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Math 425 Exam 2 Jerry L. Kazdan
April 26, 2011 12:00 – 1:20

Directions This exam has three parts, Part A, short answer, has 1 problem (10 points). Part B
has 4 shorter problems (9 points each, so 36 points). Part C has 3 traditional problems (15 points
each so 45 points). Total is 91 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides.

Part A: Short Answer (1 problem, 10 points).

1. Let S and T be linear spaces and A : S → T be a linear map. Say V and W are particular
solutions of the equations AV = Y1 and AW = Y2 , respectively, while Z 6= 0 is a solution of
the homogeneous equation AZ = 0.

Answer the following in terms of V , W , and Z.

a) Find some solution of AX = 3Y1 . Solution: X = 3V

b) Find some solution of AX = −5Y2 . Solution: X = −5W

c) Find some solution of AX = 3Y1 − 5Y2 . Solution: X = 3V − 5W

d) Find another solution (other than Z and 0) of the homogeneous equation AX = 0.
Solution: X = 2Z

e) Find another solution of AX = 3Y1 − 5Y2 . Solution: X = 3V − 5Y2 + Z

Part B: Short Problems (4 problems, 9 points each so 36 points)

B–1. Suppose f is a function of one variable that has a continuous second derivative. Show that
for any constants a and b , the function

u(x, y) = f(ax + by)

is a solution of the nonlinear PDE

uxxuyy − u2

xy = 0.

Solution: By the chain rule, ux = f ′(ax + by)a , so uxx = f ′′(ax + by)a2 . Similarly, uyy =
f ′′(ax + by)b2 and uxy = f ′′(ax + by)ab . Thus,

uxxuyy − u2

xy = f ′′(ax + by)2[a2b2 − (ab)2] = 0.
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B–2. U = (1, 1, 0, 1) and V = (−1, 2, 0,−1) are orthogonal vectors in R4 .

Write the vector X = (1, 1, 1, 0) in the form

X = aU + bV + W, (1)

where a, b are scalars and W is a vector perpendicular to U and V .

Solution: Take the inner product of (1) with U and use that we want W to be orthogonal
to U to find

〈X, U〉 = a〈U, U〉 so a =
2

3
.

Similarly,

〈X, V〉 = b〈V, V〉 so b =
1

6

Thus,

X =
2

3
U +

1

6
V + W,

where W is defined by this equation. It is orthogonal to both U and V since that is how we
computed a and b .

B–3. If u(x, y) is a solution of the Laplace equation in the unit disk x2 + y2 < 1 with boundary
conditions

u(x, y) =

{

1 for x2 + y2 = 1, y > 0

0 for x2 + y2 = 1, y ≤ 0.

Compute u(0, 0).

Solution: By the mean value property, the value of a harmonic function at the center of a

disk is the average of its values on the circumference. Thus u(0, 0) =
1

2
.

As an alternate, one can use the Poisson formula for the solution of the Dirichlet problem for
the disk. The solution at the center (where r = 0) is equally speedy.

B–4. This problem concerns the solution of the initial-value problem for the wave equation utt =
uxx + uyy in two space variables (x, y) ∈ R

2 , together with the initial conditions

u(x, y, 0) = f(x, y), ut(x, y, 0) = 0.

If f(x, y) is a 2π periodic functions of x , so f(x+2π, y) = f(x, y) for all x , show that u(x, y, t)
is also a 2π periodic function of x .

Solution: Let v(x, y, t) = u(x+2π, y, t). Since the wave equation has constant coefficients, v

also satisfies the wave equation for (x, y) ∈ R
2 . Because f is 2π periodic in x , v satisfies the

same initial conditions. Since the solution of this initial balue problem for the wave equation
is unique, v(x, y, t) = u(x, y, t), which is what we wanted to show.
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Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C–1. Let Ω ⊂ R
2 be a bounded region in the plane.

a) Let w(x, y, t) be a solution of the modified heat equation

wt = wxx + wyy − 7wx + wy − 5w (2)

for (x, y) ∈ Ω and 0 < t ≤ T < ∞ . Show that the solution w cannot have a local positive
maximum or negative minimum at a point of Ω.

