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1. Geometric Averaging
Operators



The Setup

Consider a map x! xΣ from points in Rn to
submanifolds xΣ of Rn0 and construct an operator
which averages functions over the submanifolds:

Tf(x) :=
∫

xΣ
f(y)w(x; y)d�(y):

More precisely, we say (Ω; �;Σ) is a smooth incidence
relation on Rn � Rn0 of codimension k when

� DOMAIN: Ω � R
n � Rn0 is open

� DEFINING FUNCTION: � : Ω! R
k is smooth
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� JACOBIAN: jjdx�(x; y)jj! for any n-tuple ! := f!ig
n
i=1

of vectors in Rn is given by[
1
k!

n∑
i1;:::;ik=1

∣∣∣det [(!i1 � rx)� � � � (!ik � rx)�
]∣∣∣2] 1
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When ! is omitted, use default coordinates.
� INCIDENCE RELATION:
Σ :=

{
(x; y)

∣∣ �(x; y) = 0; jjdx�(x; y)jj; jjdy�(x; y)jj > 0
}
:

� SLICES: xΣ and Σy are slices with fixed x and y, resp.
� NATURALMEASURE: On each xΣ and Σy, � denotes

what will be called the coarea measure (or the
Leray or microcanonical measure).
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� Similar operators appear in many contexts and are
beyond Calderón-Zygmund theory.

� There are (at least) two main types of estimates:
Lp-improving estimates and Lp-Sobolev.
� The relationship between the two types is quite complicated.
� Lp-improving properties are implied by Fourier restriction.

� A long-term goal is to identify structural properties
that allow one to read off boundedness properties.
Tao and Wright (2003) embodies this idea.

The Big Problem: There’s essentially no idea what the
right type of quantitative nondegeneracy criterion is.
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Agenda for Today

� A new, non-local testing condition for a family of
Radon-Brascamp-Lieb inequalities.

� Exploration of the implications for “model operators”
whose properties are governed by the order 2 Taylor
jets of submanifolds.

� Initial steps towards understanding the new sort of
uniform sublevel set inequalities that arise;
development of local criteria.

� Extensive details of proofs.
� Passage from algebraic to smooth.
� In-depth study of uniform sublevel set inequalities. 4



2. Testing Conditions



Theorem: Testing Conditions

� ENSEMBLE OF RADON-LIKE OPERATORS: For each
j = 1; : : : ;m, let Tj equal

Tjf(x) :=
∫

xΣj

fj(yj)wj(x; yj)d�j(yj)

for all nonnegative Borel-measurable fj on Rnj

associated to an algebraic �j : Rn � Rnj ! R
kj .

� CRITICAL SCALING LINE: Let p1; : : : ;pm 2 [1;1) and
q1; : : : ;qm 2 (0;1) satisfy

n =

m∑
j=1

kjqj
pj
:
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Then∫
Rn

m∏
j=1
jTjfj(x)jqjdx � C

m∏
j=1
jjfjjjqj

Lpj(Rnj)
8f1; : : : ; fm

if and only if

∏
j :pj=1

sup
yj2xΣj

jwj(x; yj)jqj

jjdx�j(x; yj)jjqj
!

∏
j :pj>1

[∫
xΣj

jwj(x; yj)jp
0

jd�j(yj)
jjdx�j(x; yj)jj

p0j�1
!

] qj
p0j

is uniformly bounded over all x and all f!ig
n
i=1 of

determinant 1. Here pj and p0j are Hölder dual
exponents.
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Lemma (Visibility Lemma, Continuous Version)
For any Borel measurable, nonnegative integrable
function  on the box BR := [�R; R)n, there exist Borel
measurable Rn-valued functions !x

1 ; : : : ; !
x
n on BR

such that j detf!x
i g

n
i=1j = 1 at all points and a

nonnegative Borel-measurable function  ̃ on BR
equal to  a.e. such that every polynomial map
� : Rn ! R

k with 1 � k � n satisfies∫
Σ�\BR

[
 ̃(x)

]n�k
n
jjd�(x)jj!xd�(x)

�Cn(deg�)

[∫
BR
 (x)dx

] n�k
n

:

7



What does this lemmamean?

Let f1(x); : : : ; fn(x) be (arbitrary) coordinate functions
that map BR to some box B0 and let  (x) := j det @f

@xj.
� Regard  �1=n(x)rf1(x); : : : ;  �1=n(x)rfn(x) as

“unit-size” covectors with respect to some norm.
The normalization makes the basis unit volume.

