Problem Set 12

DUE: Thurs. Apr. 23 in class. [Late papers will be accepted until 1:00 PM Friday.]

This week: Please read Chapter 12.3 and reread Chapter 11 in the Strauss text.

- 1. Strauss p. 277 #2
- 2. Strauss p; 278 #10
- 3. Strauss p; 281 #1
- 4. Let Ω in \mathbb{R}^2 be a bounded region and let $\hat{\Omega} \subset \mathbb{R}^2$ be the region obtained by stretching the x and y coordinates by a factor c > 0. Thus $\hat{x} = cx$ and $\hat{y} = cy$. The λ_n and v_n be the eigenvalues and corresponding eigenfunctions of Ω .
 - a) What can you say about the eigenvalues and eigenfunctions of $\hat{\Omega}$?
 - b) Repeat the analogous problem for a region Ω in \mathbb{R}^3 ?
- 5. Strauss p. 304 #1
- 6. Strauss p; 304 #4
- 7. Let $\Omega \subset \mathbb{R}^2$ be a region inside the rectangle with vertices at (-1, -1), (2, -1), (2, 2), and (-1, 2), and assume the square with vertices at (0, 0), (1, 0), (1, 1), and (0, 1) is inside Ω . Use this information to estimate the lowest eigenvalue of the Laplacian for the region Ω with boundary values zero. Thus, find numbers 0 < m < M so that

$$m < \lambda_1(\Omega) < M.$$

- 8. Strauss p. 309#1
- 9. Strauss p. 309 # 9
- 10. Strauss p. 313 #2
- 11. Strauss p. 313#3

[Last revised: April 17, 2015]