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Abstract

This paper presents a mathematically complete derivation of the minimum-energy
divergence-free vector fields of fixed helicity, defined on and tangent to the boundary of
solid balls and spherical shells. These fields satisfy the equation∇×V = λV , where λ
is the eigenvalue of curl having smallest non-zero absolute value among such fields. It
is shown that on the ball the energy-minimizers are the axially symmetric spheromak
fields found by Woltjer and Chandrasekhar-Kendall, and on spherical shells they are
spheromak-like fields. The geometry and topology of these minimum-energy fields,
as well as of some higher-energy eigenfields, is illustrated.

Jason Cantarella
Department of Mathematics
University of Massachusetts
Amherst, MA 01003-4515
cantarel@math.umass.edu

Dennis DeTurck, Herman Gluck and Mikhail Teytel
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104-6395
deturck@math.upenn.edu
gluck@math.upenn.edu
teytel@math.upenn.edu

PACS numbers:

• 02.30.Tb Mathematical methods in physics – operator theory

• 02.30.Jr Mathematical methods in physics – PDEs

• 47.10.+g Fluid dynamics – general theory

• 47.65.+a Magnetohydrodynamics and electrohydrodynamics

• 52.30.Bt MHD equilibria

• 52.30.-q Plasma flow; magnetohydrodynamics

• 52.55.Fa Tokamaks

• 52.55.Hc Stellerators, spheromaks, etc.

• 95.30.Qd Astrophysics: MHD and plasmas

1



2 cantarella, deturck, gluck and teytel

I. Introduction

The helicity of a smooth vector field V defined on a domain Ω in 3-space was

introduced by Woltjer1 in 1958 and named by Moffatt2 in 1969. It is the standard

measure of the extent to which the field lines wrap and coil around one another, and

is defined by the formula

H(V ) =
1

4π

∫
Ω×Ω

V (x)× V (y) · x− y

|x− y|3 d(volx)d(voly).

Woltjer showed, in this same paper, that magnetic helicity and magnetic energy are

both conserved in a non-dissipative plasma, and that an energy-minimizing magnetic

field V with fixed helicity, if it exists, must satisfy the equation ∇ × V = λV for

some constant λ (and thus be a so-called constant-λ force-free field). He also wrote

that in a system in which the magnetic forces are dominant and in which there is a

mechanism to dissipate the fluid motions, the force-free fields with constant λ are the

“natural end configurations”.

In 1974, Taylor3,4 extended this idea by arguing that in a low-beta plasma (one in

which magnetic forces are large compared to the hydrodynamic forces) confined in a

vessel with highly conducting walls, the total magnetic helicity will be approximately

conserved during the various magnetic reconnections that occur, and the conducting

walls will act as a reasonably effective helicity escape barrier, while the magnetic

energy of the plasma rapidly decays towards a minimum value. The resulting config-

uration can be found mathematically by assuming that the helicity remains constant

while the energy is minimized.

Towards this end, we showed5,6,7,8 that among divergence-free vector fields which

are tangent to the boundary of a given compact domain in 3-space, the energy-

minimizers for fixed helicity

• exist, are analytic in the interior of the domain, and are as differentiable at the

boundary of the domain as is the boundary itself;

• satisfy an additional boundary condition which says that their circulation around

any loop on the boundary must vanish if that loop bounds a surface exterior to

the domain;
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• satisfy the equation ∇ × V = λV , with λ having least possible absolute value

among such fields.

The operator theoretic methods that we use were inspired by the work of Arnold9,

and seem to provide a uniform and simple approach to finding and analyzing these

energy-minimizing fields, as well as to proving their existence and determining their

degree of differentiability. The fact that they are constant-λ force-free fields was

already known to Woltjer1 as mentioned above, who argued via a Lagrange-multiplier

approach which assumed existence. The existence of these energy-minimizing fields

was rigorously established by Laurence and Avellaneda10 in 1991, via a “constructive

implicit function theorem”, and was also analyzed by Yoshida and Giga11,12,13 in the

early 1990s. The additional boundary condition stated above appears to be new.

In the case that all boundary components of the domain are simply connected

(as is true for spherically symmetric domains), this additional boundary condition is

automatically satisfied by all curl eigenfields which are tangent to the boundary. For

in such a case, any loop on the boundary is itself the boundary of a portion of this

surface; the circulation of V around the loop equals the flux of ∇ × V through this

surface-portion, and since ∇× V = λV which is tangent to the boundary, the flux is

zero.

In this paper, we solve the equation ∇× V = λV with these boundary conditions

on balls and spherical shells, prove that our set of solutions is complete, and identify

the solutions with minimum eigenvalue. Our work confirms that the solutions of

Chandrasekhar-Kendall14 and Woltjer15,1 on the ball form a complete set of solutions

to the problem, and that the minimum eigenvalue fields are the usual spheromak fields

as they asserted (see Sec. V, however, for some comments on their method). Moreover,

we see how closely the minimum eigenvalue fields on spherical shells resemble the

spheromak fields on balls.

