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1. Geometric Averaging
Operators



The Setup

Consider a map x — *x from points in R"” to
submanifolds Y of R and construct an operator
which averages functions over the submanifolds:

110 i= [ fly)wlx y)aio(y).
More precisely, we say (2, 7, ¥) is a smooth incidence

relation on R"” x R" of codimension k when

Q C R” x R is open
7 : Q — RKis smooth



® JACOBIAN: ||dym(X, y)||w for any n-tuple w := {w;}[L,
of vectors in R" is given by

5 e ol

When w is omitted, use default coordinates.
® INCIDENCE RELATION:

Y= {(xy) | m(xy) = 0. [|d(x. y)Il. [[dym(x. y)I| > O}.
® SLICES: "L and XY are slices with fixed x and y, resp.
e NATURAL MEASURE: On each *L and Y, ¢ denotes

what will be called the coarea measure (or the
Leray or microcanonical measure).



e Similar operators appear in many contexts and are
beyond Calderédn-Zygmund theory.

e There are (at least) two main types of estimates:
LP-improving estimates and LP-Sobolev.

» The relationship between the two types is quite complicated.
« LP-improving properties are implied by Fourier restriction.

® Along-term goal is to identify structural properties
that allow one to read off boundedness properties.
Tao and Wright (2003) embodies this idea.

The Big Problem: There’s essentially no idea what the
right type of quantitative nondegeneracy criterion is.



Agenda for Today

A new, non-local testing condition for a family of
Radon-Brascamp-Lieb inequalities.

Exploration of the implications for “model operators”
whose properties are governed by the order 2 Taylor
jets of submanifolds.

Initial steps towards understanding the new sort of
uniform sublevel set inequalities that arise;
development of local criteria.
Passage-from-algebraic-to-smooth:

- depth studv-of-unif blevelseti fities:,



2. Testing Conditions



Theorem: Testing Conditions

For each
j=1..., m, let T; equall

100 1= [ 0w ) (y)

)
for all nonnegative Borel-measurable f; on R"
associated to an 7t R” x R" — Rk.
Letpy, ..., Pm € [1,00) and



Then

/ Hm X)|qfdx<CH\|f\|Lp/R/ ..... fon

if and only if
9
I sup byl H[ |w,-(x,y,)fdo,(y,>]f
-
1o €5 a6 Yl ;7 L5 [ dem(x, )| 12

is uniformly bounded over all x and all {w;}, of
determinant 1. Here p; and p; are Hoélder dual
exponents.



For any Borel measurable, nonnegative integrable
function 7 on the box B := [—R, R)", there exist Borel
measurable R"-valued functions wjy, . . ., wx on Bg
such that | det{w!},| = 1at all points and a
nonnegative Borel-measurable function J on Bg
equal to 9 a.e. such that every polynomial map
m: R"” — R with 1 < k < n satisfies

n—k

/Z NBg [’{/;(X)} THdw(x)”cuxdﬁ(x)

n—k

<cifdegm) | [ wiax| "



What does this lemma mean?

Let f1(x), ..., fo(x) be (arbitrary) coordinate functions

that map Bk to some box B’ and let (x) := | det Z|.
Regard ¢~ /" (x)Vfi(x), ..., /" (x) V. (x) as
“unit-size” covectors with respect to some norm.
The normalization makes the basis unit volume.
Now take w}, . . ., wy, to be the dual basis of vectors.
The change of variables formula implies that

L ol (Lot < ik Ji | vi)an]

where K = max no. of transverse intersections of a
k-dim’l affine coordinate subspace and X.

n—k
n



For any nonnegative integer-valued function M(Q)
defined on the lattice of unit cubes A; C R”, 3 an
algebraic hypersurface Z of degree at most
Cn(>-oM(Q))"" such that Vis[z N Q] > M(Q) for alll

Q € A, where Vis[Z N Q] is the mollified visibility, i.e.,
the reciprocal of the Euclidean volume of the convex
set of vectors u for which ||u|| < 1and

] e
S : dH"(Z)dZ < 1.
\B(Ze)\/s(z,e)/m‘“ Nz )ldH™(z)az <

Here n(z) is the unit normal to Z’ at the point Z'.



~ Laffag MBY:
Loks o cuclnce

AN

oW with norwats

n W\A.v\t) <
d‘\ﬂdﬂm

|

/K




Combining with a change of variables formula of
Zhang (2018) shows how to measure the size of dr in
some , pointwise-varying system
{wf,. .., wX} with volume like Vis[Z N Q] on Q. This
system doesn't depend on 7 and

_/Z || (X)[]wrdo(x) S (deg ) (ZM(Q))n”k
i Q

Normalizing the w) above replaces ||d7(x)||.x here by
(Vis[zn Q])" || e (x)| |
We now do a typical combo of rescaling and approx.
to get the continuous Visibility Lemma.
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There is a coarea/Fubini-type identity:

/B [ O01" / _ ()Pl (X, y)||rdo(y) dx =
/R )P /z - [W()] || dym (X, y)|lwdo(x) dy

® Bound RHS with continuous Visibility Lemma.
e Estimate LHS from below via Hélder:

