Directions This exam has 12 problems (10 points each). Closed book, no calculators - but you may use one $3 " \times 5$ " card with notes.

1. Let A be a 3×3 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and corresponding (independent) eigenvectors V_{1}, V_{2}, V_{3} which we can therefore use as a basis (of course $A V_{j}=\lambda_{j} V_{j}$).
If $X=a V_{1}+b V_{2}+c V_{3}$, compute $A X, A^{2} X$, and $A^{35} X$ in terms of λ_{1}, λ_{2}, $\lambda_{3}, V_{1}, V_{2}, V_{3}, a, b$ and c (only).
2. Let $A:=\left(\begin{array}{rrrr}1 & 4 & 11 & -4 \\ -1 & -2 & -5 & 6 \\ 0 & 4 & 2 & 5 \\ -1 & 2 & 7 & 4\end{array}\right), \quad X_{0}:=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right) . Y:=\left(\begin{array}{r}-3 \\ 5 \\ 5 \\ 3\end{array}\right)$, and $Z:=\left(\begin{array}{r}1 \\ -3 \\ 1 \\ 0\end{array}\right)$. You are given that the vector X_{0} is a particular solution of $A X=Y$ and Z is in the nullspace of A.
a) Find another solution (other than X_{0}) of $A X=Y$.
b) If Z is a basis for the nullspace of A, find the general solution of $A X=Y$
3. Let A be an $n \times n$ matrix of real numbers. Circle each of the following statements that are NOT equivalent to: "the matrix A is invertible"? [No justification is needed.]
a) The columns of A are linearly independent.
b) The columns of A span \mathbb{R}^{n}.
c) The only solution of the homogeneous equations $A x=0$ is $x=0$.
d) The linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by A is 1-1.
e) The linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by A is onto.
f) The rank of A is n.

Score	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

g) The transpose, A^{T}, is invertible.
4. Let A, B, and C be $n \times n$ invertible matrices.
a) Solve the equation $C^{-1}(2 I+A M) C=B$ for the matrix M.
b) If 2 is not an eigenvalue of B, show that M is invertible,
5. a). Find a linear map of the plane, $A: \mathbb{R}^{2}->\mathbb{R}^{2}$ that does the following transformation of the letter \mathbf{F} (here the smaller \mathbf{F} is transformed to the larger one):

b). Find a linear map of the plane that inverts this map, that is, it maps the larger \mathbf{F} to the smaller.
6. In \mathbb{R}^{3}, compute the distance from the point $(1,0,0)$ to the plane $x_{1}+3 x_{2}-x_{3}=3$.
7. Let $A:=\left(\begin{array}{rr}-3 & b \\ b & -3\end{array}\right)$, where b is a real constant. To save time, you are given that the eigenvalues of A are $\lambda=-3 \pm b$. Consider the system of differential equations $\frac{d U}{d t}=A U$ for the vector $U(t)$. Find all values of the parameter b so that $\lim _{t \rightarrow \infty} U(t)=0$.
[Circle the correct answer]
a). All $b>0$
b). $|b|<3$
b). $b<9$
d). $b<3$
e). $b<-3$
f). $|b| \leq 3$
8. Find the eigenvalues and corresponding eigenvectors of the matrix $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
b). If $B=\frac{1}{3} A$, find an invertible matrix P and a diagonal matrix D so that $B=P D P^{-1}$. c). What can you say about $\lim _{k \rightarrow \infty} B^{k}$? (Please briefly justify your assertion.)
9. A multinational company has branches in the US., Japan, and Europe. In 1990, it had assets of $\$ 5$ million: $\$ 3$ million are in the U.S. and $\$ 2$ million in Europe. Each year $1 / 2$ the U.S. money stays home, $1 / 4$ goes to both Japan and Europe. For Japan and Europe, $1 / 2$ stays home and $1 / 2$ is sent to the U.S.
a). Find the transition matrix of this Markov chain.
b). Find the limiting distribution of the $\$ 5$ million as the world ends.
10. Say you seek a parabola with the special form $y=a(x-1)^{2}+b$ to pass through the three data points $(0,2),(1,0),(2,3)$.
a) Write the (over-determined) system of equations you would like to solve ideally.
b) Using the method of least squares write the normal equations for the coefficients a, b.
c) Explicitly find the coefficients a and b.
11. Let A be a matrix (not necessarily square) whose columns are linearly independent. Show that the matrix $A^{T} A$ is positive definite.
12. Let A be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
a) Show that $\frac{\langle x, A x\rangle}{\|x\|^{2}} \geq \lambda_{1}$.
b) Let $B=A-c I$. If $c<\lambda_{1}$ show that B is positive definite.