� Now take !1
x; : : : ; !

n
x to be the dual basis of vectors.

� The change of variables formula implies that∫
Σ�\BR

[ (x)]
n�k
n jjd�(x)jj!xd�(x) � CnK

[∫
BR
 (x)dx

] n�k
n

where K =max no. of transverse intersections of a
k-dim’l affine coordinate subspace and Σ� . 8



Visibility Lemma Guth (2010), Carbery-Valdimarsson (2013)
For any nonnegative integer-valued function M(Q)
defined on the lattice of unit cubes Λ1 � R

n, 9 an
algebraic hypersurface Z of degree at most
Cn(

∑
QM(Q))1=n such that Vis[Z \ Q] � M(Q) for all

Q 2 Λ1; where Vis[Z \ Q] is the mollified visibility, i.e.,
the reciprocal of the Euclidean volume of the convex
set of vectors u for which jjujj � 1 and

1
jB(Z; �)j

∫
B(Z;�)

∫
Z0\Q

ju � n̂(z0)jdHn�1(z0)dZ0 � 1:

Here n̂(z) is the unit normal to Z0 at the point z0.
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Point
Combining with a change of variables formula of
Zhang (2018) shows how to measure the size of d� in
some unnormalized, pointwise-varying system
f!x

1 ; : : : ; !
x
ng with volume like Vis[Z \ Q] on Q. This

system doesn’t depend on � and∫
Σ�

jjd�(x)jj!xd�(x) . (deg�)
(∑

Q
M(Q)

)n�k
n

Normalizing the !x
i above replaces jjd�(x)jj!x here by

(Vis[Z \ Q]) n�k
n jjd�(x)jj!x .

We now do a typical combo of rescaling and approx.
to get the continuous Visibility Lemma.
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There is a coarea/Fubini-type identity:∫
BR
[ ̃(x)] n�k

n

∫
xΣ
jf(y)jpjjdx�(x; y)jj!xd�(y)dx =∫

Rn0
jf(y)jp

∫
Σy\BR

[ ̃(x)] n�k
n jjdx�(x; y)jj!xd�(x)dy

� Bound RHS with continuous Visibility Lemma.
� Estimate LHS from below via Hölder:∫

xΣ
f(y)w(x; y)d�(y) �

[∫
xΣ
jf(y)jpjjdx�(x; y)jj!d�(y)

] 1
p

�

[∫
xΣ

jw(x; y)jp0d�(y)
jjdx�(x; y)jjp

0�1
!

] 1
p0

:

Argument structure is reminiscent of Christ (1998). 11



3. Model Operators



The NewGeometric Integral Game

1. You have some decomposable k-form
�(t) := �1(t) ^ � � � ^ �k(t) in Λk(Rn), t 2 U � R

d.
2. You choose some basis f!ig

n
i=1 of Rn which is

volume-normalized; let f�igni=1 be its dual basis.
3. You define �i1���ik(t) to be the coefficient of
�i1 ^ � � � ^ �ik when �(t) is expressed in this basis
(i1 < i2 < � � � < ik).

4. You let jj�(t)jj! :=
(∑

i1;:::;ik j�i1���ik(t)j
2)1=2.

5. You want a uniform (in !) estimate for the integral∫
U

dt
jj�(t)jj�!

:
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Moves of the Game

� For restricted strong type, you only need uniform
sublevel set estimates.

� If !0 = M!, then jj�(t)jj!0 � Ck;n(maxij jMijj
k)jj�(t)jj! .

Thus you can replace ! by !0 as long as M has
bounded entries.

� Row reducing and permuting, if V1 � V2 � � � � � Vn
and dimVj = R

n+1�j, wlog !j 2 Vj for each j.
� We can write as determinants:

jj�(t)jj! �
∑
i1;:::;ik

∣∣∣∣∣∣∣det
�1(t) � !i1 � � � �1(t) � !ik... . . . ...
�k(t) � !i1 � � � �k(t) � !ik


∣∣∣∣∣∣∣ : 13



Simplifications

� At any particular point t0, wlog �j(t) � !i = 0 for i > k.
� The best-case degeneracy scenario would be that

det(�j(t0) � !i)i;j=1;:::;k is not zero and that �j(t) � !i
vanishes at most to first order at t0 for i > k.

