Math 312, Spring 2014 Kazdan

Examples Using Orthogonal Vectors

Simple Example Say you need to solve the equations

Ty + T2+ T3+ T4a= N

Ty — T2 — T3 +Ta= Y2

—T1+T2— T3+ Ta= Y3

— %] — T2+ T3+ Ta= Y4

for x1, w9, T2, x4. Rewrite this as
1 1 1 1 Y1
1 n -1 n -1 4 I8 I T
N T2 1 T3l 4 T4 1= s |

1 -1 1 1 m

that is,

V1 +22Vo + 23V + a4V =Y,

where the V; and Y are the obvious vectors. The key observation is that these vectors V; are
orthogonal and have length ||V;|| = 2. It is now simple to solve the equations. Taking the inner
product of both sides with V; we get

o1 (Vi, Vi) + 22(Va, Vi) + 23(V3, Vi) + 24(Va, V1) = (Y, V1),

that is,
2 |[ViP4+0+0+0=(Y,V4), so a;=1(, ).

By the same procedure,
=3, V), j=123.4.
Not hard work at all.
While it may seem exotic (and lucky) that the vectors V; were orthogonal, it turns out that this

arises naturally — and frequently — in very important applications. For instance when Fourier series
arise and in the analysis of large data sets..

Orthogonal Projection
Let V be an inner product space (that is, a linear space with an inner product) and let ¥y, 0a, ...,
U, be non-zero orthogonal vectors and let S C V' be the subspace spanned by these ¥;’s. Given a
vector £ € V', we want to write

T =7+, (1)

€ S and W L S. We then call ¥ the orthogonal projection of £ into S and often write
Because we know the ¢} are an orthogonal basis for S, then any vector ¥ € S can be written as
U= a101 + agtiy + - - - ap Uy

So we can write Z as
T = (a101 + ag¥2 + - - - + ax¥) + W0, (2)



where @ is orthogonal to S. This decomposes ¥ as the sum of two orthogonal vectors, ¢ in S and
one, w orthogonal to §. We often introduce the linear map Ps of orthogonal projection into S

Psf =0 = a117'1 + a2’172 + -4 ak@'k.
If we write S* for the orthogonal complement of S, then @ = Pg. ¥, so
Z=0+4+ W= Ps¥+ Ps. @ = (a101 + agUs + - - + ax¥x) + w.

The problem is to find the coefficients a; and the vector . Easy!

Taking the inner product of both sides of equation (2) with ¥, we find hat (Z, 1) = a1 (¥, ¥1) and
similarly for the other a;’s. Thus
<f7 77j>
= T ) 3)
g

so we now know the coefficients a; in equation (2). We can now solve equation (2) for @ and find
117 = CL_"— (a1171 + GQ’UQ + -4 ak@'k),
Since the ¥;’s and @ are orthogonal, the Pythagorean theorem applied to (2) tells us that
1211 = lax P[l50)1% + - - + Jag|*[|Tx]1* + ||| (4)
In particular,
15112 = 171 = |1 Ps@l* = IZ]|* — (Jaa*[51]* + - - + lax]*[|Tk]*) (5)
gives the square of the distance from T to the subspace S.

Remark: There are two slightly different approaches to finding the distance from a point Z to a
subspace S. In both approaches we end up computing

Distance = ||Ps. ||

METHOD 1 Find the orthogonal projection ¥ = PsZ. Then, as we found above, the orthogonal
projection into S+ is @ = Pg. ¥ = ¥ — Psf.

METHOD 2 Directly compute the orthogonal projection into S*. For this approach, the first step
is usually to find an orthogonal basis for S and then extend this as an orthogonal basis to the S*.
This usually involves far more computations — but there is one frequently occurring situation where
it is very easy: when the dimension of St is one.

Here is an Example. Let S be the plane in R? where az; + bxo + cxz = 0. If we let N = (a, b, ¢),

then the equation for the plane is simply (&, N ) =0. Thus N is an orthogonal basis for ST — and
one never need to even find an orthogonal basis for S itself. The orthogonal projection of & into
St is then simply

7, N)
W= < — 2>N,
IV
so the length of this vector o, Hﬁ}é\ﬁ)l , gives the distance from & to S.

Example In R?*, let the subspace S be the span of the vectors #; := (1,1,—1,—1) and ¥, :=
(17 ]‘) 17 1) *



a) Find the orthogonal projection of & :=(1,2,3,4) into S.
b) Find the distance from # to the plane S.

SoLuTION: (a) Note that the vectors @7 and U2 are an orthogonal basis for S. We want to write
T = a1 + agts + W, (6)
where w 1 §. Then the orthogonal projection of & into S will be
Psi = a171 + ax¥s,

By the general strategy use above, to find a; take the inner product of both sides of equation(6)
with ¢;. Because ¥ is orthogonal to both s and w, we obtain

— — —;>

(@, 01) = ay (U1, Uy SO a] =

Similarly, G 105
T, Uy _ Y _9

I3 42

ag =

Using these values in equation (6) we find the projection of Z into § is

1 1 3

S 1 5 (1 113

Est=—1_1| "3 |1 2|7

-1 1 7

and the projection of & orthogonal to S is

1 3 -1
o2 18] 1] 1
W= Pg1%=2— PsXZ = sl sl7]1=3
4 7 1

As a check, this @ is clearly orthogonal to S.
(b) Finally, using equation (5), the distance from the point & to this subspace S is ||| = 1.

