons’’ U as a candidate magnetic field, since U and
BS(3V) have the same orthogonal projection into the space FK of fluxless knots. By Theorem C,
the vector field U cannot possibly be the Biot—Savart transform of any smooth vector field on ().

Vii. PROOF OF THEOREM D

It will be convenient to divide the statement and proof of Theorem D into three pieces, as
follows:

(1) The Biot-Savart operator BS:VF(Q)— VF({)) is bounded, and hence extends to a bounded
operator on the L? completion,

BS:VF(Q)— VE(Q);
(2) The operator BS:W(Q)—;VI:"(Q) is compact, that is, it takes the unit ball in V_F(Q) to a set
with compact closure in VF({});
(3) The operator BS:VF())— VF(Q) is self-adjoint with respect to the L? inner product, that is,
(V1,BS(V3))=(BS(V,),V,), for all vector fields V, and V, in VF(Q}).
A. A useful lemma

The proof that the Biot—Savart operator is bounded, as asserted in (1) above, will follow along
the lines of the usual Young’s inequality proof that convolution operators are bounded; see
Folland,*” p. 9, or Zimmer,*® Proposition B.3 on p. 10. We extract this proof as a lemma, so that
we can use it again in the proof of part (2).

Lemma 3: Let ¢(x) be a scalar-valued function with the property that

Na(¢=max, | [60=)] d(vol,)

is finite, where the maximum is over all poihts y€R>. Then the operator T,:VF(Q)— VF()
defined by '

T(V)(y)= fnvm X p(y—x) I—;——:—;T d(vol,)

is a bounded map with respect to the L*> norm, and furthermore,
|T4(V)| < No(&)|VI.

Proof: Fix ye(). Then, using the Cauchy—Schwarz inequality,
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T4 (V)= jﬂ|v<x>||¢<y—x>| d(vol,)
= fQIV(x){¢(y-x)}”2l {&(y—x)}"| d(vol,)

12 1”2
g(f V(0| é(y—x)| d(V01x)) (f |p(y—x)| d(VOIX))
Q Q /

12
s(1\’n(t15))”2( fnlqﬁ(y—X)l [V(x)|? d(VOIx)) : (7.1)

We square both sides, integrate and use Fubini’s theorem to get

LIT,,s(V)(y)I2 d(vol,.)an(qS)LJQI<¢>(y—x)||V(x)l2 d(vol,) d(vol,)
=NQ(¢)fQ|V(x)lz(fng¢(y—x)| d(voly))d(volx)

SI‘Jsz(d’)zfﬂlV(x)l2 d(vol,). (7.2)
Taking square roots, we get

|T4(V)| < No(&)|V], (7.3)

and conclude that T4 is a bounded operator whose norm is at most N (), as claimed.

B. Proof of (1)

Define the optical size of ), written OS({2), to be the number

0S(0)=max, fnl/|y—x[2 d(vol,), (7.4)

where the maximum is taken over all points ye R*. The integral just above can be taken as a
measure of the effort required to optically scan the domain () from the location y; the optical size
of () is the maximum effort required to scan it from any location.

Then, in the language of Lemma 3,

BS(V)(y)=(1/47r)fQV(x)X(y—-x)/|y-x|3 d(vol,)

=Ty (V). 15)
where

Bo(y —x)=(1/4m)(U]y—x|?). (7.6)
The lemma yields immediately that, for Ve VE(Q),

|IBS(V)| < (1/47)0S(Q)| V], (7.7)
and we conclude that BS:VF(Q)— VF({) is a bounded operator.
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_Now let V_F(Q) denote the L> completion of the space VF({2); we will refer to the elements
of VF(Q) as L? vector fields.
Then we can, and do, extend the Biot—Savart operator to a bounded operator,

BS:VF(Q)—VE(Q), (7.8)

with the same bound as above.
This completes the proof of part (1).

C. Proof of (2)

To prove that the Biot—Savart operator is compact, we use two standard facts from functional
analysis. First is the fact that for any compact domain (2, if ¢(x) is continuous on R3, then the
integral operator

(Tof)(y)= fa¢()’—x)f(X) d(vol,) (7.9)

defines a compact operator on L*(Q); see Zimmer,*® Theorem 3.1.5 on p. 53. It is stated there
only for operators on scalar-valued functions, but the extension to vector-valued ones, using the
definition given in Lemma 9.3, is trivial.