Note: There are two cases, one where the maximum point accurs at a point (x, y, t)
with 0 < t < T and one at a point (x, y, T )

Solution: If there is a positive maximum at a point (x, y, t) where (x, y) ∈ Ω and
0 < t < T , then wx = 0, wy = 0, and wt = 0, and also wxx ≤ 0, wyy ≤ 0 – as well as
w > 0, This is incompatible with (2).

At a point (x, y, T ), where (x, y) ∈ Ω the equality wt = 0 is replaced by the inequality
wt ≥ 0, but gives the same conclusion.

At at negative minimum the same reasoning applies (just replace u by −u).

b) If w(x, y, 0) = sin(x + 2y) for (x, y) ∈ Ω and −2 ≤ w(x, y, t) ≤ 3 for (x, y) ∈ ∂Ω, t ≥ 0,
what can you conclude about the size of w(x, y, t) for (x, y) ∈ Ω, t ≥ 0?.

Solution: By the maximum principle, −2 ≤ w(x, y, t) ≤ 3 for (x, y) ∈ Ω, t ≥ 0.

C–2. In a bounded region Ω ⊂ R
n , let u(x, t) satisfy the modified heat equation

ut − 2tu = ∆u, (3)

as well as the initial and boundary conditions

u(x, 0) = f(x), in Ω with u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0. (4)

Let u(x, t) = ϕ(t)v(x, t). Show that by picking the function ϕ(t) cleverly, v satisfies the
standard heat equation vt = ∆v as well as the initial and boundary conditions (4).

Remark: This generalized to ut + a(t)u = ∆u where a(t) is any continuous function.

Solution: Since ut = ϕtv + ϕvt and ∆u = ϕ∆u , Then ut − 2tu = ∆u becomes

ϕvt + (ϕt − 2tϕ)v = ϕ∆v.

Thus pick ϕ(t) so that ϕt − 2tϕ = 0. This is a stndard ODE. It’s solution is ϕ(t) = Cet2 for
some constant C , say C = 1.

It is then obvious that v has the desired properties.

3



C–3. The motion u(x, y, t) of a special drum Ω ∈ R
2 satisfile the modified wave equation

utt + b(x, y, t)ut = ∆u for (x, y) ∈ Ω, t > 0. (5)

with boundary condition

u(x, y, t) = 0 for (x, y) ∈ ∂Ω, t ≥ 0. (6)

Define the “energy”

E(t) :=
1

2

∫∫

Ω

[

u2

t + |∇u|2
]

dx dy.

Assume that |b(x, y, t)| ≤ m for some constant m and all (x, y) ∈ Ω, t ≥ 0.

a) Show that
dE

dt
≤ 2mE for all t ≥ 0.

Solution: By Green’s First,

dE

dt
=

∫∫

Ω

[ututt + ∇u · ∇ut] dx dy =

∫∫

Ω

[ututt − ut∆u] dx dy

=

∫∫

Ω

ut[−b(x, y, t)ut] dx dy

≤ m

∫∫

Ω

u2

t dx dy ≤ 2mE(t).

b) Deduce that
d

dt

[

e−2mtE(t)
]

≤ 0 for all t ≥ 0, and hence that

E(t) ≤ e2mtE(0) for all t ≥ 0.

Solution:
d

dt

[

e−2mtE(t)
]

= e−2mt[E′ − 2mE] ≤ 0,

so e−2mtE(t) is a non-increasing function fot t ≥ 0. Thus e−2mtE(t) ≤ E(0) for all t ≥ 0.

c) If u(x, y, 0) = 0 and ut(x, y, 0) = 0 for (x, y) ∈ Ω, what does this say about E(t) for t ≥ 0
and hence about u(x, y, t) for t ≥ 0?

Solution: Under these assumptions E(0) = 0. Thus 0 ≤ E(t) ≤ 0 for all t ≥ 0, so
E(t) ≡ 0. Therefore u(x, y, t) = const. But u(x, y, 0) = 0 so u(x, y, t) ≡ 0 for all t ≥ 0.
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