Thus, we study the eigenvalue problem

∇× V = λV
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for vector fields defined on a round ball in R3, or a spherical shell (the domain between

two concentric round spheres in R3). The vector field V must satisfy the additional

conditions:

1. V must be divergence-free, i.e., ∇ · V = 0 on the domain.

2. V must be tangent to the boundary of the domain, i.e., if n is the outward-

normal vector to the boundary of the domain, then V ·n = 0 everywhere on the

boundary.

By abuse of language, we will call vector fields that satisfy all these conditions “eigen-

fields of curl”, and the corresponding eigenvalues “eigenvalues of curl”.

We note that under these circumstances, the eigenvalue λ = 0 cannot occur. That

is because non-vanishing vector fields which are divergence-free, curl-free and tangent

to the boundary of a compact domain Ω in R3 can occur, according to the Hodge

Decomposition Theorem8,16, only when the one-dimensional homology H1(Ω; R) of the

domain is non-zero. We also note that a vector field V which satisfies ∇× V = λV

for some non-zero λ is automatically divergence-free.

We prove the following results:

Theorem A. For the ball B3(b) of radius b, the eigenvalue of curl with least absolute

value is λ = 4.4934 . . . /b, where the numerator is the first positive solution of the

equation x = tanx. It is an eigenvalue of multiplicity three, and its eigenfields are

all images under rotations of R3 of constant multiples of the one given in spherical

coordinates by:

V (r, θ, φ) = u(r, θ)r̂ + v(r, θ)θ̂ + w(r, θ)φ̂

where r̂, θ̂ and φ̂ are unit vector fields in the r, θ and φ directions, respectively, and

u(r, θ) =
2λ

r2

(
λ

r
sin(r/λ) − cos(r/λ)

)
cos θ

v(r, θ) = −1

r

(
λ

r
cos(r/λ) − λ2

r2
sin(r/λ) + sin(r/λ)

)
sin θ
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w(r, θ) =
1

r

(
λ

r
sin(r/λ) − cos(r/λ)

)
sin θ.

Figure 1 is a picture of this vector field. It is axially symmetric and its integral

curves fill up a family of concentric “tori”, with a “core” closed orbit, features which

are known17 to be typical of energy-minimizing, axisymmetric curl eigenfields. A spe-

cial orbit, beginning at the south pole of the bounding sphere at time−∞, proceeds

vertically up the z-axis and reaches the north pole at time +∞. Orbits on the bound-

ing sphere start at the north pole at time −∞ and proceed down lines of longitude

to the south pole at time +∞. There are two stationary points, one at each pole.

Woltjer15 used this vector field to model the magnetic field in the Crab Nebula.

Figure 1. Integral curves and surfaces of the spheromak vector field on

the ball

Theorem B. For the spherical shell B3(a, b) of inner radius a and outer radius b,

the eigenvalue of curl having least absolute value is λ
(1)
1 , where λ

(1)
1 is the smallest of

the infinite sequence of positive numbers xk that satisfy

J 3
2
(ax)Y 3

2
(bx)− J 3

2
(bx)Y 3

2
(ax) = 0

(as a approaches zero, this reduces to the equation x = tan x of Theorem A). It is an

eigenvalue of multiplicity three, and its eigenfields are all images under rotations of

R3 of constant multiples of the one given in spherical coordinates by:

V (r, θ, φ) = u(r, θ)r̂ + v(r, θ)θ̂ + w(r, θ)φ̂
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where

u(r, θ) = r−3/2
(
c1J 3

2
(λ(1)

1 r) + c2Y 3
2
(λ(1)

1 r)
)

cos θ

v(r, θ) = − 1

2r

∂

∂r

(√
r

(
c1J 3

2
(λ(1)

1 r) + c2Y 3
2
(λ(1)

1 r)
))

sin θ

w(r, θ) =
λ(1)

1

2
√

r

(
c1J 3

2
(λ

(1)
1 r) + c2Y 3

2
(λ

(1)
1 r)

)
sin θ

This vector field is also axisymmetric and is qualitatively like the one on the ball,

having a family of concentric tori as invariant surfaces, and exceptional orbits on

both the inner and outer spherical boundaries. The invariant surfaces are pictured in

Figure 2.

Figure 2. Integral surfaces of energy-minimizing vector field on a

spherical shell.

An outline of this paper is as follows. Sec. II contains formulas for the curl and

other expressions in spherical coordinates that will be used in the remainder of the

paper. In Sec. III, we show that the radial component of any eigenfield of curl

must satisfy an elliptic boundary value problem whose solutions are expressible in

terms of eigenfunctions of the Laplace operator. Based on this observation, the other

components of curl eigenfields are calculated in Sec. IV.

In Sec. V, we explain why our set of eigenfields is complete. Then we identify the

eigenvalue of smallest absolute value in Sec. VI, and show that among spherically
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symmetric domains, the ball has the smallest such eigenvalue. Since this eigenvalue

is the ratio of energy to helicity, it shows that the ball admits the least energy for

given helicity among all spherically symmetric domains of a fixed volume. Finally, in

Sec. VII, we examine some of the other eigenvalues and eigenfields.

II. The curl operator in spherical coordinates.

To fix our notation, we begin by reviewing how to write the curl operator and

several related formulas in spherical coordinates. Throughout this paper, we take r,

θ and φ to be the standard spherical coordinates. We let r̂ =
∂

∂r
, θ̂ =

1

r

∂

∂θ
and

φ̂ =
1

r sin θ

∂

∂φ
be unit vector fields in the r, θ and φ directions respectively.