Second is the fact that the norm-limit of compact operators is compact; see Zimmer,*® Lemma

3.1.3 on p. 52.
Now let
N*4m if |x|<UN 10
on(x)= 1/(4m|x|?) if |x|=1UN. (7.10)
Note that ¢y is a continuous function, and that
No(éo— ¢dy)=max, fﬂl%()’_x) —en(y—x)| d(vol,)
<(1/4) f ((1/]x|*)—N?*) d(vol,)
lxl<uN
<(1/47r)f| ' (1/|x|* d(vol,)=1/N. (7.11)
x|<UN

By the first functional analysis fact. T,,,N is a compact operator from V—F(Q) to V_F(Q). By our
Lemma, we see that as T 4, converges in norm to T 4, the Biot—Savart operator, as N—o. Using

the second functional analysis fact. we conclude that BS:V?(Q)—»W’(Q) is a compact operator.
This completes the proof of part (2).

D. Proof of (3)

It is easy to see why the Biot—Savart operator is self-adjoint.
Suppose that V, and V- are smooth vector fields defined on (). Then
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<V1,BS(V:)>=anl(y)~BS(Vz)()’) d(vol,)
= fﬂvl(y)-[(mw) fQVz(x)X(y—x)/I_\'—xP d(vol,) {d(vol,)
=(1/4m) IQXQVl(y)X Va(x)-(y—x)/|y—x[> d(vol,) d(vol,)

=(1/41'r)fQ QVz(x)><Vl(y)~‘(x—y)/|x-—y|3 d(vol,) d(vol,)

=(V,,BS(V))). (7.12)

It is a straightforward exercise to check that these improper integrals are all convergent.

Thus BS:VF(Q)— VF(Q) is a self-adjoint operator, and therefore remains self-adjoint when
extended to the L? completion V_F( Q) of VF(Q)).

Theorem D is proved.

APPENDIX: THE DECAY RATE OF A(V) AND BS(V) AT INFINITY

In item (9) in our list of standard information from Sec. IIT A, we asserted that in general,
A(V) decays at « like 1/r and that BS(V) decays at « like 1/r2. In the special case that VeK({),
we asserted that A(V) decays at « like 1/7? and that BS(V) decays at ® like 1/7°.

We give the proofs here.

The defining formula for the vector potential,

A(V)(y)=(1idm) fﬂV(x)/Iy—xl d(voly), (A1)

expresses an inverse first power law, with integration over a compact region €). It follows imme-
diately that A(V) decays at infinity at least as fast as 1/r.

When we say that A(V) decays at infinity at least as fast as 1/r, we mean that the product

|A(V)(»)]|y| has a finite upper bound on R, and likewise for corresponding expressions used
below. '

The Biot—Savart formula,
BS(V)(y)=(1/4) L}V(X)X(y‘—x)/ly-XI3 d(vol,), (A2)

expresses an inverse square law, with integration over a compact region . Again it follows
immediately that BS(V) decays at infinity at least as fast as 1/r.

The proof of the faster decay rates when Ve K() will be divided into two lemmas.
Lemma 4: The following are equivalent:

(1) A(V) decays at infinity at least as fast as 1/r?;
(2) BS(V) decays at infinity at least as fast as 1/r>;
(3) [qVd(vol)=0.

Proof:

It is an easy exercise to check that conditions (1) and (2) each imply (3). For example, when
ly| is very large, we have
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IYIA(V)(y)=~(1/4m) fQV(X) d(vol,). (A3)

If the integral of V is not zero, then |y|?|A(V)(y)| certainly blows up at . Thus condition (1)
implies condition (3), and likewise, (2) implies (3).
Suppose now that condition (3) holds. Then,

IYIPA(V)(y)=(1/4m) fQIyIZV(x)/Iy—xI d(vol,)
=(1/4) fnlyle(x)lly—xl d(vol,) — (1/4m) fﬂlylV(x) d(vol,)

=uam) [ {Ayly=x)=bveo) dtve), (A4)

where the integral added on the right-hand side is zero thanks.to condition (3).
Now,

{Uy Py =xD =1y} ={Iyl/ly —x|X|y| =y —=x}.

