Problem Set 11

Due: Thurs. Apr. 16 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week: Please read Chapter 11 in the Strauss text.

1. Strauss p. $247 \# 3$
2. Strauss p. $248 \# 9$
3. [See Section 10.1 in Strauss] Solve the wave equation $u_{t t}=c^{2} \Delta u$ in the square $\Omega=$ $\{0<x<\pi, 0<y<\pi\}$ in the plane with $\nabla u \cdot N=0$ on the boundary and initial conditions $u(x, y, 0)=0, u_{t}(x, y, 0)=3 \cos x+\cos 2 x \cos 5 y$.
4. Strauss p. $264 \# 2$

Suggestion: As a warm-up, use the simpler initial conditions:

$$
u(x, y, 0)=\sin \frac{2 \pi x}{a} \sin \frac{5 \pi y}{b}, \quad u_{t}(x, y, 0)=0 .
$$

Then find the Fourier expansion in $0 \leq x \leq a$ of $x(a-x)=\sum c_{k} \sin (k \pi x / a)$.]
5. Strauss p. $264 \# 3$
6. Strauss p. 270 \#1 [book typo: should be "initial conditions (25)"]
7. Strauss p. 270 \#2
8. Strauss p. $270 \# 5$
9. On the interval $\alpha \leq x \leq \beta$ let $u(x)$ and $v(x)$ be solutions of the equations

$$
u^{\prime \prime}+a(x) u=0 \quad v^{\prime \prime}+b(x) v=0
$$

where $a(x)$ and $b(x)$ are continuous functions.
a) Show that

$$
\int_{\alpha}^{\beta}(b-a) u v d x=\left[v u^{\prime}-u v_{\alpha}^{\prime \beta} .\right.
$$

b) Suppose that α and β are consecutive zeroes of u and that $u(x)>0$ in the interval $\alpha<x<\beta$. If $a(x) \leq b(x)$ in this interval, show that $v(x)$ must be zero somewhere in this interval by using that $u^{\prime}(\alpha)>0$ and $u^{\prime}(\beta)<0$ and there is a contradiction unless v is zero somewhere in this interval. This is the Sturm oscillation theorem.
c) In the special case where $a(x)=b(x)$ and $u(x)$ and $v(x)$ are linearly independent solutions of the same equation, conclude that between any two zeroes of u there is a zero of v, and vice versa. Thus the zeroes interlace. A special case of this is the interlacing of the zeroes of $\sin x$ and $\cos x$.
d) If $b(x) \geq c^{2}>0$ for some constant c, show that $v(x)$ must have infinitely many zeroes by comparing v with a collation of $u^{\prime \prime}+c^{2} u=0$.
e) Show that every solution of $v^{\prime \prime}+\left(1-\frac{1}{x^{2}} v=0\right.$ must have infinitely many zeroes.