We will always consider a vector field V (r, θ, φ) with components

V (r, θ, φ) = u(r, θ, φ)r̂ + v(r, θ, φ)θ̂ + w(r, θ, φ)φ̂.

For such a vector field, we have that

∇× V =
1

r sin θ

(
∂

∂θ
(sin θ w)− ∂v

∂φ

)
r̂ +

1

r

(
1

sin θ

∂u

∂φ
− ∂

∂r
(rw)

)
θ̂

+
1

r

(
∂

∂r
(rv)− ∂u

∂θ

)
φ̂ .

The eigenvalue equation ∇ × V = λV thus reduces to a system of three partial

differential equations:

1

r sin θ

(
∂

∂θ
(sin θ w)− ∂v

∂φ

)
= λu (2.1)

1

r

(
1

sin θ

∂u

∂φ
− ∂

∂r
(rw)

)
= λv (2.2)

1

r

(
∂

∂r
(rv)− ∂u

∂θ

)
= λw . (2.3)

Since λ 6= 0, as mentioned earlier, the vector field V is automatically divergence-free

(by taking the divergence of both sides of ∇× V = λV and using the fact that the

divergence of a curl is zero). Thus equations (2.1)-(2.3) imply

1

r2

∂

∂r
(r2u) +

1

r sin θ

∂

∂θ
(sin θ v) +

1

r sin θ

∂w

∂φ
= 0. (2.4)
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This is simply the equation ∇ · V = 0 in spherical coordinates.

The requirement that V be tangent to the boundary ∂Ω of our domain Ω is equiv-

alent to the condition

u = 0 on ∂Ω.

Because the square of the curl is the negative of the Laplacian for divergence-

free vector fields, we will need the formula for the Laplacian of a scalar function in

spherical coordinates. It is:

∆f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (2.5)

It will also be helpful to have the formula for the gradient of a scalar function in

spherical coordinates:

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂ . (2.6)

We need one more preliminary formula, for the Laplacian of the standard round

metric induced on the sphere S2(r) of radius r in Euclidean space. Because the

Euclidean metric in R3 is given in spherical coordinates by

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 ,

it is easy to see that the metric induced on S2(r) is

ds2
r = r2(dθ2 + sin2 θ dφ2) ,

where r is taken to be a constant. The Laplacian with respect to this metric of a

function g defined only on S2(r) is then

∆r(g) =
1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂g

∂θ

)
+

1

sin2 θ

∂2g

∂φ2

)
. (2.7)

III. r̂ component of the general solution
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Now we turn to solving the equation ∇ × V = λV on the spherically symmetric

domain Ω. We are looking for three functions u(r, θ, φ), v(r, θ, φ) and w(r, θ, φ) that

satisfy the system of three partial differential equations (2.1),(2.2) and (2.3). We also

want V to be tangent to the boundary of Ω. This translates into boundary conditions

on u as follows: If Ω is the ball B3(b), then we require u(0, θ, φ) to be bounded and

u(b, θ, φ) = 0. If Ω is the spherical shell B3(a, b), then we require that u(a, θ, φ) = 0

and u(b, θ, φ) = 0.

In this section we will concentrate on u, the r̂ component of V . Our motivation

comes from the fact that for divergence-free vector fields, we have∇×∇×V = −∆V .

In rectangular coordinates, ∆V is simply the coordinate-wise Laplacian of V . But in

spherical coordinates, this is no longer the case. We concentrate on u because it is

the “most rectangular” of the spherical coordinates (in that the integral curves of r̂

are straight lines) and extract our second-order PDE for u from the r̂ component of

∇×∇× V = λ2V .

Proposition 1. Let Ω be the ball B3(b) or the spherical shell B3(a, b). If u(r, θ, φ)

is the r̂ component of a divergence-free eigenfield V of ∇ × V = λV on Ω, then u

must satisfy the equation

∆u +
2

r

∂u

∂r
+

2

r2
u = −λ2u (3.1)

together with the boundary conditions u(0, θ, φ) is bounded and u(b, θ, φ) = 0 if Ω =

B3(b), or u(a, θ, φ) = 0 and u(b, θ, φ) = 0 if Ω = B3(a, b).

Proof. The proposition follows from two observations about eigenfields of the curl

operator. If ∇× V = λV and ∇ · V = 0, then ∆V = −λ2V . And for any vector field

V = ur̂ + vθ̂ + wφ̂ that satisfies ∆V = −λ2V and ∇ · V = 0, we have that

∆(ru) = −λ2(ru).
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To see this, define the vector field R = xi + yj + zk = rr̂ and suppose that in

rectangular coordinates V = ai + bj + ck. Then R · V = ru and so

∆(ru) = ∆(R · V ) = ∆(xa + yb + zc)

= x∆a + y∆b + z∆c + 2(
∂a

∂x
+

∂b

∂y
+

∂c

∂z
)

= R ·∆V + 2∇ · V = −λ2R · V

= −λ2(ru).

