Problem Set 0

DUE: NEVER

This is rust remover. Essentially *all* of the ideas needed for these problems should have been covered in the prerequisite courses. No messy computations are needed – but some serious thinking may be needed. NOTATION: $u_t = \frac{\partial u}{\partial t}$.

- 1. Let u(t) be the solution of u' = 3u with initial value u(0) = A > 0. At what time T is u(T) = 2A?
- 2. Let u(t) be the amount of a radioactive element at time t and say initially, u(0) = A > 0. The rate of decay is proportional to the amount present, so

$$\frac{du}{dt} = -cu,$$

where the constant c > 0 determines the decay rate. The *half-life* T is the amount of time for half of the element to decay, so $u(T) = \frac{1}{2}u(0)$. Find c in terms of T and obtain a formula for u(t) in terms of T.

- 3. Let $\int_0^x f(t) dt = e^{\cos(3x)} + A$, where f is some continuous function. Find f and the constant A.
- 4. a) If u'' + 4u = 0 with initial conditions u(0) = 1 and u'(0) = -2, compute u(t).
 - b) Find a particular solution of the inhomogeneous equation u'' + 4u = 8.
 - c) Find a particular solution of the inhomogeneous equation u'' + 4u = -4t.
 - d) Find a particular solution of the inhomogeneous equation u'' + 4u = -8 8t.
 - e) Find the most general solution of the inhomogeneous equation u'' + 4u = 8 8t.
 - f) If f(t) is any continuous function, use the method "variation of parameters" (look it up if you don't know it) to find a formula for a particular solution of u'' + 4u = f(t).
- 5. Let u(t) be any solution of u'' + 2bu' + 4u = 0. If b > 0 is a constant, show that $\lim_{t\to\infty} u(t) = 0$.
- 6. a) If u'' 4u = 0 with initial conditions u(0) = 1 and u'(0) = -2, compute u(t).
 - b) Find a particular solution of the inhomogeneous equation u'' 4u = 8.
 - c) Find a particular solution of the inhomogeneous equation u'' 4u = -4t.

- d) Find a particular solution of the inhomogeneous equation u'' 4u = -8 8t.
- e) Find the most general solution of the inhomogeneous equation u'' 4u = 8 8t.
- f) If f(t) is any continuous function, use the method "variation of parameters" (look it up if you don't know it) to find a formula for a particular solution of u'' 4u = f(t).
- 7. Say w(t) satisfies the differential equation

$$aw''(t) + bw' + cw(t) = 0, (1)$$

where a and c, are positive constants and $b \ge 0$. Let $E(t) = \frac{1}{2}[aw'^2 + cw^2]$.

- a) Without solving the differential equation, show that $E'(t) \leq 0$.
- b) Use this to show that If you also know that w(0) = 0 and w'(0) = 0, then w(t) = 0 for all $t \ge 0$.
- c) [Uniqueness] Say the functions u(t) and v(t) both satisfy the same equation (1) and also u(0) = v(0) and u'(0) = v'(0). Show that u(t) = v(t) for all $t \ge 0$.
- 8. Say u(x,t) has the property that $\frac{\partial u}{\partial t} = 2$ for all points $(x,t) \in \mathbb{R}^2$.
 - a) Find some such function u(x, t).
 - b) Find the most general such function u(x,t).
 - c) If $u(x,0) = \sin 3x$, find u(x,t).

d) If instead u satisfies
$$\frac{\partial u}{\partial t} = 2xt$$
, still with $u(x,0) = \sin 3x$, find $u(x,t)$.

