Radon-Brascamp-Lieb Inequalities and Model Operators

Fourier Analysis @ 200, ICMS

Philip T. Gressman

1 July 2022

University of Pennsylvania

1. Geometric Averaging Operators

The Setup

Consider a map $x \to {}^{x}\Sigma$ from points in \mathbb{R}^{n} to submanifolds ${}^{x}\Sigma$ of $\mathbb{R}^{n'}$ and construct an operator which averages functions over the submanifolds:

$$Tf(x) := \int_{x\Sigma} f(y)w(x,y)d\sigma(y).$$

More precisely, we say (Ω, π, Σ) is a smooth incidence relation on $\mathbb{R}^n \times \mathbb{R}^{n'}$ of codimension *k* when

- DOMAIN: $\Omega \subset \mathbb{R}^n \times \mathbb{R}^{n'}$ is open
- **DEFINING FUNCTION:** $\pi : \Omega \to \mathbb{R}^k$ is smooth

• JACOBIAN: $||d_x \pi(x, y)||_{\omega}$ for any *n*-tuple $\omega := \{\omega_i\}_{i=1}^n$ of vectors in \mathbb{R}^n is given by

$$\left[\frac{1}{k!}\sum_{i_1,\ldots,i_k=1}^n \left|\det\left[(\omega_{i_1}\cdot\nabla_x)\pi\quad\cdots\quad(\omega_{i_k}\cdot\nabla_x)\pi\right]\right|^2\right]^{\frac{1}{2}}$$

When ω is omitted, use default coordinates.

• INCIDENCE RELATION:

$$\Sigma := ig\{(x,y) \mid \pi(x,y) = \mathsf{0}, ||d_x\pi(x,y)||, ||d_y\pi(x,y)|| > \mathsf{0}ig\}.$$

• **SLICES:** ${}^{x}\Sigma$ and Σ^{y} are slices with fixed *x* and *y*, resp.

 NATURAL MEASURE: On each ^xΣ and Σ^y, σ denotes what will be called the coarea measure (or the Leray or microcanonical measure).

- Similar operators appear in many contexts and are beyond Calderón-Zygmund theory.
- There are (at least) two main types of estimates:
 L^p-improving estimates and L^p-Sobolev.
 - The relationship between the two types is quite complicated.
 - *L^p*-improving properties are implied by Fourier restriction.
- A long-term goal is to identify structural properties that allow one to read off boundedness properties. Tao and Wright (2003) embodies this idea.

The Big Problem: There's essentially no idea what the right type of **quantitative** nondegeneracy criterion is.

Agenda for Today

- A new, non-local testing condition for a family of Radon-Brascamp-Lieb inequalities.
- Exploration of the implications for "model operators" whose properties are governed by the order 2 Taylor jets of submanifolds.
- Initial steps towards understanding the new sort of uniform sublevel set inequalities that arise; development of local criteria.
- Extensive details of proofs.
- Passage from algebraic to smooth.
- In-depth study of uniform sublevel set inequalities.

2. Testing Conditions

Theorem: Testing Conditions

• ENSEMBLE OF RADON-LIKE OPERATORS: For each

 $j = 1, \ldots, m$, let T_j equal

$$T_j f(x) := \int_{x_{\sum_j}} f_j(y_j) w_j(x, y_j) d\sigma_j(y_j)$$

for all nonnegative Borel-measurable f_j on \mathbb{R}^{n_j} associated to an **algebraic** $\pi_j : \mathbb{R}^n \times \mathbb{R}^{n_j} \to \mathbb{R}^{k_j}$.