We use formula (2.5) to calculate that ∆r = 2/r and of course ∇r = r̂; therefore

∆(ru) = r∆u + 2(∇r) · (∇u) + u∆r = r∆u + 2
∂u

∂r
+

2

r
u = −λ2ru.

Divide both sides by r to obtain the equation in the proposition. The boundary

conditions follow easily from the fact that u = V · n on the boundary.

This completes the proof of Proposition 1. Our task now is to solve the boundary-

value problem for u.

Proposition 2. On the ball B3(b), the eigenvalues of equation (3.1) are given by

the set {λ(n)
k } for n = 1, 2, 3, . . . and k = 1, 2, 3, . . ., where the product bλ(n)

k is the kth

(positive) zero of the Bessel function Jn+1
2
(x). Each eigenvalue λ(n)

k has multiplicity

2n + 1 with eigenfunctions given by:

u(r, θ, φ) = r−3/2Jn+1
2
(λ

(n)
k r)Pm

n (cos θ)

{
cos mφ

sinmφ

}

where m runs from 0 to n ∈ {1, 2, 3, . . .} (and of course we can only use the cosine

solution for m = 0).

Proposition 3. On the spherical shell B3(a, b), the eigenvalues and eigenfunctions

of equation (3.1) are determined as follows: For every choice of n ∈ {0, 1, 2, . . .} and

each λ > 0, there are constants c1 and c2 such that:

R(a) = c1Jn+1
2
(λa) + c2Yn+1

2
(λa) = 0,
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and there is an infinite sequence of values of λ, which we label λ(n)
k , such that

R(b) = c1Jn+1
2
(λ

(n)
k b) + c2Yn+1

2
(λ

(n)
k b) = 0.

These values of λ(n)
k are our eigenvalues corresponding to the fixed value of n. The

multiplicity of λ
(n)
k is 2n + 1, and we have

u(r, θ, φ) = r−3/2
(
c(n)
1k Jn+1

2
(λ(n)

k r) + c(n)
2k Yn+1

2
(λ(n)

k r)
)
Pm
n (cos θ)

{
cosmφ

sin mφ

}

where n ∈ {1, 2, 3, . . .}, k ∈ {1, 2, 3, . . .} and m runs from 0 to n.

Proof of Propositions 2 and 3. According to the proof of Proposition 1, ru(r, θ, φ) is an

eigenfunction of the Laplacian with eigenvalue −λ2. So we can begin by dividing the

well-known expressions for eigenfunctions of the Laplacian in spherical coordinates

by r (see Stratton18, p. 404, eq. 22 for a classic reference). We find that all of the

separable solutions of equation (3.1) are of the form:

Cλmnr
−3/2

Jn+1
2
(λr)

Yn+1
2
(λr)

 Pm
n (cos θ)

{
cos mφ

sinmφ

}

where we shall determine λ from the boundary conditions, and thus far we have that

n ∈ {0, 1, 2, . . .} and m ∈ {0, 1, 2, . . . , n}. In this equation Jn+1
2

and Yn+1
2

are Bessel

functions of the first and second kinds of order n+ 1
2
, and Pm

n are associated Legendre

functions.

We now turn to the issue of boundary conditions, which will discretize the set of

λ that can occur.

For the ball B3(b), we note that only Bessel functions of the first kind Jn+1
2
(λr)

may appear, and not the Yn+1
2
. This is because the J ’s remain bounded and the

Y ’s become unbounded as r approaches zero (in fact Yν(x) is asymptotic to x−ν as x

approaches zero, see Lebedev19, p. 135). Therefore the r part of the solution on the

sphere must be r−3/2Jn+1
2
(λr). Also, since Jν(x) is asymptotic to xν as x approaches

zero (see Lebedev19, p. 134), we see that the solution for n = 0, which is r−3/2J1/2(λr),

will be unbounded as r→ 0. This yields the conclusion of Proposition 2.
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The situation for the spherical shell B3(a, b) is a little more complicated. For every

choice of n ∈ {0, 1, 2, . . .} and each λ > 0, there are constants c1 and c2 (unique up

to scalar multiple of the vector [c1, c2]) such that:

R(a) = c1Jn+1
2
(λa) + c2Yn+1

2
(λa) = 0.

This determines R(r) up to a constant multiple. For most values of λ, we will have

R(b) 6= 0. But there will be an infinite sequence of λ, which we label λ
(n)
k as above,

such that

R(b) = c1Jn+1
2
(λ

(n)
k b) + c2Yn+1

2
(λ

(n)
k b) = 0.

These values of λ
(n)
k will be our eigenvalues for curl corresponding to the fixed value

of n. As in the case of the ball, the multiplicity of λ
(n)
k is 2n+1. Also, as in the case of

the ball, we may not choose n = 0, although the reason for this is more complicated,

and we will discuss it at the end of the next section. Our r̂ components for the region

between two concentric spheres are thus

u(r, θ, φ) = r−3/2
(
c(n)
1k Jn+1

2
(λ(n)

k r) + c(n)
2k Yn+1

2
(λ(n)

k r)
)
Pm
n (cos θ)

{
cosmφ

sin mφ

}

where n ∈ {1, 2, 3, . . .}, k ∈ {1, 2, 3, . . .} and m runs from 0 to n as before, proving

Proposition 3.

