Problem Set 12

Due: Thurs. Apr. 23 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week: Please read Chapter 12.3 and reread Chapter 11 in the Strauss text.

1. Strauss p. $277 \# 2$
2. Strauss p; $278 \# 10$
3. Strauss p; $281 \# 1$
4. Let Ω in \mathbb{R}^{2} be a bounded region and let $\hat{\Omega} \subset \mathbb{R}^{2}$ be the region obtained by stretching the x and y coordinates by a factor $c>0$. Thus $\hat{x}=c x$ and $\hat{y}=c y$. The λ_{n} and v_{n} be the eigenvalues and corresponding eigenfunctions of Ω.
a) What can you say about the eigenvalues and eigenfunctions of $\hat{\Omega}$?
b) Repeat the analogous problem for a region Ω in \mathbb{R}^{3} ?
5. Strauss p. $304 \# 1$
6. Strauss p; 304 \#4
7. Let $\Omega \subset \mathbb{R}^{2}$ be a region inside the rectangle with vertices at $(-1,-1),(2,-1),(2,2)$, and $(-1,2)$, and assume the square with vertices at $(0,0),(1,0),(1,1)$, and $(0,1)$ is inside Ω. Use this information to estimate the lowest eigenvalue of the Laplacian for the region Ω with boundary values zero. Thus, find numbers $0<m<M$ so that

$$
m<\lambda_{1}(\Omega)<M
$$

8. Strauss p. $309 \# 1$
9. Strauss p. $309 \# 9$
10. Strauss p. 313 \#2
11. Strauss p. 313 \#3
[Last revised: April 17, 2015]
