Signature

PRINTED NAME

Math 313 April 29, 2005 Final Exam

Jerry L. Kazdan 1:30 — 3:30

DIRECTIONS This exam has 12 problems (10 points each). Closed book, no calculators – but you may use one $3^{"} \times 5^{"}$ card with notes.

- Let A be a 3 × 3 matrix with eigenvalues λ₁, λ₂, λ₃ and corresponding (independent) eigenvectors V₁, V₂, V₃ which we can therefore use as a basis (of course AV_j = λ_jV_j). If X = aV₁ + bV₂ + cV₃, compute AX, A²X, and A³⁵X in terms of λ₁, λ₂, λ₃, V₁, V₂, V₃, a, b and c (only).
- 2. Let $A := \begin{pmatrix} 1 & 4 & 11 & -4 \\ -1 & -2 & -5 & 6 \\ 0 & 4 & 12 & 5 \\ -1 & 2 & 7 & 4 \end{pmatrix}$, $X_0 := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$. $Y := \begin{pmatrix} -3 \\ 5 \\ 5 \\ 3 \end{pmatrix}$, and $Z := \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix}$. You are given that the vector X_0 is a particular solution of AX = Y and

Z is in the nullspace of A.

- a) Find another solution (other than X_0) of AX = Y.
- b) If Z is a basis for the nullspace of A, find the general solution of AX = Y
- 3. Let A be an $n \times n$ matrix of real numbers. Circle each of the following statements that are *NOT* equivalent to: "the matrix A is invertible"? [No justification is needed.]
 - a) The columns of A are linearly independent.
 - b) The columns of A span \mathbb{R}^n .
 - c) The only solution of the homogeneous equations Ax = 0 is x = 0.
 - d) The linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ defined by A is 1-1.
 - e) The linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ defined by A is onto.
 - f) The rank of A is n.
 - g) The transpose, A^T , is invertible.

4. Let A, B, and C be $n \times n$ invertible matrices.

- a) Solve the equation $C^{-1}(2I + AM)C = B$ for the matrix M.
- b) If 2 is not an eigenvalue of B, show that M is invertible,

	Score	
	1	
	2	
	3	
	4	
	5	
٢	. 6	
	7	
	8	
	9	
	10	
	11	
	12	
	Total	

5. a). Find a linear map of the plane, $A : \mathbb{R}^2 - > \mathbb{R}^2$ that does the following transformation of the letter **F** (here the smaller **F** is transformed to the larger one):

b). Find a linear map of the plane that inverts this map, that is, it maps the larger \mathbf{F} to the smaller.

6. In \mathbb{R}^3 , compute the distance from the point (1,0,0) to the plane $x_1 + 3x_2 - x_3 = 3$.

7. Let $A := \begin{pmatrix} -3 & b \\ b & -3 \end{pmatrix}$, where b is a real constant. To save time, you are given that the eigenvalues of A are $\lambda = -3 \pm b$. Consider the system of differential equations $\frac{dU}{dt} = AU$ for the vector U(t). Find all values of the parameter b so that $\lim_{t\to\infty} U(t) = 0$.

- 8. Find the eigenvalues and corresponding eigenvectors of the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
 - b). If $B = \frac{1}{3}A$, find an invertible matrix P and a diagonal matrix D so that $B = PDP^{-1}$.
 - c). What can you say about $\lim_{k\to\infty} B^k$? (Please briefly justify your assertion.)

- 9. A multinational company has branches in the US., Japan, and Europe. In 1990, it had assets of \$5 million: \$3 million are in the U.S. and \$2 million in Europe. Each year 1/2 the U.S. money stays home, 1/4 goes to both Japan and Europe. For Japan and Europe, 1/2 stays home and 1/2 is sent to the U.S.
 - a). Find the transition matrix of this Markov chain.
 - b). Find the limiting distribution of the \$5 million as the world ends.
- 10. Say you seek a parabola with the special form $y = a(x-1)^2 + b$ to pass through the three data points (0, 2), (1, 0), (2, 3).
 - a) Write the (over-determined) system of equations you would like to solve ideally.
 - b) Using the method of least squares write the *normal* equations for the coefficients a, b.
 - c) Explicitly find the coefficients a and b.
- 11. Let A be a matrix (not necessarily square) whose columns are linearly independent. Show that the matrix $A^T A$ is positive definite.
- 12. Let A be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.
 - a) Show that $\frac{\langle x, Ax \rangle}{\|x\|^2} \ge \lambda_1$.
 - b) Let B = A cI. If $c < \lambda_1$ show that B is positive definite.