IV. An ordinary differential system for the θ̂ and φ̂ components

Now we turn to finding the θ̂ and φ̂ components of our solution to ∇× V = λV .

We assume that we have in hand a function u(r, θ, φ) that satisfies equation (3.1).

Our first goal is to prove that given any such function u, there is at most one pair of

functions v and w so that the vector V = ur̂ + vθ̂ + wφ̂ satisfies ∇× V = λV (and

∇ · V = 0 in the case where λ = 0).

Proposition 4. Let Ω = B3(a, b) (where a is allowed to be 0), and suppose that the

function u(r, θ, φ) is given. If v1(r, θ, φ), w1(r, θ, φ) and v2(r, θ, φ), w2(r, θ, φ) are two

pairs of functions such that both V1 = ur̂+ v1θ̂ +w1φ̂ and V2 = ur̂ + v2θ̂ +w2φ̂ satisfy
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∇ × V1 = λV1 and ∇ × V2 = λV2 (and ∇ · V1 = ∇ · V2 = 0 in case λ = 0), then it

must be the case that v1 = v2 and w1 = w2.

Proof. Because V1 and V2 are eigenfields of the vector Laplace operator, as noted in

the proof of Proposition 1, they are smooth on the interior of Ω by elliptic regularity.

Set f = v1− v2 and g = w1−w2. Then the vector field Q = V1−V2 = fθ̂ + gφ̂ is also

smooth on the interior of Ω and therefore its components relative to any orthonormal

coordinate system are bounded. In particular, this holds for spherical coordinates,

despite the singularities in the coordinate system along the z-axis. Furthermore, Q

satisfies ∇×Q = λQ and ∇ ·Q = 0.

The r̂ component of the equation ∇×Q = λQ is

1

r sin θ

(
∂

∂θ
(sin θ g)− ∂f

∂φ

)
= 0 ,

and

∇ ·Q =
1

r sin θ

(
∂

∂θ
(sin θ f) +

∂g

∂φ

)
= 0.

The first of these equations implies that

∂2

∂φ∂θ
(sin θ g) =

∂2f

∂φ2

and the second implies that

∂2

∂φ∂θ
(sin θ g) = − ∂

∂θ

(
sin θ

∂

∂θ
(sin θ f)

)
.

Together, these last two equations imply that

∂

∂θ

(
sin θ

∂

∂θ
(sin θ f)

)
+

1

sin θ

∂2

∂φ2
(sin θ f) = 0.

We divide this equation by r2 sin θ and recognize it (using formula (2.7) for the Lapla-

cian on the sphere) as the condition ∆r(sin θ f) = 0 for each value of r. Thus, the

restriction of sin θ f to any sphere centered at the origin is a harmonic function, and

is hence constant on the sphere. Because f must be bounded and continuous as re-

marked above, sin θ f is zero at the north and south poles of the spheres. Therefore
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f is identically zero. A similar argument shows that g must be identically zero as

well, proving the proposition.

Now we know that for each eigenfunction u of equation (3.1) there can be at most

one eigenfield V of ∇× V = λV having u as its r̂ component. We now show that all

of the eigenfunctions found in Propositions 2 and 3 give rise to eigenfields. To save

notation, we will write Jν(λr) instead of c1Jν(λr) + c2Yν(λr) in the statement and

proof of the following proposition. Also, where there are functions one atop the other

and plus and minus signs one atop the other, only two solutions are represented: one

must select all of the top choices or all of the bottom ones.

Proposition 5. Suppose n ∈ {1, 2, 3, . . .}. Let u be one of the 2n+1 eigenfunctions

of equation (3.1) on B3(a, b) (where a is allowed to be zero in the case of the ball)

corresponding to the eigenvalue λ = λ(n)
k of Proposition 2 or 3, with u(a, θ, φ) =

u(b, θ, φ) = 0 (or u(0, θ, φ) is bounded in the case of the ball). Set ν = n + 1
2
, choose

m ∈ {0, 1, . . . , n}, and write

u = (ν2 − 1
4
)r−3/2Jν(λr)Pm

n (cos θ)

{
cosmφ

sin mφ

}
.

Then for

v =
1

r

∂

∂r

(√
rJν(λr)

) ∂

∂θ
Pm
n (cos θ)

{
cosmφ

sinmφ

}
∓ λm√

r
Jν(λr)

Pm
n (cos θ)

sin θ

{
sinmφ

cos mφ

}

and

w = ∓m

r

∂

∂r

(√
rJν(λr)

) Pm
n (cos θ)

sin θ

{
sinmφ

cos mφ

}
− λ√

r
Jν(λr)

∂

∂θ
Pm
n (cos θ)

{
cos mφ

sinmφ

}

the vector field V = ur̂+vθ̂+wφ̂ satisfies ∇×V = λV and V ·n = 0 on the boundary

of the domain.

Proof. One obvious way to prove this proposition is to check that V as specified

actually solves the equation ∇×V = λV . On the other hand, this would give no clue
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as to how v and w were calculated. So we give an indication of how we solved for v

and w. To begin, we assume that we have u(r, θ, φ) as in the proposition, and set

f =
1

sin θ

∂u

∂φ
and g =

∂u

∂θ
.

