CSE 313
Final Examination
May 7, 2004

Question 1: $\{20 \mathrm{pts}\}$
Derive an expression for the scalar, γ, as a function of the vectors, $u, v \in R^{n}$, that will balance the following equation. (Make sure to show your work)

$$
\left(I-u v^{T}\right)^{-1}=\left(I-\gamma\left(u v^{T}\right)\right)
$$

Use this result to invert the following matrix:

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 \\
2 & -2 & 1 & -2 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

Question 2: $\{15 \mathrm{pts}\}$
Determine whether the solutions to the following differential equation are stable or unstable: $\ddot{x}=-5 \dot{x}-4 x$

Question 3: $\{15 \mathrm{pts}\}$
If A is a square matrix prove that the absolute value of the determinant of $\mathrm{A}, \operatorname{det}(A) \mid$, is equal to the product of its singular values.

Question 4: $\{10 \mathrm{pts}\}$
If $y \in \operatorname{Range}(A)$ and $z \in \operatorname{Null}\left(A^{T}\right)$ for some matrix, $A \in R^{m \times n}$, show that $y^{T} z=0$.

Question 5: $\{15 \mathrm{pts}\}$
If $\left\{v_{1} \cdots v_{n}\right\}$ are orthonormal vectors, $v_{i} \cdot v_{j}=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array}\right.$, and $\quad x=\sum_{i} \alpha_{i} v_{i}$ show that $\|x\|^{2}=\sum_{i} \alpha_{i}^{2}$.

Based on this result, explain why dropping small Fourier coefficients is an effective strategy for compressing audio signals.

Question 6: $\{15 \mathrm{pts}\}$
Consider the figure shown below, let x_{A}, y_{A} denote the coordinates of a point with respect to frame A and x_{B}, y_{B} denote the coordinates of the same point with respect to frame B. These coordinate values can be related by the following equation. $\left(\begin{array}{c}x_{A} \\ y_{A} \\ 1\end{array}\right)=g_{A B}\left(\begin{array}{c}x_{B} \\ y_{B} \\ 1\end{array}\right)$

Give an expression for the 3 by 3 matrix $g_{A B}$.
Let $g_{A T}$ denote the 3 by 3 matrix that relates coordinate frames A and T in the figure below. Using your previous result, express $g_{A T}$ as
the product of a number of simpler coordinate transformations depending on the angles, $\theta_{1}, \theta_{2}, \theta_{3}$.

Question 7: $\{15 \mathrm{pts}\}$
If A is a skew-symmetric matrix, $A^{T}=-A$, show that $x^{T} A x=0$ for all $x \in R^{n}$

Question 8: $\{15 \mathrm{pts}\}$
If $R \in R^{n \times n}$ is an orthonormal matrix, $R^{T} \times R=I$, show that:

1. All of the eigenvalues of R lie on the unit circle in the complex plane, that is $\|\lambda\|^{2}=\lambda \times \lambda^{*}=1$.
2. All eigenvectors of R are also eigenvectors of R^{T}.
3. If $v_{1}, v_{2} \in R^{n}$ are eigenvectors of R corresponding to distinct eigenvalues then they must be orthogonal,