• CRITICAL SCALING LINE: Let $p_1, \ldots, p_m \in [1, \infty)$ and $q_1, \ldots, q_m \in (0, \infty)$ satisfy

$$n = \sum_{j=1}^{m} \frac{k_j q_j}{p_j}$$

Then

$$\int_{\mathbb{R}^n} \prod_{j=1}^m |T_j f_j(x)|^{q_j} dx \leq C \prod_{j=1}^m ||f_j||_{L^{p_j}(\mathbb{R}^{n_j})}^{q_j} \quad \forall f_1, \ldots, f_m$$

if and only if

٠

$$\prod_{j:p_{j}=1} \sup_{y_{j}\in {}^{x}\Sigma_{j}} \frac{|w_{j}(x,y_{j})|^{q_{j}}}{||d_{x}\pi_{j}(x,y_{j})||^{q_{j}}_{\omega}} \prod_{j:p_{j}>1} \left[\int_{{}^{x}\Sigma_{j}} \frac{|w_{j}(x,y_{j})|^{p_{j}'} d\sigma_{j}(y_{j})}{||d_{x}\pi_{j}(x,y_{j})||^{p_{j}'-1}_{\omega}} \right]^{\frac{q_{j}}{p_{j}'}}$$

is uniformly bounded over all x and all $\{\omega_i\}_{i=1}^n$ of determinant 1. Here p_j and p'_j are Hölder dual exponents.

Lemma (Visibility Lemma, Continuous Version)

For any Borel measurable, nonnegative integrable function ψ on the box $B_R := [-R, R)^n$, there exist Borel measurable \mathbb{R}^n -valued functions $\omega_1^x, \ldots, \omega_n^x$ on B_R such that $|\det\{\omega_i^x\}_{i=1}^n| = 1$ at all points and a nonnegative Borel-measurable function $\widetilde{\psi}$ on B_R equal to ψ a.e. such that every polynomial map $\pi : \mathbb{R}^n \to \mathbb{R}^k$ with $1 \le k \le n$ satisfies

$$\int_{\Sigma_{\pi}\cap B_{R}} \left[\widetilde{\psi}(x)\right]^{\frac{n-k}{n}} ||d\pi(x)||_{\omega^{x}} d\sigma(x)$$
$$\leq C_{n}(\deg \pi) \left[\int_{B_{R}} \psi(x) dx\right]^{\frac{n-k}{n}}$$

What does this lemma mean?

Let $f_1(x), \ldots, f_n(x)$ be (arbitrary) coordinate functions that map B_R to some box B' and let $\psi(x) := |\det \frac{\partial f}{\partial x}|$.

- Regard ψ^{-1/n}(x)∇f₁(x),..., ψ^{-1/n}(x)∇f_n(x) as
 "unit-size" covectors with respect to some norm.
 The normalization makes the basis unit volume.
- Now take $\omega_x^1, \ldots, \omega_x^n$ to be the dual basis of vectors.
- The change of variables formula implies that

$$\int_{\Sigma_{\pi}\cap B_{R}}\left[\psi(x)\right]^{\frac{n-k}{n}}||d\pi(x)||_{\omega^{x}}d\sigma(x)\leq C_{n}\mathcal{K}\left[\int_{B_{R}}\psi(x)dx\right]^{\frac{n-k}{n}}$$

where $K = \max$ no. of transverse intersections of a k-dim'l affine coordinate subspace and Σ_{π} .

8

Visibility Lemma Guth (2010), Carbery-Valdimarsson (2013) For any nonnegative integer-valued function M(Q)

defined on the lattice of unit cubes $\Lambda_1 \subset \mathbb{R}^n$, \exists an algebraic hypersurface *Z* of degree at most $C_n(\sum_Q M(Q))^{1/n}$ such that $\overline{\text{Vis}}[Z \cap Q] \ge M(Q)$ for all $Q \in \Lambda_1$, where $\overline{\text{Vis}}[Z \cap Q]$ is the mollified visibility, i.e., the reciprocal of the Euclidean volume of the convex set of vectors *u* for which $||u|| \le 1$ and

$$\frac{1}{|B(Z,\epsilon)|}\int_{B(Z,\epsilon)}\int_{Z'\cap Q}|u\cdot\widehat{n}(z')|d\mathcal{H}^{n-1}(z')dZ'\leq 1.$$

Here $\widehat{n}(z)$ is the unit normal to Z' at the point z'.