1

| twtx o) < | [ Plidnte pllacot)|

| [ [ lute y)P’da(y)] g
= (e )|

Argument structure is reminiscent of Christ (1998). "




3. Model Operators



The New Geometric Integral Game

You have some decomposable k-form

w(t) == () A« A pg(t) in A5(R"), t € U C RY.
You choose some basis {w;}; of R” which is
volume-normalized; let {v;}, be its dual basis.
You define ;.. (t) to be the coefficient of

vi A -+ - A v, when p(t) is expressed in this basis
(h <ip < <)

You want a uniform (in w) estimate for the integral
dt
vl eI 2



Moves of the Game

For restricted strong type, you only need uniform
sublevel set estimates.

If ' = Mew, then [[1(t)]ur < Cin(maxy IMyl)][1(2)] o
Thus you can replace w by w’ as long as M has
bounded entries.

Row reducing and permuting, if Vy D Vo D -+ D V,
and dim V; = R"™'J, wlog w; € V; for each j.

We can write as determinants:

pa(t) - wi oo (t) -
()]l ~ > |det - -

e pi(t) - wi - p(t) - wi 8



Simplifications

At any particular point to, wlog p(t) - w; = 0 fori > k.
The best-case degeneracy scenario would be that
det(u;(to) - wi)ij=,. k is not zero and that w;(t) - w;
vanishes at most to first order at ty fori > k.

In this best scenario, there is the following structure:

#0 at t=tg

—~
,u(t) = ,L,L]...k(t) AR AN 7

+ > i) A A
< <o < *'

#(1....k)

* vanishes to ord. s & can be written as s x s det. ”



Incidence relation of codimension k
inside R"” x R™M. Letd :=n—kandd; :=n; — k.
P> — [9 indicated by scaling
and Knapp-type examples:
kd md
Po = d]+1ondqb_k—d]+1
Assume that the submanifold

associated to x € R" is the graph (¢, ¢(x, t)) for

t € R9. Suppose the Jacobian matrix Dy¢ (rows are
coordinates of ¢ and columns are coordinates of x)
is rank k at (x, t). 15



Curvature Trilinear Form

Letw,, ..., Wy be orthonormal in
R" spanning the kernel of Dy¢ at the point (x, t). For
ied{l,..., o} i edl, ..., k},andi” €{1,..., d}, let

n

2¢I
Qijpjn := ZMIat’a 7
Given a multiindex 8 € ZX S0 and sequence
Z=Ah,..., ist c{1,..., k}, say that 8 7z
when the £-th entry of 8 equals the number of times
that £ appears in 7.



Generalized Newton Polytope

Let N(Q) be the convex hull in [0, co)? %9 of the triples
(@0, B.) € Ly x Zo x 2o || = |B] = || < min{d, k},
(a,8,7)=1(0,0,0)0or 347 :={iy, ..., isy C{1,..., k} and
J =4 ..., jsyc {1, ..., d} such that § counts Z, vy
counts 7, and
Q7 ei. ) - Q1,6 €)
02| _, det : : #0,
Q(T. e, ) - QT e e)
where {e;}, is the standard basis of R, {¢;}7, is the
standard basis of RY, and 7 € R



Generalized Newton Distance

Nz (Q) =({MQ) | Q'(x.y.2) = Q(Ow, 02y, 0s2)
for orthogonal matrices Oy, O, 03}.

The functional Q will be called nondegenerate when
the point

d, copies k copies d copies
( dk k d d k k )
dn’ an'n’ PUSSEEEE n

belongs to Nz (Q).



Codism L Exomeda® Q(x, y2) = y(e)

Ee;~%) Glt,ee) =L Ve

(10,40, 15,0056 -
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Local Characterization

Suppose ¢ is polynomial. Let A C [0, 1]? be the closed
triangle with vertices (0, 0), (1,1) and (1/pp, 1/9p).
There exists a smooth cutoff function  nonvanishing
at (x, t) such that the cutoff Radon-like operator

T, : LP1 — 19 for all pairs (p~',g7') € A if and only if Q
is nondegenerate at (x, t).



Necessity is a Dressed-up Knapp Example

We compute [ xr(x)T,xs(x)dx. Let F C R" be a
product of two ellipsoids: one tangential and one
transverse. Let G C R™ be points (t, y) where t €
third ellipsoid and y € image of F under x — ¢(t, x).
To leading order, for each t, the slice G; is also an
ellipsoid. Its volume is comparable to

Q(t, vy, w;) -+ Q(t v, w,)
ZZ det .. 3
CH Qt, vi,, wj) -+ Q(E Vi, W)
for some bases {v;} and {w;} determined by F.
0% used to quantify how often |G;| is large/small. 2o



Known
Details of the proof

Passage from algebraic to smooth for restricted weak type
Dealing with more degenerate objects

Some Ideas
Equivalent algebraic characterizations of the
nondegeneracy condition

Unknown
Upgrading sublevel set inequalities to integrability exponent
inequalities
Moving off the critical scaling line
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