Then the θ̂ and φ̂ components of ∇× V = λV become

1

r

(
f − ∂

∂r
(rw)

)
= λv and

1

r

(
∂

∂r
(rv)− g

)
= λw. (4.1)

So we let p = rv and q = rw and note that these equations can be considered to be

a system of two ordinary differential equations in p and q with r as the independent

variable, and parameters that depend on θ and φ. The equations are

p′ − λq = g and q′ + λp = f. (4.2)

We need to find a particular solution of this constant-coefficient system of ODEs. We

did so by a variation on the method of undetermined coefficients, expanding p and q

as

p =
∑
τ

aτr
1/2Jτ(λr) and q =

∑
τ

bτr
1/2Jτ(λr)

where τ ranges over half-integers (i.e., numbers of the form k + 1
2
, where k is an

integer). We used several well-known identities for Bessel functions to show that

all derivatives of r1/2Jτ (λr) can be expressed as linear combinations of terms of the

same sort, for various values of τ , thus giving us corresponding expansions for p′

and q′. We substituted the expansions for p, q, p′ and q′ into (4.2), and obtained a

recurrence relation for the coefficients aτ and bτ . We made the optimistic assumption

that aτ = bτ = 0 for all τ ≤ ν − 2, consistent with preliminiary calculations in

the axially symmetric case, in order to get the recurrence started. We then solved

recursively for the aτ and bτ , and were surprised and delighted to find that all but

three of these coefficients vanish, leaving us with finite sums for p and q. We used

our Bessel function identities once again to write v = p/r and w = q/r in the form

given in the statement of Proposition 5.

Finally, we note that we do not have to worry about any other solutions of the

system of ODEs from which we calculated p and q, because the solutions we have
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already found are smooth, and by Proposition 4, they are the only possible smooth

solutions. This completes the proof of Proposition 5.

We have thus calculated all the solutions of∇×V = λV with the possible exception

of solutions that come from Proposition 3 for n = 0 on the domain B3(a, b). We now

eliminate this possibility.

Proposition 6. There are no nonzero solutions of ∇ × V = λV with ∇ · V = 0

having r̂ component equal to a function of r alone.

This will deal with the n = 0 case because the eigenvalues λ
(0)
k occur with multi-

plicity one, and because the Legendre function P 0
0 (cos θ) is a constant as is cos mφ

for m = 0.

Proof. To begin the proof of Proposition 6, we return to the system (4.1) of ODEs

for the θ̂ and φ̂ components of V = ur̂ + vθ̂ + wφ̂, which are implied by the θ̂ and φ̂

components of ∇×V = λV . Since u is a function of r alone, these components yield

the system

∂(rw)

∂r
= −λrv

∂(rv)

∂r
= λrw.

These imply that

v =
c1(θ, φ)

r
sin(λr) − c2(θ, φ)

r
cos(λr)

w =
c1(θ, φ)

r
cos(λr) +

c2(θ, φ)

r
sin(λr)

where c1 and c2 are smooth functions on the (unit) sphere. The r̂ component of

∇× V = λV multiplied by r2 now becomes the equation:

cos(λr)

(
1

sin θ

∂

∂θ
(sin θ c1) +

1

sin θ

∂c2

∂φ

)

+ sin(λr)

(
1

sin θ

∂

∂θ
(sin θ c2)−

1

sin θ

∂c1

∂φ

)
= λr2u(r).

We substitute two different values of r (that don’t differ by 2π/λ) into the equation

to see that the two expressions in parentheses must be constants, call them α and β.
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If we integrate the first of them over the (unit) sphere, we get that

∫ π

0

∫ 2π

0

(
∂

∂θ
(sin θ c1) +

∂c2

∂φ

)
dφdθ =

∫ π

0

∫ 2π

0
α sin θ dφdθ.

The integral on the left is zero because sin θ c1 is zero for θ = 0 and θ = π, and hence

its θ-derivative must θ- integrate to zero, and c2 is 2π-periodic in φ so its φ-derivative

must φ-integrate to zero. But the integral on the right is 4πα, so α = 0. Similarly

β = 0. And since

α cos(λr) + β sin(λr) = λr2u,

with λ 6= 0, we have that u = 0, in which case we must also have v = w = 0 by

Proposition 4. This completes the proof of Proposition 6.

Propositions 5 and 6 insure that we have found all of the eigenvalues and eigenfields

for the equation ∇× V = λV that are divergence-free on B3(a, b) and tangent to the

boundary.

V. Completeness and comparison with Chandrasekhar-Kendall solutions

Chandrasekhar and Kendall14 gave a method for constructing solutions of∇×V =

λV from scalar eigenfunctions of the Laplace operator (solutions of ∆u = −λ2u) and

simple (usually parallel) vector fields. We reviewed this technique6, and showed that,

although it missed some of the eigenfields of ∇× V = λV on the flat solid torus, it

did find all those which are divergence-free and tangent to the boundary.

