
Math 425, Spring 2015 Jerry L. Kazdan

Problem Set 1

Due: Thurs. Jan. 22 in class. [Late papers will be accepted until 1:00 PM Friday.]

This is rust remover. It is essentially Homework Set 0 with a few modifications. Notation:

ut =
∂u

∂t
.

This week. Please read all of Chapter 1 in the Strauss text.

1. Let u(t) be the solution of u′ = 3u with initial value u(0) = A > 0. At what time T is
u(T ) = 2A?

2. Let u(t) be the amount of a radioactive element at time t and say initially, u(0) = A > 0.
The rate of decay is proportional to the amount present, so

du

dt
= −cu,

where the constant c > 0 determines the decay rate. The half-life T is the amount of
time for half of the element to decay, so u(T ) = 1

2u(0). Find c in terms of T and obtain
a formula for u(t) in terms of T .

3. Let

∫ x

0
f(t) dt = ecos(3x) + A, where f is some continuous function. Find f and the

constant A.

4. a) If u′′ + 4u = 0 with initial conditions u(0) = 1 and u′(0) = −2, compute u(t).

b) Find a particular solution of the inhomogeneous equation u′′ + 4u = 8.

c) Find a particular solution of the inhomogeneous equation u′′ + 4u = −4t.

d) Find a particular solution of the inhomogeneous equation u′′ + 4u = −8 − 8t.

e) Find the most general solution of the inhomogeneous equation u′′ + 4u = 8 − 8t.

f) If f(t) is any continuous function, use the method “variation of parameters” (look it
up if you don’t know it) to find a formula for a particular solution of u′′+4u = f(t).

5. Let u(t) be any solution of u′′ + 2bu′ + 4u = 0. If b > 0 is a constant, show that
limt→∞ u(t) = 0.

6. a) If u′′ − 4u = 0 with initial conditions u(0) = 1 and u′(0) = −2, compute u(t).

b) Find a particular solution of the inhomogeneous equation u′′ − 4u = 8.

c) Find a particular solution of the inhomogeneous equation u′′ − 4u = −4t.
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d) Find a particular solution of the inhomogeneous equation u′′ − 4u = −8 − 8t.

e) Find the most general solution of the inhomogeneous equation u′′ − 4u = 8 − 8t.

f) If f(t) is any continuous function, use the method “variation of parameters” (look it
up if you don’t know it) to find a formula for a particular solution of u′′−4u = f(t).

7. Say w(t) satisfies the differential equation

aw′′(t) + bw′ + cw(t) = 0, (1)

where a and c, are positive constants and b ≥ 0. Let E(t) = 1
2 [aw′2 + cw2].

a) Without solving the differential equation, show that E′(t) ≤ 0.

b) Use this to show that If you also know that w(0) = 0 and w′(0) = 0, then w(t) = 0
for all t ≥ 0.

c) [Uniqueness] Say the functions u(t) and v(t) both satisfy the same equation (1) and
also u(0) = v(0) and u′(0) = v′(0). Show that u(t) = v(t) for all t ≥ 0.

8. Say u(x, t) has the property that
∂u

∂t
= 2 for all points (x, t) ∈ R

2.

a) Find some function u(x, t) with this property..

b) Find the most general such function u(x, t).

c) If u(x, 0) = sin 3x, find u(x, t).

d) If instead u satisfies
∂u

∂t
= 2xt, still with u(x, 0) = sin 3x, find u(x, t).

9. Say u(x, t) has the property that
∂u

∂t
= 3u for all points (x, t) ∈ R

2.

a) Find some such function – other than the trivial u(x, t) ≡ 0.

b) Find the most general such function.

c) If u(x, t) also satisfies the initial condition u(x, 0) = sin 3x, find u(x, t).

10. a) If u(x, t) = cos(x − 3t) + 2(x − 3t)7, show that 3ux + ut = 0.

b) If f(s) is any smooth function of s and u(x, t) = f(x− 3t), show that 3ux +ut = 0.

11. A function u(x, y) satisfies 3ux + ut = f(x, t), where f is some specified function.

a) Find an invertible linear change of variables

r =ax + bt

s =cx + dt,
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where a, b, c, d are constants, so that in the new (r, s) variables u satisfies
∂u

∂s
=

g(r, s), where g is related to f by the change of variables. [Remark: There are
many possible such changes of variable. The point is to reduce the differential
operator 3ux + ut to the much simpler us.]

b) Use this procedure to solve

3ux + ut = 1 + x + 2t with u(x, 0) = ex.

12. Let S and T be linear spaces, such as R
3 and R

7 and L : S → T be a linear map; thus,
for any vectors X, Y in S and any scalar c

L(X + Y ) = LX + LY and L(cX) = cL(x).

