CSE 313
 Midterm Examination March 5, 2004

Question 1: $\{15 \mathrm{pts}\}$
Consider the following system of linear equations:

$$
\begin{aligned}
3 w+x+2 y+z & =-4 \\
w+4 x+y+3 z & =13 \\
5 w-2 x+3 y-z & =-21
\end{aligned}
$$

Give the complete solution to this system - show your work.
Question 2: $\{15 \mathrm{pts}\}$
If A is a square matrix such that $(I-A)$ is nonsingular prove that:

$$
A(I-A)^{-1}=(I-A)^{-1} A
$$

Question 3: $\{15 \mathrm{pts}\}$
Suppose two matrices, A and B, are row equivalent, that is there exists a nonsingular matrix P such that $\mathrm{PA}=\mathrm{B}$. Answer the following questions about A and B . Explain your answer in each case.

- Do A and B have the same column space ie does: $R(A)=R(B)$
- Do A and B have the same null space ie does: $N(A)=N(B)$
- Do A and B have the same row space ie does: $R\left(A^{T}\right)=R\left(B^{T}\right)$
- Do A and B have the same left hand null space ie does:

$$
N\left(A^{T}\right)=N\left(B^{T}\right)
$$

Question 4: $\{15 \mathrm{pts}\}$

Show that the following set of vectors constitute a basis for \mathfrak{R}^{3}. $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$ Compute the coordinates of the following vectors with respect to this basis: $\left\{\left(\begin{array}{c}3 \\ 5 \\ -5\end{array}\right),\left(\begin{array}{c}6 \\ 2 \\ -2\end{array}\right)\right\}$

Question 5: $\{15 \mathrm{pts}\}$
If x and y are vectors such that $\|x-y\|_{2}=\|x+y\|_{2}$ what is $x^{T} y$?
Question 6: $\{15 \mathrm{pts}\}$
If A is a square matrix prove that

$$
\|A\|_{F}^{2}=\left\|A^{+}\right\|_{F}^{2}+\left\|A^{-}\right\|_{F}^{2}
$$

where $\|A\|_{F}^{2}=\operatorname{tr}\left(A^{t} A\right)$ denotes the square of the Frobenius norm of $\mathrm{A}, A^{+}=\frac{A+A^{T}}{2}$ denotes the symmetric part of A and $A^{-}=\frac{A-A^{T}}{2}$ denotes the skew symmetric part of A