The vector fields constructed in the preceding section constitute all of (or at least

a basis for, since all of the eigenvalues are multiple) the eigenfields of ∇ × V =

λV that are divergence-free and tangent to the boundary of the ball B3(b) or the

domain B3(a, b) between two concentric spheres. This follows from the fact that we

have complete sets of solutions of the Dirichlet problem for equation (3.1) for the

r̂ components of the eigenfields on both domains, and from Propositions 4 and 6,

which show that for each solution u of this equation, either there is a unique pair of

functions v and w that complete u to a solution V = ur̂ + vθ̂ + wφ̂ of ∇× V = λV

or else there is none.
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On the ball, all of these vector fields were found by Chandrasekhar and Kendall14,

where there was no discussion of their completeness as solutions of the boundary-value

problem. We have written our solutions so that they can be immediately recognized

as the same as their equations (12), (13) and (14), although they have a misprint in

equation (13). The new aspects of our work are to find the solutions on spherical

shells as well as balls, and to demonstrate the completeness and energy-minimizing

properties of our solutions.

VI. Energy minimizers

To find the energy-minimizers on our domains B3(b) and B3(a, b), we have to find

the eigenvalues of ∇×V = λV having smallest nonzero absolute value. Since we have

in our possession all of the solutions of this equation, the task is not too difficult. We

will prove the following:

Proposition 7. The smallest non-zero eigenvalue of ∇×V = λV on B3(b) and on

B3(a, b) is λ
(1)
1 , in the notation of Propositions 2 and 3.

Proof. Since the eigenvalues certainly satisfy

λ(n)
1 < λ(n)

2 < λ(n)
3 < · · ·

(since these are successive zeroes of some combination of Bessel functions), in order

to prove the proposition, it is sufficient to show that

λ(1)
1 < λ(2)

1 < λ(3)
1 < · · · ,

i.e., that λ(n1)
1 < λ(n2)

1 if n1 < n2.

Recall from Propositions 2 and 3 and their proofs that the eigenvalues λ(n)
k are the

values of λ for which the expression

Snλ(r) = AJn+1
2
(λr) + BYn+1

2
(λr)

is nonzero but vanishes for both r = a and r = b, where A and B are chosen so that

Snλ(a) = 0. For the ball, a = 0, which implies that B = 0 but we have Snλ(0) = 0 in
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this case as well, since the function u(r, θ, φ) is smooth and has an additional factor

of r−3/2. Being a linear combination of Bessel functions of order n+ 1
2

with argument

λr, the function Snλ satisfies the differential equation

r2 d2Snλ
dr2

+ r
dSnλ
dr

+
(
λ2r2 − (n + 1

2
)2

)
Snλ = 0

(see Stratton18, p. 404).

We shall use Sturm’s comparison theorem20. Suppose f(x) is a nonzero function

that satisfies f ′′ + P (x)f = 0 with f(a) = 0 and g(x) is a nonzero function that

satisfies g′′ + Q(x)g = 0 with g(a) = 0 (or we could assume f ′(a) = g′(a) = 0).

Sturm’s comparison theorem tells us that if P (x) ≥ Q(x) for all x, then on any

interval containing a and no (other) zeroes of f(x), there can be no (other) zeroes of

g(x). Moreover, the “next” zero of f(x) must be closer to a than that of g(x).

In order to apply Sturm’s theorem to our problem, we need to make a change of

variables to eliminate the first-order term in the differential equation. If we define

F (r) =
√

r Snλ (r), then F will satisfy the equation

d2F

dr2
+

(
λ2 − n(n + 1)

r2

)
F = 0.

Suppose F (1)
1 is the solution of our equation that satisfies F (1)

1 (x) > 0 for all x between

a and b, and F
(1)
1 (b) = 0. So F

(1)
1 satisfies

d2F (1)
1

dr2
+

(
(λ(1)

1 )2 − 2

r2

)
F (1)

1 = 0.

For any λ < λ(1)
1 , and any n > 1, we will certainly have

λ2 − n(n + 1)

r2
< (λ(1)

1 )2 − 2

r2
.

Sturm’s theorem tells us that no nonzero F corresponding to such values of λ and n

can satisfy F (a) = F (b) = 0. Therefore all of the other eigenvalues of the boundary-

value problem at hand must be larger than λ
(1)
1 . Repeated application of the argument

will prove the stronger inequality λ(n1)
1 < λ(n2)

1 if n1 < n2. This proves Proposition 8.
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With the help of Maple, Table 1 contains values of λ(1)
1 for B3(a, b), where a =

(b3 − 1)1/3 (so all of the domains have the same volume as the unit ball):

a b λ(1)
1 a b λ(1)

1

0 1 4.493409458 1.334200824 1.5 18.97447753
.1442730320 1.001 4.568933565 1.912931183 2 36.08896092
.2470322424 1.005 4.799466836 4.986630952 5 234.9901755
.3117589910 1.01 5.033680133 9.996665555 10 942.1635951
.5401839794 1.05 6.423856305 99.99996667 100 94257.20533
.6917396417 1.1 7.858576168 999.9999997 1000 9424777.95775

Table 1. Minimum eigenvalues λ(1)
1 on B3(a, b).

From this data one can infer (correctly) that among all spherically symmetric domains

with a given volume, the ball has the smallest value of λ
(1)
1 , i.e., it supports the field

of smallest energy for given helicity in a given volume. This is reminiscent of the

situation for Dirichlet eigenvalues of the Laplace operator21, where the ball has the

smallest possible λ1 among all domains of the same volume in 3-space. On the other

hand, we have shown22 that the ball does not support the field of smallest energy for

given helicity among all (not necessarily spherically symmetric) domains of the same

volume in 3-space.