Point

Combining with a change of variables formula of Zhang (2018) shows how to measure the size of $d\pi$ in some **unnormalized**, pointwise-varying system $\{\omega_1^x, \ldots, \omega_n^x\}$ with volume like $\overline{\text{Vis}}[Z \cap Q]$ on Q. This system doesn't depend on π and

$$\int_{\Sigma_{\pi}} || d\pi(x) ||_{\omega^{\mathsf{x}}} d\sigma(x) \lesssim (\deg \pi) \left(\sum_{Q} M(Q)
ight)^{rac{n-k}{n}}$$

Normalizing the ω_i^x above replaces $||d\pi(x)||_{\omega^x}$ here by $(\overline{\text{Vis}}[Z \cap Q])^{\frac{n-k}{n}} ||d\pi(x)||_{\omega^x}$.

We now do a typical combo of rescaling and approx. to get the continuous Visibility Lemma.

There is a coarea/Fubini-type identity:

$$\int_{B_R} [\widetilde{\psi}(x)]^{rac{n-k}{n}} \int_{x_{\Sigma}} |f(y)|^{
ho} ||d_x \pi(x,y)||_{\omega^x} d\sigma(y) \, dx = \ \int_{\mathbb{R}^{n'}} |f(y)|^{
ho} \int_{\Sigma^{Y} \cap B_R} [\widetilde{\psi}(x)]^{rac{n-k}{n}} ||d_x \pi(x,y)||_{\omega^x} d\sigma(x) \, dy$$

Bound RHS with continuous Visibility Lemma.Estimate LHS from below via Hölder:

$$\int_{x\Sigma} f(y)w(x,y)d\sigma(y) \leq \left[\int_{x\Sigma} |f(y)|^p ||d_x\pi(x,y)||_\omega d\sigma(y)\right]^{\frac{1}{p}} \cdot \left[\int_{x\Sigma} \frac{|w(x,y)|^{p'}d\sigma(y)}{||d_x\pi(x,y)||_\omega^{p'-1}}\right]^{\frac{1}{p'}} \cdot$$

11

Argument structure is reminiscent of Christ (1998).

3. Model Operators

The New Geometric Integral Game

1. You have some decomposable *k*-form

 $\mu(t):=\mu_1(t)\wedge\cdots\wedge\mu_k(t)$ in $\Lambda^k(\mathbb{R}^n), t\in U\subset\mathbb{R}^d.$

- You choose some basis {ω_i}ⁿ_{i=1} of ℝⁿ which is volume-normalized; let {ν_i}ⁿ_{i=1} be its dual basis.
- 3. You define $\mu_{i_1 \cdots i_k}(t)$ to be the coefficient of $\nu_{i_1} \wedge \cdots \wedge \nu_{i_k}$ when $\mu(t)$ is expressed in this basis $(i_1 < i_2 < \cdots < i_k)$.
- 4. You let $||\mu(t)||_{\omega} := \left(\sum_{i_1,\ldots,i_k} |\mu_{i_1\cdots i_k}(t)|^2\right)^{1/2}$.
- 5. You want a uniform (in ω) estimate for the integral

$$\int_{U} \frac{dt}{||\mu(t)||_{\omega}^{\tau}}.$$

Moves of the Game

- For restricted strong type, you only need uniform sublevel set estimates.
- If $\omega' = M\omega$, then $||\mu(t)||_{\omega'} \leq C_{k,n}(\max_{ij} |M_{ij}|^k)||\mu(t)||_{\omega}$. Thus you can replace ω by ω' as long as M has bounded entries.
- Row reducing and permuting, if $V_1 \supset V_2 \supset \cdots \supset V_n$ and dim $V_j = \mathbb{R}^{n+1-j}$, wlog $\omega_j \in V_j$ for each *j*.
- We can write as determinants:

$$||\mu(t)||_{\omega} pprox \sum_{i_1,\ldots,i_k} \left| \det egin{bmatrix} \mu_1(t) \cdot \omega_{i_1} & \cdots & \mu_1(t) \cdot \omega_{i_k} \ dots & \ddots & dots \ \mu_k(t) \cdot \omega_{i_1} & \cdots & \mu_k(t) \cdot \omega_{i_k} \end{bmatrix}
ight|.$$