9. Say u(x,t) has the property that $\frac{\partial u}{\partial t} = 3u$ for all points $(x,t) \in \mathbb{R}^2$.

- a) Find some such function other than the trivial $u(x,t) \equiv 0$.
- b) Find the most general such function.
- c) If u(x,t) also satisfies the initial condition $u(x,0) = \sin 3x$, find u(x,t).
- 10. a) If $u(x,t) = \cos(x-3t) + 2(x-3t)^7$, show that $3u_x + u_t = 0$. b) If f(s) is any smooth function of s and u(x,t) = f(x-3t), show that $3u_x + u_t = 0$.
- 11. A function u(x, y) satisfies $3u_x + u_t = 0$. Find an invertible linear change of variables

$$r = ax + bt$$
$$s = cx + dt,$$

where a, b, c, d are constants, so that in the new (r, s) variables u satisfies $\frac{\partial u}{\partial s} = 0$. [REMARK: There are many possible such changes of variable. The point is to reduce $3u_x + u_t = 0$ to the much simpler $u_s = 0$.] 12. Let S and T be linear spaces, such as \mathbb{R}^3 and \mathbb{R}^7 and $L: S \to T$ be a *linear map*; thus, for any vectors X, Y in S and any scalar c

$$L(X+Y) = LX + LY \quad \text{and} \quad L(cX) = cL(x).$$

Say V_1 and V_2 are (distinct!) solutions of the equation $LX = Y_1$ while W is a solution of $LX = Y_2$. Answer the following in terms of V_1 , V_2 , and W.

- a) Find some solution of $LX = 2Y_1 7Y_2$.
- b) Find another solution (other than W) of $LX = Y_2$.
- 13. The following is a table of inner ("dot") products of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} .

	u	\mathbf{v}	w
u	4	0	8
\mathbf{v}	0	1	3
w	8	3	50

For example, $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} = 3$.

- a) Find a unit vector in the same direction as **u**.
- b) Compute $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$.
- c) Compute $\|\mathbf{v} + \mathbf{w}\|$.
- d) Find the orthogonal projection of \mathbf{w} into the plane E spanned by \mathbf{u} and \mathbf{v} . [Express your solution as linear combinations of \mathbf{u} and \mathbf{v} .]
- e) Find a unit vector orthogonal to the plane E.
- f) Find an orthonormal basis of the three dimensional space spanned by **u**, **v**, and **w**.

14. Let z and w be complex numbers.

- a) Write the complex number $z = \frac{1}{3+4i}$ in the form z = a + ib where a and b are real numbers.
- b) Show that $\overline{(zw)} = \overline{z}\overline{w}$.
- c) Show that $|z|^2 = z\bar{z}$.
- d) show that |zw| = |z||w|.

15. If z = x + iy is a complex number, one way to define e^z is by the power series

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{k}}{k!} + \dots = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}.$$
 (2)

a) Using the usual (real) power series for $\cos y$ and $\sin y$, show that

$$e^{iy} = \cos y + i \sin y$$

- b) Use this to show that $\cos y = \frac{e^{iy} + e^{-iy}}{2}$ and $\sin y = \frac{e^{iy} e^{-iy}}{2i}$.
- c) Using equation (2), one can show that $e^{z+w} = e^z e^w$ for any complex numbers z and w (accept this for now). Consequently

$$e^{i(x+y)} = e^{ix}e^{iy}.$$

Use the result of part (a) to show that this implies the usual formulas for cos(x+y) and sin(x+y).

16. Let $\mathcal{D} \subset \mathbb{R}^2$ be a bounded (connected) region with smooth boundary \mathcal{B} . If u(x, y) is a "smooth" function, write $\Delta u = u_{xx} + u_{yy}$ (we call Δ the *Laplace operator*).

SUGGESTION: First do this problem for a function of one variable, u(x), so $\Delta u = u''$ and, say, \mathcal{D} is the interval $\{0 < x < 1\}$.

- a) Show that $u\Delta u = \nabla \cdot (u\nabla u) |\nabla u|^2$.
- b) If u(x, y) = 0 on \mathcal{B} . Show that

$$\iint_{\mathcal{D}} u\Delta u \, dx \, dy = -\iint_{\mathcal{D}} |\nabla u|^2 \, dx \, dy.$$

c) If $\Delta u = 0$ in \mathcal{D} and u = 0 on the boundary \mathcal{B} , show that u(x, y) = 0 throughout \mathcal{D} .

[Last revised: January 23, 2015]