
Math 312, Spring 2014 Kazdan

Examples Using Orthogonal Vectors

Simple Example Say you need to solve the equations

x1 + x2 + x3 + x4 = y1

x2 − x2 − x3 + x4 = y2

− x1 + x2 − x3 + x4 = y3

− x1 − x2 + x3 + x4 = y4

for x1, x2, x2, x4 . Rewrite this as
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,

that is,

x1V1 + x2V2 + x3V3 + x4V4 = Y,

where the Vj and Y are the obvious vectors. The key observation is that these vectors Vj are
orthogonal and have length ‖Vj‖ = 2. It is now simple to solve the equations. Taking the inner
product of both sides with V1 we get

x1〈V1, V1〉 + x2〈V2, V1〉 + x3〈V3, V1〉 + x4〈V4, V1〉 = 〈Y, V1〉,

that is,
x1‖V1‖2 + 0 + 0 + 0 = 〈Y, V1〉, so x1 = 1

4 〈Y, V1〉.
By the same procedure,

xj = 1
4 〈Y, Vj〉, j = 1, 2, 3, 4.

Not hard work at all.

While it may seem exotic (and lucky) that the vectors Vj were orthogonal, it turns out that this
arises naturally – and frequently – in very important applications. For instance when Fourier series
arise and in the analysis of large data sets..

Orthogonal Projection

Let V be an inner product space (that is, a linear space with an inner product) and let ~v1 , ~v2 , . . . ,
~vk be non-zero orthogonal vectors and let S ⊂ V be the subspace spanned by these ~vj ’s. Given a
vector ~x ∈ V , we want to write

~x = ~v + ~w, (1)

where ~v ∈ S and ~w ⊥ S . We then call ~v the orthogonal projection of ~x into S and often write
~v = PS~x .

Because we know the ~vj are an orthogonal basis for S , then any vector ~v ∈ S can be written as

~v = a1~v1 + a2~v2 + · · · ak~vk

so we can write ~x as
~x = (a1~v1 + a2~v2 + · · · + ak~vk) + ~w, (2)
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where ~w is orthogonal to S . This decomposes ~x as the sum of two orthogonal vectors, ~v in S and
one, ~w orthogonal to S . We often introduce the linear map PS of orthogonal projection into S

PS~x := ~v = a1~v1 + a2~v2 + · · · + ak~vk.

If we write S⊥ for the orthogonal complement of S , then ~w = PS⊥~x , so

~x = ~v + ~w = PS~x + PS⊥~x = (a1~v1 + a2~v2 + · · · + ak~vk) + ~w.

The problem is to find the coefficients aj and the vector ~w . Easy!

Taking the inner product of both sides of equation (2) with ~v1 we find hat 〈~x, ~v1〉 = a1〈~v1, ~v1〉 and
similarly for the other aj ’s. Thus

aj =
〈~x, ~vj〉
‖~vj‖2

, (3)

so we now know the coefficients aj in equation (2). We can now solve equation (2) for ~w and find

~w = ~x − (a1~v1 + a2~v2 + · · · + ak~vk),

Since the ~vj ’s and ~w are orthogonal, the Pythagorean theorem applied to (2) tells us that

‖~x‖2 = |a1|2‖~v1‖2 + · · · + |ak|2‖~vk‖2 + ‖~w‖2. (4)

In particular,

‖~w‖2 = ‖~x‖2 − ‖PS~x‖2 = ‖~x‖2 −
(

|a1|2‖~v1‖2 + · · · + |ak|2‖~vk‖2
)

(5)

gives the square of the distance from ~x to the subspace S .

Remark: There are two slightly different approaches to finding the distance from a point ~x to a
subspace S . In both approaches we end up computing

Distance = ‖PS⊥~x‖

Method 1 Find the orthogonal projection ~v = PS~x . Then, as we found above, the orthogonal
projection into S⊥ is ~w = PS⊥~x = ~x − PS~x .

Method 2 Directly compute the orthogonal projection into S⊥ . For this approach, the first step
is usually to find an orthogonal basis for S and then extend this as an orthogonal basis to the S⊥ .
This usually involves far more computations – but there is one frequently occurring situation where
it is very easy: when the dimension of S⊥ is one.

