CSE 313 Final Examination May 7, 2004

Question 1: {20 pts}

Derive an expression for the scalar, γ , as a function of the vectors, $u, v \in \mathbb{R}^n$, that will balance the following equation. (Make sure to show your work)

 $(I - uv^T)^{-1} = (I - \gamma(uv^T))$

Use this result to invert the following matrix:

$$\begin{pmatrix} 2 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 2 & -2 & 1 & -2 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

Question 2: {15 pts}

Determine whether the solutions to the following differential equation are stable or unstable: $\ddot{x} = -5\dot{x} - 4x$

Question 3: {15 pts}

If A is a square matrix prove that the absolute value of the determinant of A, $|\det(A)|$, is equal to the product of its singular values.

Question 4: {10 pts}

If $y \in Range(A)$ and $z \in Null(A^T)$ for some matrix, $A \in R^{m \times n}$, show that $y^T z = 0$.

Question 5: {15 pts}

If $\{v_1 \cdots v_n\}$ are orthonormal vectors, $v_i \cdot v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, and $x = \sum_i \alpha_i v_i$ show that $\|x\|^2 = \sum_i \alpha_i^2$.

Based on this result, explain why dropping small Fourier coefficients is an effective strategy for compressing audio signals.

Question 6: {15 pts}

Consider the figure shown below, let x_A , y_A denote the coordinates of a point with respect to frame A and x_B , y_B denote the coordinates of the same point with respect to frame B. These coordinate values can

be related by the following equation. $\begin{pmatrix} x_A \\ y_A \\ 1 \end{pmatrix} = g_{AB} \begin{pmatrix} x_B \\ y_B \\ 1 \end{pmatrix}$

Give an expression for the 3 by 3 matrix g_{AB} .

Let g_{AT} denote the 3 by 3 matrix that relates coordinate frames A and T in the figure below. Using your previous result, express g_{AT} as

the product of a number of simpler coordinate transformations depending on the angles, $\theta_1, \theta_2, \theta_3$.

Question 7: {15 pts}

If A is a skew-symmetric matrix, $A^T = -A$, show that $x^T A x = 0$ for all $x \in R^n$

Question 8: {15 pts}

If $R \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, $\mathbb{R}^T \times \mathbb{R} = I$, show that:

- 1. All of the eigenvalues of *R* lie on the unit circle in the complex plane, that is $\|\lambda\|^2 = \lambda \times \lambda^* = 1$.
- 2. All eigenvectors of *R* are also eigenvectors of R^{T} .
- 3. If $v_1, v_2 \in \mathbb{R}^n$ are eigenvectors of \mathbb{R} corresponding to distinct eigenvalues then they must be orthogonal,