Simplifications

- At any particular point t_0 , wlog $\mu_j(t) \cdot \omega_i = 0$ for i > k.
- The best-case degeneracy scenario would be that det(μ_j(t₀) · ω_i)_{i,j=1,...,k} is not zero and that μ_j(t) · ω_i vanishes at most to first order at t₀ for i > k.
- In this best scenario, there is the following structure:

$$\mu(t) = \overbrace{\mu_{1\cdots k}(t)}^{\neq 0 \text{ at } t=t_0} \nu_1 \wedge \cdots \wedge \nu_k \\ + \sum_{\substack{i_1 < \cdots < \cdots < i_k \\ \neq (1, \dots, k)}} \underbrace{\mu_{i_1 \cdots i_k}(t)}_{*} \nu_{i_1} \wedge \cdots \wedge \nu_{i_k},$$

* vanishes to ord. s & can be written as s \times s det.

- Recall Setup: Incidence relation of codimension k inside $\mathbb{R}^n \times \mathbb{R}^{n_1}$. Let d := n - k and $d_1 := n_1 - k$.
- Target Exponents: $L^{p_b} \rightarrow L^{q_b}$ indicated by scaling and Knapp-type examples:

$$p_b = rac{kd}{nd_1} + 1 ext{ and } q_b = rac{n_1d}{kd_1} + 1.$$

Graph Structure: Assume that the submanifold associated to $x \in \mathbb{R}^n$ is the graph $(t, \phi(x, t))$ for $t \in \mathbb{R}^{d_1}$. Suppose the Jacobian matrix $D_x \phi$ (rows are coordinates of ϕ and columns are coordinates of x) is rank k at (x, t).

Curvature Trilinear Form

• **Curvature Form:** Let w_1, \ldots, w_d be orthonormal in \mathbb{R}^n spanning the kernel of $D_x \phi$ at the point (x, t). For $i \in \{1, \ldots, d_1\}, i' \in \{1, \ldots, k\}$, and $i'' \in \{1, \ldots, d\}$, let

$$Q_{ii'i''} := \sum_{\ell=1}^{n} w_{i''}^{\ell} \frac{\partial^2 \phi^{i'}}{\partial t^i \partial x^{\ell}}(x, t).$$

Notation: Given a multiindex β ∈ Z^k_{≥0} and sequence

 I := {*i*₁,...,*i*_s} ⊂ {1,...,*k*}, say that β counts *I* when the ℓ-th entry of β equals the number of times
 that ℓ appears in *I*.

Generalized Newton Polytope

Let N(Q) be the convex hull in $[0, \infty)^{d_1+k+d}$ of the triples $(\alpha, \beta, \gamma) \in \mathbb{Z}_{\geq 0}^{d_1} \times \mathbb{Z}_{\geq 0}^k \times \mathbb{Z}_{\geq 0}^d$, $|\alpha| = |\beta| = |\gamma| \le \min\{d, k\}$, $(\alpha, \beta, \gamma) = (0, 0, 0)$ or $\exists \mathcal{I} := \{i_1, \ldots, i_s\} \subset \{1, \ldots, k\}$ and $\mathcal{J} := \{j_1, \ldots, j_s\} \subset \{1, \ldots, d\}$ such that β counts \mathcal{I}, γ counts \mathcal{J} , and

$$\left.\partial_{\tau}^{\alpha}\right|_{\tau=0} \det egin{bmatrix} Q(au, extbf{e}_{i_1}, extbf{e}_{j_1}) & \cdots & Q(au, extbf{e}_{i_1}, extbf{e}_{j_s}) \ dots & \ddots & dots \ Q(au, extbf{e}_{i_s}, extbf{e}_{j_1}) & \cdots & Q(au, extbf{e}_{i_s}, extbf{e}_{j_s}) \end{bmatrix}
eq 0,$$

where $\{e_i\}_{i=1}^k$ is the standard basis of \mathbb{R}^k , $\{e_j\}_{j=1}^d$ is the standard basis of \mathbb{R}^d , and $\tau \in \mathbb{R}^{d_1}$.

$$\mathcal{N}_{\mathcal{R}}(Q) := \bigcap \Big\{ N(Q') \mid Q'(x, y, z) = Q(O_1x, O_2y, O_3z) \Big\}$$

for orthogonal matrices O_1, O_2, O_3 .