Here is an Example. Let S be the plane in R
3 where ax1 + bx2 + cx3 = 0. If we let ~N = (a, b, c),

then the equation for the plane is simply 〈~x, ~N〉 = 0. Thus ~N is an orthogonal basis for S⊥ – and
one never need to even find an orthogonal basis for S itself. The orthogonal projection of ~x into
S⊥ is then simply

~w =
〈~x, ~N〉
‖ ~N‖2

~N,

so the length of this vector ~w , |〈~x, ~N〉|
‖ ~N‖ , gives the distance from ~x to S .

Example In R
4 , let the subspace S be the span of the vectors ~v1 := (1, 1,−1,−1) and ~v2 :=

(1, 1, 1, 1).
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a) Find the orthogonal projection of ~x := (1, 2, 3, 4) into S .

b) Find the distance from ~x to the plane S .

Solution: (a) Note that the vectors ~v1 and ~v2 are an orthogonal basis for S . We want to write

~x = a1~v1 + a2~v2 + ~w, (6)

where ~w ⊥ S . Then the orthogonal projection of ~x into S will be

PS~x = a1~v1 + a2~v2,

By the general strategy use above, to find a1 take the inner product of both sides of equation(6)
with ~v1 . Because ~v1 is orthogonal to both ~v2 and w , we obtain

〈~x, ~v1〉 = a1〈~v1, ~v1〉 so a1 =
〈~x, ~v1〉
‖~v2

1‖
=

−4

4
= −1.

Similarly,

a2 =
〈~x, ~v2〉
‖~v2

2‖
=

10

4
=

5

2
.

Using these values in equation (6) we find the projection of ~x into S is
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and the projection of ~x orthogonal to S is

~w = PS⊥~x = ~x − PS~x =
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As a check, this ~w is clearly orthogonal to S .

(b) Finally, using equation (5), the distance from the point ~x to this subspace S is ‖~w‖ = 1.

Exercises

1. Find the distance between the point ~x = (1, 2,−3, 0) ∈ R
4 and the subspace of points (x1, x2, x3, x4) ∈

R
4 that satisfy x1 − x2 + x3 + 2x4 = 0.

2. Find the distance between the hyperplane of points (x1, x2, x3, x4) ∈ R
4 that satisfy x1 − x2 +

x3 + 2x4 = 2 and the origin.

3. In R
5 , let S be the subspace spanned by the vectors ~v1 = (1, 1, −1, 0, −1) and ~v2 =

(1, 1, 1, 0, 1). Find the orthogonal projection of ~x = (1, 0, 0, 1, −1) into S and compute
the distance from ~x to S .

4. Find an orthogonal basis for the subspace of R
4 spanned by ~u1 = (1, 1, 0, 0) and ~u2 = (0, 1, 1, 0)

3



5. Find a vector in R
4 that is orthogonal to the subspace spanned by ~u1 = (1, 1, 0, 0) and ~u2 =

(0, 1, 1, 0).

6. Find an orthogonal basis for the subspace of R
4 spanned by ~u1 = (1, 1, 0, 0), ~u2 = (0, 1, 1, 0),

and ~u3 = (0, 0, 1, 1).

7. Find an orthonormal basis for the sub-apace of R
4 determined by x1 − x2 + x3 − 2x4 = 0.

8. Find a vector that is orthogonal to the above subspace.

Example: Fourier Series

The essential point of this next example is that the formalism using the inner product that we have
just developed in R

n is immediately applicable in a much more general setting – with wide and
important applications. We use geometric intuition from R

n to guide us through related ideas in
infinite dimensional function spaces.

Here our linear space is L2(−π, π) with a standard (real) inner product

〈f, g〉 =

∫ π

−π

f(x)g(x) dx

and are using the linear space

TN = span {1, cos x, cos 2x, . . . , cos Nx, sin x, . . . , sin Nx}.

An orthonormal basis is:

e0 :=
1√
2π

, e1 :=
cos x√

π
, . . . , eN :=

cos Nx√
π

, ǫ1 :=
sin x√

π
, . . . , ǫN :=

sinNx√
π

.