� In this best scenario, there is the following structure:

�(t) =
6=0 at t=t0︷ ︸︸ ︷
�1���k(t) �1 ^ � � � ^ �k

+
∑

i1<���<���<ik
6=(1;:::;k)

�i1���ik(t)︸ ︷︷ ︸
�

�i1 ^ � � � ^ �ik;

� vanishes to ord. s & can be written as s� s det. 14



Setup

� Recall Setup: Incidence relation of codimension k
inside Rn � Rn1 . Let d := n� k and d1 := n1 � k.

� Target Exponents: Lpb ! Lqb indicated by scaling
and Knapp-type examples:

pb =
kd
nd1

+ 1 and qb =
n1d
kd1

+ 1:

� Graph Structure: Assume that the submanifold
associated to x 2 Rn is the graph (t; �(x; t)) for
t 2 Rd1 . Suppose the Jacobian matrix Dx� (rows are
coordinates of � and columns are coordinates of x)
is rank k at (x; t). 15



Curvature Trilinear Form

� Curvature Form: Let w1; : : : ;wd be orthonormal in
R
n spanning the kernel of Dx� at the point (x; t). For

i 2 f1; : : : ;d1g, i0 2 f1; : : : ; kg, and i00 2 f1; : : : ;dg, let

Qii0i00 :=
n∑
`=1

w`
i00
@2�i

0

@ti@x` (x; t):

� Notation: Given a multiindex � 2 Zk
�0 and sequence

I := fi1; : : : ; isg � f1; : : : ; kg, say that � counts I
when the `-th entry of � equals the number of times
that ` appears in I .
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Generalized Newton Polytope

Let N(Q) be the convex hull in [0;1)d1+k+d of the triples
(�; �; ) 2 Zd1

�0 � Z
k
�0 � Z

d
�0, j�j = j�j = jj � minfd; kg,

(�; �; ) = (0;0;0) or 9 I := fi1; : : : ; isg � f1; : : : ; kg and
J := fj1; : : : ; jsg � f1; : : : ;dg such that � counts I , 
counts J , and

@�� j�=0 det

Q(�;ei1;ej1) � � � Q(�;ei1;ejs)... . . . ...
Q(�;eis;ej1) � � � Q(�;eis;ejs)

 6= 0;

where feigki=1 is the standard basis of Rk, fejgdj=1 is the
standard basis of Rd, and � 2 Rd1 .
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Generalized Newton Distance

NR(Q) :=
⋂{

N(Q0) j Q0(x; y; z) = Q(O1x;O2y;O3z)

for orthogonal matrices O1;O2;O3
}
:

The functional Q will be called nondegenerate when
the point

( d1 copies︷ ︸︸ ︷
dk
d1n

; : : : ;
dk
d1n

;

k copies︷ ︸︸ ︷
d
n ; : : : ;

d
n ;

d copies︷ ︸︸ ︷
k
n; : : : ;

k
n
)

belongs toNR(Q).
18







Local Characterization

Local Characterization of Model Operators
Suppose � is polynomial. Let∆ � [0; 1]2 be the closed
triangle with vertices (0;0); (1; 1) and (1=pb; 1=qb).
There exists a smooth cutoff function � nonvanishing
at (x; t) such that the cutoff Radon-like operator
T� : Lp;1 ! Lq for all pairs (p�1;q�1) 2 ∆ if and only if Q
is nondegenerate at (x; t).

19



Necessity is aDressed-upKnappExample
� We compute

∫
�F(x)T��G(x)dx. Let F � R

n be a
product of two ellipsoids: one tangential and one
transverse. Let G � R

n1 be points (t; y) where t 2
third ellipsoid and y 2 image of F under x 7! �(t; x).

� To leading order, for each t, the slice Gt is also an
ellipsoid. Its volume is comparable to

∑
s

∑
i;j

∣∣∣∣∣∣∣det
Q(t; vi1;wj1) � � � Q(t; vi1;wjs)... . . . ...
Q(t; vis;wj1) � � � Q(t; vis;wjs)


∣∣∣∣∣∣∣

for some bases fvig and fwig determined by F.
� @�t used to quantify how often jGtj is large/small. 20



Next Steps

� Known
� Details of the proof
� Passage from algebraic to smooth for restricted weak type
� Dealing with more degenerate objects

� Some Ideas
� Equivalent algebraic characterizations of the

nondegeneracy condition
� Unknown

� Upgrading sublevel set inequalities to integrability exponent
inequalities

� Moving off the critical scaling line
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Thank You
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