Some of these problems use the same matrices as Homework Set 8. That should save you some time.

1. Let $u(t)=\left(u_{1}(t), u_{2}(t)\right)$. Solve the differential equation $\frac{d u}{d t}=A u$ with $u(0)=(1,2)$ where for A you use the following matrices:
a). $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$
b). $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
c). $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
d). $\left(\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right)$.
2. Find the general solution of $\frac{d u}{d t}=A u$, where $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 4 & -2\end{array}\right)$.
3. [Strang, p. 299 \#10]. Get G_{k} be a sequence of numbers with the property

$$
G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right), \quad \text { with } \quad G_{0}=a \text { and } G_{1}=b .
$$

a) Find an explicit formula for G_{k} by diagonalizing an appropriate matrix.
b) Compute $\lim _{k \rightarrow \infty} G_{k}$ in terms of a and b. [You may find it useful to try the special case where $G_{0}=1$ and $G_{1}=3$.
4. [Strang, p. 301 \#27]. Say $A=S \Lambda S^{-1}$, where Λ is a diagonal matrix, and B is the block matrix $B=\left(\begin{array}{cc}A & 0 \\ 0 & 2 A\end{array}\right)$. Diagonalize B.
5. In Homework 7 we worked with $\Delta_{n}=\operatorname{det} M_{n}$ be the determinant of an $n \times n$ matrix M_{n} with a 's along the main diagonal and b 's on the two "off diagonals" directly above and below the main diagonal (this is a simple example of a tridiagonal matrix). Thus

$$
M_{5}=\left(\begin{array}{ccccc}
a & b & 0 & 0 & 0 \\
b & a & b & 0 & 0 \\
0 & b & a & b & 0 \\
0 & 0 & b & a & b \\
0 & 0 & 0 & b & a
\end{array}\right)
$$

You showed that $\Delta_{n}=a \Delta_{n-1}-b^{2} \Delta_{n-2}$.
The task now is to find an explicit formula for Δ_{n}
6. Let A be a real 2×2 matrix with the property that $A^{3}=I$.
a) If λ is an eigenvalue of A, show that $\lambda^{3}=1$.
b) What are all possible values of the trace and determinant of A ?
c) Use this to all possible real matrices A satisfying $A^{3}=I$.
7. If $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $B=I+A$, compute A^{2}, A^{3}, e^{A}, and B^{2}, B^{3}, e^{B}.
8. Let B be a real antisymmetric matrix. Show that $M:=e^{B}$ is an orthogonal matrix.
9. Let M be a diagonalizable real $n \times n$ matrix with (possible complex) eigenvalues λ_{1}, $\lambda_{2}, \ldots, \lambda_{n}$. If the real parts of these eigenvalues are all negative, show that $e^{M t} \rightarrow 0$ as $t \rightarrow \infty$.
10. Let A be a real square matrix. If If λ is a real eigenvalue of A with corresponding eigenvector V, and $\mu \neq \lambda$ is a real eigenvalue of A^{T} with corresponding eigenvector W, show that V and W are orthogonal: $\langle V, W\rangle=0$.