Exercises

1. Find the distance between the point # = (1,2, —3,0) € R* and the subspace of points (1, z2, 23, 74) €
R* that satisfy z1 — zo + 3 + 224 = 0.

2. Find the distance between the hyperplane of points (21,2, z3,24) € R* that satisfy z; — xo +
r3 + 2x4 = 2 and the origin.

3. In R%, let S be the subspace spanned by the vectors #; = (1,1, —1,0, —1) and @, =
(1,1,1,0,1). Find the orthogonal projection of & = (1,0, 0, 1, —1) into & and compute
the distance from & to S.

4. Find an orthogonal basis for the subspace of R* spanned by i; = (1,1,0,0) and i = (0,1,1,0)



5. Find a vector in R* that is orthogonal to the subspace spanned by ; = (1,1,0,0) and iy =
(0,1,1,0).

6. Find an orthogonal basis for the subspace of R* spanned by i; = (1,1,0,0), @ = (0,1,1,0),
and 3 = (0,0,1,1).

7. Find an orthonormal basis for the sub-apace of R* determined by x; — 29 + x5 — 224 = 0.

8. Find a vector that is orthogonal to the above subspace.

Example: Fourier Series

The essential point of this next example is that the formalism using the inner product that we have
just developed in R™ is immediately applicable in a much more general setting — with wide and
important applications. We use geometric intuition from R™ to guide us through related ideas in
infinite dimensional function spaces.

Here our linear space is Lo(—7, 7) with a standard (real) inner product

(o) = [ st ar

and are using the linear space
Tn = span{l,cosz,cos2x,...,cos Nz, sinz,...,sin Nz}.

An orthonormal basis is:

1 cosx cosNz sin x sin Nx
€)= ——, €1:i= —— .., ENI= ———, €]:i= ——,..., €N = ——.

/7277', ﬁ ) ﬁ ) ﬁ )
We want to find the projection of a given function f(z) into 7y, that is, write
f(x) = aoeo + (are1 + -+ +anen) + (bier + -+ -+ byen) + by, (7)

where the “error,” hy, is orthogonal to 7x. This problem is ezactly of the form of equation (2).
Thus we can use all the results we obtained there.

First, we have a formula for the coefficients. This is a bit simpler here than the formula in equation
since eg(z) and eg(x) have |lex|| = |lex|| = 1.

aO:<f7 €O>7 While ak/:<f) ek>7 bk:<f) €k>7 j:'2737""
Using the explicit formulas for the e, and ¢, we have

sin kx

1 N cos kx
10 =0 e+ 3 [ 4 o) Y

where, as above, hy is orthogonal to 7n . Series of this form are called Fourier Series. They are
a vital ingredient in today’s world, including quantum mechanics, medical imaging and your cell
phone.



For the coefficients we have

g 1 i cos kx 4 sin kx
ap = f(x)ﬁ dx, ay = f(m)ﬁ dx, by, = f(x) NG

dz. (9)

These coefficients incorporate that hy(z) is orthogonal to 7Zy. To summarize,

os kx sin kx
+ by

va VT

Of course, one hopes that Nlim AN Lo(=m.x) = 0. It is true for essentially all functions, certainly
—00

N
f(x)—PTNf(SC)JrhN(x)—ao\/;—ﬂvL; {akc ] + hy(x)

for all piecewise continuous functions f. The above series is called the Fourier Series of f(x).

The Pythagorean formula (4) gives

N
112 sy = laol® + 3 (lanl? + 10612) + Iy (10)
k=1

Privately, I call equation (10) the “Pythagorean Theorem for Adults”.
Explicit Example: Fourier Series of a Square Wave

-1 if—7<x<0
1 if O0<z<nm

We use equation (9) to compute the Fourier coefficients ay and by,.

Consider the function f(z) = {

Since this f(z) is an odd function, then f(x)coskz is also an odd function so ap =0, k=0, 1,....
Similarly, using that f(z)sinkz is an even function, we have

I T 2 "
b = —— {/ (—1) sin kx dz +/ (4+1) sin kx dm} = —/ sin kx dx.
Nz - 0 ™ Jo

But
/ﬂ ) —coskm+1 0 if kis even
sinkrdr = ————— =9, .. . .
0 k + if kis odd
Therefore

b — 0 if k is even
R = if ks odd

We now substitute this into equation (8) and write N = 2n+1 to obtain the following Fourier Series
of a square wave:

sin 3z . sin bz sin(2n + 1)z
3 ) 2n+1

fz) = 4 {Sinx + + hopai(x).

0
Here is a graph showing how the terms in this series approximate a square wave:
http://www.math.upenn.edu/~kazdan/312S14/notes/Fourier-SquareWave.gif
[From Wolfram Math World]


http://www.math.upenn.edu/~kazdan/312S14/notes/Fourier-SquareWave.gif

Finally we record the Pythagorean formula (10). Since in our case f(2)? =1, then ["_ f(z)*dz = 27
and equation give

16 1 1 1

P 1 i —— | 4 [|hanaa |
e A A e R ol
With some work one can show that lim, . ||h2n+1]| = 0. This yields the surprising formula
w2 11 1
F T I M H 11
s Tyt TET (1)
Subtracting
11+1+1+1+ 1+1+1+1+
4 32 T2 42 62 Q2
from
1 1 1
+ +37+ + = +32+57+ + 272—"_472—"_672—’_.“
and using equation (11), by a simple computation we obtain
LS T S
6 22 1 32 42

It is amazing that identifies like these are rather immediate consequences of the Pythagorean The-
orem. Not at all obvious.
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