We want to find the projection of a given function f(x) into TN , that is, write

f(x) = a0e0 + (a1e1 + · · · + aNeN ) + (b1ǫ1 + · · · + bN ǫN ) + hN , (7)

where the “error,” hN , is orthogonal to TN . This problem is exactly of the form of equation (2).
Thus we can use all the results we obtained there.

First, we have a formula for the coefficients. This is a bit simpler here than the formula in equation
(3) since ek(x) and ǫk(x) have ‖ek‖ = ‖ǫk‖ = 1.

a0 = 〈f, e0〉, while ak = 〈f, ek〉, bk = 〈f, ǫk〉, j = .2, 3, . . . .

Using the explicit formulas for the ek and ǫk we have

f(x) = a0
1√
2π

+

N
∑

k=1

[

ak

cos kx√
π

dx + bk

sin kx√
π

]

+ hN (x), (8)

where, as above, hN is orthogonal to TN . Series of this form are called Fourier Series. They are
a vital ingredient in today’s world, including quantum mechanics, medical imaging and your cell
phone.
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For the coefficients we have

a0 =

∫ π

−π

f(x)
1√
2π

dx, ak =

∫ π

−π

f(x)
cos kx√

π
dx, bk =

∫ π

−π

f(x)
sin kx√

π
dx. (9)

These coefficients incorporate that hN (x) is orthogonal to TN . To summarize,

f(x) = PTN
f(x) + hN (x) = a0

1√
2π

+

N
∑

k=1

[

ak

cos kx√
π

+ bk

sin kx√
π

]

+ hN (x)

Of course, one hopes that lim
N→∞

‖hN‖L2(−π.π) = 0. It is true for essentially all functions, certainly

for all piecewise continuous functions f . The above series is called the Fourier Series of f(x).

The Pythagorean formula (4) gives

‖f‖2
L2(−π.π) = |a0|2 +

N
∑

k=1

(

|ak|2 + |bk|2
)

+ ‖hN‖2
L2(−π.π). (10)

Privately, I call equation (10) the “Pythagorean Theorem for Adults”.

Explicit Example: Fourier Series of a Square Wave

Consider the function f(x) =

{

−1 if −π < x ≤ 0
1 if 0 < x ≤ π

We use equation (9) to compute the Fourier coefficients ak and bk .

Since this f(x) is an odd function, then f(x) cos kx is also an odd function so ak = 0, k = 0, 1, . . . .
Similarly, using that f(x) sin kx is an even function, we have

bk =
1√
π

[∫ 0

−π

(−1) sin kx dx +

∫ π

0

(+1) sin kx dx

]

=
2√
π

∫ π

0

sin kx dx.

But
∫ π

0

sin kx dx =
− cos kπ + 1

k
=

{

0 if k is even
2
k

if k is odd
.

Therefore

bk =

{

0 if k is even
4

k
√

π
if k is odd

.

We now substitute this into equation (8) and write N = 2n+1 to obtain the following Fourier Series
of a square wave:

f(x) =
4

π

[

sin x +
sin 3x

3
+

sin 5x

5
+ · · · + sin(2n + 1)x

2n + 1

]

+ h2n+1(x).

Here is a graph showing how the terms in this series approximate a square wave:
http://www.math.upenn.edu/∼kazdan/312S14/notes/Fourier-SquareWave.gif
[From Wolfram MathWorld]
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Finally we record the Pythagorean formula (10). Since in our case f(x)2 = 1, then
∫ π

−π
f(x)2 dx = 2π

and equation (10) give

2π =
16

π

[

1 +
1

32
+

1

52
+ · · · + 1

(2n + 1)2

]

+ ‖h2n+1‖2.

With some work one can show that limn→∞‖h2n+1‖ = 0. This yields the surprising formula

π2

8
= 1 +

1
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+

1
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+

1
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+ · · · (11)

Subtracting
1

4

(
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1
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+

1
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)

=
1

22
+

1

42
+

1
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+

1
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+ · · ·

from

1 +
1

22
+

1

32
+

1

42
+ · · · =

[

1 +
1

32
+

1

52
+ · · ·

]

+

[

1

22
+

1

42
+

1

62
+ · · ·

]

and using equation (11), by a simple computation we obtain

π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

It is amazing that identifies like these are rather immediate consequences of the Pythagorean The-
orem. Not at all obvious.

[Last revised: February 27, 2014]
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