Math 313/515, Spring 2005

Jerry L. Kazdan

Homework Set 9, Due Thursday, March 31, 2005

(Late papers will be accepted until 4 PM on Fri. April 1)

Some of these problems use the same matrices as Homework Set 8. That should save you some time.

- 1. Let $u(t) = (u_1(t), u_2(t))$. Solve the differential equation $\frac{du}{dt} = Au$ with u(0) = (1, 2) where for A you use the following matrices:
 - a). $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ b). $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ c). $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ d). $\begin{pmatrix} 3 & 0 \\ 3 & 3 \end{pmatrix}$.
- 2. Find the general solution of $\frac{du}{dt} = Au$, where $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 4 & -2 \end{pmatrix}$.
- 3. [Strang, p. 299 #10]. Get G_k be a sequence of numbers with the property

 $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$, with $G_0 = a$ and $G_1 = b$.

- a) Find an explicit formula for G_k by diagonalizing an appropriate matrix.
- b) Compute $\lim_{k\to\infty} G_k$ in terms of *a* and *b*. [You may find it useful to try the special case where $G_0 = 1$ and $G_1 = 3$.
- 4. [Strang, p. 301 #27]. Say $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix, and B is the *block matrix* $B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix}$. Diagonalize B.
- 5. In Homework 7 we worked with $\Delta_n = \det M_n$ be the determinant of an $n \times n$ matrix M_n with *a*'s along the main diagonal and *b*'s on the two "off diagonals" directly above and below the main diagonal (this is a simple example of a *tridiagonal* matrix). Thus

You showed that $\Delta_n = a\Delta_{n-1} - b^2\Delta_{n-2}$.

The task now is to find an explicit formula for Δ_n

- 6. Let *A* be a real 2×2 matrix with the property that $A^3 = I$.
 - a) If λ is an eigenvalue of *A*, show that $\lambda^3 = 1$.
 - b) What are all possible values of the trace and determinant of *A*?
 - c) Use this to all possible real matrices A satisfying $A^3 = I$.

7. If
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = I + A$, compute A^2 , A^3 , e^A , and B^2 , B^3 , e^B .

- 8. Let *B* be a real antisymmetric matrix. Show that $M := e^B$ is an orthogonal matrix.
- 9. Let *M* be a diagonalizable real $n \times n$ matrix with (possible complex) eigenvalues λ_1 , $\lambda_2, \ldots, \lambda_n$. If the real parts of these eigenvalues are all *negative*, show that $e^{Mt} \to 0$ as $t \to \infty$.
- 10. Let A be a real square matrix. If If λ is a real eigenvalue of A with corresponding eigenvector V, and $\mu \neq \lambda$ is a real eigenvalue of A^T with corresponding eigenvector W, show that V and W are orthogonal: $\langle V, W \rangle = 0$.