All of the eigenfields corresponding to the first eigenvalue on spherically symmetric

domains are axially symmetric. The multiplicity of the eigenvalue λ
(1)
1 is three, corre-

sponding to three dimensions’ worth of choices for the axis of symmetry. Maple plots

of the three component functions (u, v and w in V = ur̂ + vθ̂ + wφ̂) corresponding
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to b = 1.02 on a constant-φ section of the domain B3(a, b) are in Figure 3.

Figure 3. Level curves of the r̂, θ̂ and φ̂ components of the

energy-minimizing vector field on a constant-φ section of a spherical shell.

This yields the description in the introduction of the vector field with minimal energy

on this spherical shell. The intersections of the invariant surfaces under the flow of

the vector field with a constant-φ section of the domain are shown in the first plot in

the next section.

VII. Other eigenfields

It is interesting to examine the nature of the eigenfields of our problem for the

curl operator corresponding to the other eigenvalues λ
(n)
k . We will look at the axially

symmetric (m = 0) solutions corresponding to other eigenvalues. The topology of

these solutions is essentially the same whether the domain is B3(b) or B3(a, b), so we

will exhibit them only for one specific B(a, b). Each is made up of several families

of invariant tori (nk of them), half of which cycle in one direction around the z-axis

and the other half cycle the other way. We look at plots of the intersections with

the φ = 0 half-plane of the surfaces that are invariant under the flow defined by the

eigenfields corresponding to λ(1)
1 , λ(1)

2 , λ(1)
3 , λ(2)

1 , λ(3)
1 and λ(2)

2 below. The first three

plots are in Figure 4, and the last three are in Figure 5.
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Figure 4. Traces of invariant surfaces for λ(1)
1 , λ(1)

2 and λ(1)
2 vector fields

on a spherical shell.
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Figure 5. Traces of invariant surfaces for λ(2)
1 , λ(3)

1 and λ(2)
2 vector fields

on a spherical shell.

We see that there are k radial layers of n families each. This topological arrange-

ment is independent of the values of a and b in B3(a, b).

It is also interesting to calculate the eigenvalues to learn about the ordering of

the energies of the eigenfields. We learn that as the spherical shell gets thinner and

thinner, it is possible to expend less energy for given helicity by having a single radial

layer with many families of tori (n large and k = 1) rather than to have even two
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layers with a single family each (n = 1, k = 2). Tables 2, 3, 4 and 5 report the

eigenvalues of curl for various B(a, b). The values of a and b have been chosen so that

the volumes of all of the domains are the same as the volume of the unit ball.

n = 1 n = 2 n = 3 n = 4 n = 5

k = 1 4.49341 5.76346 6.98792 8.18256 9.35581
k = 2 7.72525 9.09501 10.4171 11.7949
k = 3 10.9041 12.3229 13.6980 15.0397
k = 4 14.0662 15.5146 16.9236
k = 5 17.2208 18.6890 20.1218
k = 6 20.3713 21.8539 23.3042

Table 2. Values of λ
(n)
k on the ball B3(1).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1 5.03368 5.92554 6.99240 8.12397 9.26946 10.4104
k = 2 9.32168 9.93620 10.7867
k = 3 13.7236
k = 4 18.1695

Table 3. Values of λ(n)
k on the shell B3(0.312, 1.01).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 11 n = 12

k = 1 7.85858 8.17541 8.62800 9.19535 9.85647 10.5924 14.9312 15.8707
k = 2 15.4746

Table 4. Values of λ(n)
k on the shell B3(0.692, 1.1).

n = 1 n = 2 n = 3 n = 20 n = 100 n = 121 n = 122 n = 125

k = 1 36.0890 36.1034 36.1251 37.5717 62.7739 71.8208 72.2631 73.5952
k = 2 72.1671 72.1743

Table 5. Values of λ(n)
k on the shell B3(1.913, 2).
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VIII. Summary and Conclusions

We have given a complete proof that every eigenfield of curl (equivalently, constant-

λ force free field) which is divergence-free and tangent to the boundary of a spherically

symmetric domain in 3-space is one of the fields described in Propositions 2, 3 and 5;

that the only possible values for λ are the λ(n)
k ; and that λ(1)

1 is the least among them

(Proposition 7).

These facts, together with our previous work7,8 on helicity and energy, allow us to

conclude that the Taylor state for a low-beta plasma in a spherically symmetric vessel

with highly conducting walls must be the spheromak field derived by Chandrasekhar-

Kendall14 and Woltjer1,15 in the case of a solid ball, and the spheromak-like fields

derived in this paper in the case of a spherical shell.

We have also observed that the topology of the field with eigenvalue λ
(n)
k is similar

on all the spherical shells B(a, b), even though the ordering of the λ
(n)
k depends on a

and b (except for λ(1)
1 ).

In addition, we proved that the eigenvalue λ(1)
1 on the ball is minimal among all

the eigenvalues on spherically symmetric domains of the same volume. However22,

there are other domains (not spherically symmetric) of equal volume on which the

minimal eigenvalue is smaller than that on the ball.
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