Say V1 and V2 are (distinct!) solutions of the equation LX = Y1 while W is a solution
of LX = Y2. Answer the following in terms of V1, V2, and W .

a) Find some solution of LX = 2Y1 − 7Y2.

b) Find another solution (other than W ) of LX = Y2.

13. The following is a table of inner (“dot”) products of vectors u, v, and w.

u v w

u 4 0 8

v 0 1 3

w 8 3 50

For example, v · w = w · v = 3.

a) Find a unit vector in the same direction as u.

b) Compute u · (v + w).

c) Compute ‖v + w‖.

d) Find the orthogonal projection of w into the plane E spanned by u and v. [Express
your solution as linear combinations of u and v.]

e) Find a unit vector orthogonal to the plane E.

f) Find an orthonormal basis of the three dimensional space spanned by u, v, and w.

14. Let z and w be complex numbers.

a) Write the complex number z =
1

3 + 4i
in the form z = a + ib where a and b are

real numbers.
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b) Show that (zw) = z̄w̄.

c) Show that |z|2 = zz̄.

d) show that |zw| = |z||w|.

15. If z = x + iy is a complex number, one way to define ez is by the power series

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · +

zk

k!
+ · · · =

∞∑
n=0

zn

n!
. (2)

a) Using the usual (real) power series for cos y and sin y, show that

eiy = cos y + i sin y.

b) Use this to show that cos y =
eiy + e−iy

2
and sin y =

eiy − e−iy

2i
.

c) Using equation (2), one can show that ez+w = ezew for any complex numbers z
and w (accept this for now). Consequently

ei(x+y) = eixeiy.

Use the result of part (a) to show that this implies the usual formulas for cos(x+y)
and sin(x + y).

16. Let D ⊂ R
2 be a bounded (connected) region with smooth boundary B. If u(x, y) is

a “smooth” function, write ∆u = uxx + uyy (we call ∆ the Laplace operator). Some
people write ∆u = ∇2u.

Suggestion: First do this problem for a function of one variable, u(x), so ∆u = u′′

and, say, D is the interval {0 < x < 1}.

a) Show that u∆u = ∇ · (u∇u) − |∇u|2.

b) If u(x, y) = 0 on B. Show that

∫∫
D

u∆u dx dy = −

∫∫
D

|∇u|2 dx dy.

c) If ∆u = 0 in D and u = 0 on the boundary B, show that u(x, y) = 0 throughout D.

17. The temperature u(x, t) of a certain thin rod, 0 ≤ x ≤ L satisfies the heat equation

ut = uxx (3)
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Assume the initial temperature u(x, 0) = 0 and that both ends of the rod are kept at
a temperature of 0, so u(0, t) = u(L, t) = 0 for all t ≥ 0. What do you anticipate the
temperature in the rod will be at any later time t?

I hope you suspect that u(x, t) = 0 for all t ≥ 0. Use the following to prove this. Let

H(t) =

∫ L

0
u2(x, t) dx.

a) Show that since the temperature on the ends of the rod is always zero, then dH/dt ≤
0 (an integration by parts will be needed). Thus, for any t ≥ 0 we know that
H(t) ≤ H(0).

b) Since the initial temperature is zero, what is H(0)? Why does this imply that
H(t) = 0 for all t ≥ 0? Why does this imply that u(x, t) = 0 for all points on the
rod and all t ≥ 0?

c) [Uniqueness] Say that the functionns u(x, t) and v(x, t) both satisfy the heat equa-
tion (3) and have the identical initial values and boundary values:

u(x, 0) = v(x, 0) for 0 ≤ x ≤ L, u(x, t) = v(x, t) for x = 0 and x = L, t ≥ 0.

Show that u(x, t) = v(x, t) for all 0 ≤ x ≤ L, t ≥ 0.

18. [Generalization of Problem 17 to more space dimensions]. Say a function u(x, y, t)
satisfies the heat equation in a bounded region Ω ∈ R

2:

ut = uxx + uyy (4)

and that u(x, y, t) = 0 for all points (x, y) on the boundary, B of Ω. Similar to Problem
17, define

H(t) =

∫∫
Ω

u2(x, y, t) dx dy.

a) Show that dH/dt ≤ 0. [Suggestion: See Problem 16.]

b) If in addition you know that the initial temperature is zero, u(x, y, 0) = 0 for all
points (x, y) ∈ Ω, show that u(x, y, t) = 0 for all (x, y) ∈ Ω and all t ≥ 0.

c) [Uniqueness] Say that the functionns u(x, y, t) and v(x, y, t) both satisfy the heat
equation (4) and have the identical initial values and boundary values:

u(x, y, 0) = v(x, y, 0) for (x, y) ∈ Ω, u(x, y, t) = v(x, y, t) for (x, y) on B, and t ≥ 0.

Show that u(x, y, t) = v(x, y, t) for all (x, y) ∈ Ω t ≥ 0.

[Last revised: January 23, 2015]
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