Lorentz Transformations

Orthogonal Transformations

In Euclideal space \mathbb{R}^{2} (and \mathbb{R}^{n}), it is valuable to find all the invertible linear changes of variable $y=R x$ that preserve the length of a vector

$$
\|R x\|=\|x\|
$$

so that

$$
y_{1}^{2}+y_{2}^{2}=x_{1}^{2}+x_{2}^{2} .
$$

These are orthogonal transformations. Say

$$
\begin{aligned}
& x_{1}=a y_{1}+b y_{2} \\
& x_{2}=c y_{1}+d y_{2} .
\end{aligned}
$$

Then

$$
x_{1}^{2}+x_{2}^{2}=\left(a^{2}+c^{2}\right) y_{1}^{2}+2(a b+c d) y_{1} y_{2}+\left(b^{2}+d^{2}\right) y_{2}^{2} .
$$

We therefore want

$$
a^{2}+c^{2}=1, \quad a b+c d=0, \quad \text { and } \quad b^{2}+d^{2}=1
$$

There are four variables and only three conditions so we will have one free parameter. To satisfy the first condition it is natural to let $a=\cos \theta$ and $c=\sin \theta$. For the second condition, let $b=-c=-\sin \theta$ and $d=a=\cos \theta$. The third condition is also satisfied. This gives the matrix

$$
R=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

These are the rotations of ther plane \mathbb{R}^{2}.

By a similar computation, these are also the only linear changes of variable that preserve the Laplace operator

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=\frac{\partial^{2} u}{\partial y_{1}^{2}}+\frac{\partial^{2} u}{\partial y_{2}^{2}}
$$

Lorentz Transformations

It is also valuable to find all linear changes of variable

$$
\begin{aligned}
x^{\prime} & =\alpha x+\beta t \\
t^{\prime} & =\gamma x+\delta t
\end{aligned}
$$

that preserve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{\prime 2}}-c^{2} \frac{\partial^{2} u}{\partial x^{\prime 2}}
$$

where c is a constant (the speed of sound or light).
By the chain rule,
$u_{t t}-c^{2} u_{x x}=\left(\delta^{2}-c^{2} \gamma^{2}\right) u_{t^{\prime} t^{\prime}}+2\left(\beta \delta-c^{2} \alpha \gamma\right) u_{x^{\prime} t^{\prime}}+\left(\beta^{2}-c^{2} \alpha^{2}\right) u_{x^{\prime} x^{\prime}}$.
Thus we want
$\delta^{2}-c^{2} \gamma^{2}=1, \quad \beta \delta-c^{2} \alpha \gamma=0, \quad$ and $\quad \beta^{2}-c^{2} \alpha^{2}=-c^{2}$
First pick γ and δ so that $\delta^{2}-c^{2} \gamma^{2}=1$, and then let $\beta= \pm c^{2} \gamma$, $\alpha= \pm \delta$. To preserve orientation we use the + signs. Since $c^{2} \alpha^{2}-\beta^{2}=c^{2}$ and $\cosh ^{2} \sigma-\sinh ^{2} \sigma=1$, it is traditional to write $\alpha=\cosh \sigma, \beta=c \sinh \sigma$. For any real σ the transformation

$$
\begin{align*}
x^{\prime} & =(\cosh \sigma) x+(c \sinh \sigma) t \\
t^{\prime} & =\left(\frac{1}{c} \sinh \sigma\right) x+(\cosh \sigma) t \tag{1}
\end{align*}
$$

preserves the wave operator. This is called a Lorentz transformation. Lorentz [1853-1928] transformations also preserve arc length $d s^{2}:=d x^{\prime 2}-c^{2} d t^{\prime 2}=d x^{2}-c^{2} d t^{2}$ in space-time and are fundamental in the study of the wave operator and special relativity.
In special relativity it is enlightening to replace the parameter σ in (1) by one that is physically more meaningful. If the x-axis moves with constant velocity V relative to the x^{\prime}-axis, for an observer on the x^{\prime}-axis, $x^{\prime} / t^{\prime}=V$ is the constant velocity of the origin $x=0$ of the x-axis.

But from (1) with $x=0$

$$
V=\frac{x^{\prime}}{t^{\prime}}=c \tanh \sigma
$$

so $\sinh \sigma=(V / c) / \sqrt{1-(V / c)^{2}}$ and $\cosh \sigma=1 / \sqrt{1-(V / c)^{2}}$. We can use this to rewrite the Lorentz transformation (1) in terms of the velocity V as

$$
x^{\prime}=\frac{x+V t}{\sqrt{1-(V / c)^{2}}} \quad t^{\prime}=\frac{\left(V / c^{2}\right) x+t}{\sqrt{1-(V / c)^{2}}} .
$$

It is physically obvious that to get the inverse transformation just replace V by $-V$.