The first factor on the right-hand side approaches 1 as y— because () is bounded. The second
factor on the right-hand side is <|x|, and hence also bounded. Thus

{UylPly=xD~Iy}

is bounded as y— o,

Since [qo|V(x)|d(vol,) is certainly bounded, it follows that |y|?|A(V)(y)| is bounded, and
hence that A(V) decays at ® at least as fast as 1/r2. Thus condition (3) implies condition (1), as
claimed.

Again suppose that condition (3) holds. Then

P BS(V)(y) = (1/4m) fQV(x)xu—x)lyP/ly—xP d(vol,)
—(1/4m) fQV(x)X(y—x)lyP/Iy—xP d(vol,) — (1/4m) fﬂwx) Xy d(voly)

= (1/4m) fnwx)><{(<y—x>|y|3/ly—x|3)—y} d(vol,), (A5)

where again the integral added on the right-hand side is zero because of condition (3). Continuing,
{O=0yPly=x) =y} ={UyP=ly=xPVy—x} = {xly [/ ly ==
Processing the first term on the right-hand side,
BUP =1y =Py =xPy={p/ly=xl} {Iyl=ly==x[} {Ayl*+Iylly—x]+]y=x[*ly—x]?}.

The first factor on the right-hand side of this last equation is bounded as y—o because () is
bounded. The second factor on the right-hand side is <|x|, and hence is also bounded. The third
factor on the right-hand side approaches the value 3 as v—oc, and hence is also bounded. It
follows that

{UyP =y =y —x|*}
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is bounded as y—<c.
Now the term

{xlyPrly =P}

is certainly bounded as y—, and so we conclude that

{(=0)yPrly=x*) -y}

is also bounded as y—. From this it follows that

yI> BS(V)(y)

is bounded for all y, and hence that BS(V)( y) decays at = at least as fast as 1/r>. Thus condition
(3) implies condition (2).

This completes the proof of Lemma 4.

Lemma 5: [oV(x)d(vol,)=0 forall V in FKeHKOHG®GG, but this relation determines a
codimension-three subspace of CG.

Proof:

We begin with the proof that [, V(x)d(vol,)=0 for all VeFK@HK=K({)).
The argument will be coordinate-wise, so that we can deal with scalar-valued integrals instead

of vector-valued ones. So let us write the typical point of {) as x=(x,,x,,x;), and then write
V(x)=(V1(x),V,(x),V3(x)).
Then

V- (x,V)=(Vx,)-Vx, (V- V)=(Vx,)- V=V, (A6)

since V is divergence-free.
Hence,

f Vi(x) d(volx)=f V-(x,V) d(volx)=f x1V-n d(area)=0, (A7)
0 Q EN)

because V is tangent to o).
Of course the same argument holds for V, and V3, so we conclude that

fn V(x) d(vol)=0, (AB)

as claimed.

Now we prove that [ V(x) d(vol,)=0 for all Ve HG®GG.

Write V=V ¢ with ¢ constant on each component of ().
We claim that '

f V d(vol)= f Ve d(vol)= f en d(area). (A9)
Q o o0

We see this as follows:
Let C be any constant vector. Then,

V-(eC)=(Ve):-C+¢(V-C)=(Vop)-C. (A10)

Hence
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( f Vo d(vol)) -C=J (Veg)-C d(vol)
Q Q
=f V- (¢C) d(vol)
(4]

=j (¢C)-n d(area)
o0

=(f on d(area)) -C. (A11)
a0
Since this is true for all constant vectors C, we must have
f Ve d(vol)= j on d(area), (A12)
Q a0
as claimed.
Now suppose that
aQ=(991U"‘Uan (A13)

is the decomposition of 3} into its connected components, and let ¢; denote the constant value of
the function ¢ on the boundary component 3{);. Then

f V d(vol)= f Vo d(vol)= f on d(area)= D, o f n d(area)=0, (Al4)
Q Q aQ i aQ;

because [n d(area) over any closed surface in 3-space is always zero.

This completes the proof that [oV(x) d(vol,)=0 for all Ve HG®GG.

The observation that this relation determines a codimension-three subspace of CG follows
directly from the fact that the three constant vector fields £, ¥, and Z are curly gradients, com-
pleting the proof of Lemma 5. o

Clearly, Lemmas 4 and 5 imply the faster decay rates of A(V) and BS(V) when Ve K({2),
completing our argument.
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