
The Heat and Diffusion Equations

Heat Equation

Say we have a region D with density (mass per unit volume) ρ, specific heat c and
thermal conductivity k. We assume there are no internal sources of energy (such as
chemical processes). . Specific Heat deals with the ability of the material to regulate
the (state) temperature within the materials whereas the thermal conductivity of the
material deals with the ability of heat transmitted through the materials.
Specific heat is the amount of energy required to raise the body temp. by 1’C.

There is no relationship at all between thermal conductivity and specific heat. This is
not only true among different elements, alloys, compounds, etc, where many examples
can be shown of substances that have high thermal conductivities and low specific
heat. This can also easily be demonstrated with allotropes of many common elements.
For example, compare graphite and diamond. Both are pure carbon; chemically
identical. The only difference is crystal structure. Graphite has a specific heat that
is about 50% higher than diamond. But diamond has a thermal conductivity that is
more than 800 times better than graphite.

Let u(x, y, z, t) be the temperature and H(t) the amount of heat (in calories) contained
in a region D:

H(t) =

∫∫∫
D

cρu(x, y, z, t) dx dy dz.

The rate of change in this is

dH

dt
=

∫∫∫
D

cρut dx dy dz.

Experiments show that heat flows from a hot region to a colder one at a rate pro-
portional to the temperature gradient (Fourier’s Law). Since heat gains or losses can
only be at the boundary, ∂D of D (this is conservation of energy) we have

dH

dt
=

∫∫
∂D

k(N · ∇u) dS,

where k is the thermal conductivity, N is the unit outer normal vector and dS is the
element of surface area on the boundary. Equating the last two formulas and using
the divergence theorem we find:

∫∫∫
D

cρut dx dy dz =

∫∫∫
D

∇ · (k∇u) dx dy dz.

Because the region D was arbitrary we conclude that

cρut = ∇ · (k∇u) Heat Equation.
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If k is a constant we write it as
cρut = k∆u,

where ∆u = uxx + uyy + uzz is the Laplacian, which some write as ∇2u.

Diffusion Equation

Say we have a fluid at rest in a cylindrical pipe along the x−axis and let u(x, t) be
the concentration(mass per unit length) of some dye in the fluid. By experiments, at
a point x at time t the dye diffuses at a rate proportional to the concentration. This
isFick’s Law.

In the section of the pipe x0 ≤ x ≤ x1 the Mass of the dye is

M(t) =

∫ x1

x0

u(x, t) dx so
dM

dt
=

∫ x1

x0

ut(x, t) dx.

But this change in mass can only be due to the flow from the ends of the pipe so by
Fick’s law:

dM

dt
= net flow (in/out) = kux(x1, t) − kux(x0, t),

where k is a proportionality constant depending on the fluid and the dye. Equating
the above expressions for dM/dt we find:

∫ x1

x0

ut(x, t) dx = kux(x1, t) − kux(x0, t).

Now take the derivative with respect to x1 to obtain the diffusion equation

ut = kuxx.

In three dimensions, similar reasoning for a region D with boundary ∂D gives

∫∫∫
D

ut dx dy dz =

∫∫
∂D

k(N · ∇u) dS.

Just as in the above derivation of the heat equation, the divergence theorem gives the
diffusion equation in three space dimensions:

ut = k∆u.
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