The functional Q will be called nondegenerate when the point

Q(x, y, z) = y(x, z)Codim 1 Example: Rn-1 R Rn1 S=1 $(e_i \nabla_i) \Theta(\tau, e_i e_i) = 1$ terms ĴΨ -> alweers valid in any orthogonal only Counts a single 1. Coordinate system. $(1, 0, \dots, 0, 1, 1, 0, \dots, 0) \cdot \frac{1}{2}$ (0,1,0...0,1,0,1,0,--0). 5 $\begin{pmatrix} 1 \\ N, \cdots \end{pmatrix}$, $\begin{pmatrix} N-1 \\ N \end{pmatrix}$, $\begin{pmatrix} N-1 \\ N \end{pmatrix}$, $\begin{pmatrix} 1 \\ N \end{pmatrix}$, $\begin{pmatrix} N-1 \\ N \end{pmatrix}$, $\begin{pmatrix} 1 \\ N \end{pmatrix}$, $\begin{pmatrix} N-1 \\$ helongs to convex hull. (0,.... 0,1,1,0,...0,1). J $(0, \dots, 0, 0, 0, \dots, 0) \cdot f$

Codim 2 Example: Xy, 7 CR. $Q(x, y, z) = y_1(x, z) + y_2 dut(x, z)$ 5=2 terms dut $\begin{bmatrix} Q(\tau, e_1, e_1) \\ Q(\tau_1 e_2, e_1) \end{bmatrix}$ (e.F.) e det symmetry in columns leaves invariant under rotations in (eit) one Position 3 vonzro. (2,0,1,1,1,1,1) County County 22 • 4 (之, 之, 之, 之, 之, 之) $\frac{K}{n} = \frac{d}{n} = \frac{1}{2}$ in this example. (0,2,1,1,1,1) (0,0,0,0,0,0)

Local Characterization of Model Operators

Suppose ϕ is polynomial. Let $\Delta \subset [0, 1]^2$ be the closed triangle with vertices (0, 0), (1, 1) and $(1/p_b, 1/q_b)$. There exists a smooth cutoff function η nonvanishing at (x, t) such that the cutoff Radon-like operator $T_{\eta} : L^{p,1} \to L^q$ for all pairs $(p^{-1}, q^{-1}) \in \Delta$ if and only if Q is nondegenerate at (x, t).

Necessity is a Dressed-up Knapp Example

- We compute ∫ χ_F(x)T_ηχ_G(x)dx. Let F ⊂ ℝⁿ be a product of two ellipsoids: one tangential and one transverse. Let G ⊂ ℝ^{n₁} be points (t, y) where t ∈ third ellipsoid and y ∈ image of F under x → φ(t, x).
- To leading order, for each t, the slice Gt is also an ellipsoid. Its volume is comparable to

$$\sum_{s} \sum_{i,j} \left| \det \begin{bmatrix} Q(t, v_{i_1}, w_{j_1}) & \cdots & Q(t, v_{i_1}, w_{j_s}) \\ \vdots & \ddots & \vdots \\ Q(t, v_{i_s}, w_{j_1}) & \cdots & Q(t, v_{i_s}, w_{j_s}) \end{bmatrix} \right|$$

for some bases $\{v_i\}$ and $\{w_i\}$ determined by *F*. ∂_t^{α} used to quantify how often $|G_t|$ is large/small. ²⁰

Next Steps

Known

- Details of the proof
- Passage from algebraic to smooth for restricted weak type
- Dealing with more degenerate objects
- Some Ideas
 - Equivalent algebraic characterizations of the nondegeneracy condition
- Unknown
 - Upgrading sublevel set inequalities to integrability exponent inequalities
 - Moving off the critical scaling line

Thank You

