Problem Set 2

Due: Thurs. Jan. 29 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week. Please read all of Chapter 2 in the Strauss text.

More Rust Remover These problems are not to be handed-in
RR 1-12 Problems 1-12 on pages 5-6 of Strauss. You should be able to do most of these instantly.

RR-13 Say the temperature in the plane \mathbb{R}^{2} at time t is given by

$$
u(x, y, t)=1-x+3 y^{2}+x y t .
$$

If you are at the point $(1,2)$ at time $t=5$, in what direction in \mathbb{R}^{2} should you move so the the temperature increases most? Decreases most?

RR-14 Let $\mathbf{V}=\left(x+2 y^{2}\right) \mathbf{i}+(2+3 y \mathbf{j}$ be a vector field in the plane and let D be the unit disk whose boundary, B is of course the unit circle. Use the divergence theorem to compute

$$
\oint_{B} \mathbf{V} \cdot \mathbf{N} d s
$$

where \mathbf{N} is the unit outer normal vector field on B.

RR-15 Strauss, p. 19 \#9

The following problems are all from the Strauss text. These are to be handed-in.

1. p. $9 \# 2$
2. p. $10 \# 8$ There are two good methods. Both are valuable to know.
a) Make a change of the independent variables $s=\alpha x+\beta y, t=\gamma s+\delta y$, just in in HW-1 \#11 to reduce this to a problem like HW-1 \#9.
b) Make a change of the dependent variable, say $u(x, y)=\varphi(x) v(x, t)$ choosing φ so that the equation for v has the simpler form $a v_{x}+b v_{y}=0$.
3. p. $10 \# 10$ [See the suggestion for the previous problem]
4. p. $19 \# 6$ [For the Laplacian in polar coordinates see p. 157 Eq. (5). Here you are seeking a solution that does not depend on the angle θ.]
5. p. $19 \# 8$
6. p. $20 \# 10$
7. p. $27 \# 1$
8. p. $27 \# 4$ [See also the next problem].
9. Let $D \in \mathbb{R}^{3}$ be a bounded region with smooth boundary ∂D and say $u(x, y, z)$ satisfies $\Delta u=0$ in D with $\partial u / \partial n=0$ on the boundary. Show that $u(x, y, z)=$ constant in D.
[Note: This is almost identical to Problem 16 in Homework Set 1.
10. p. $38 \# 1$
11. p. $38 \# 3$
12. p. $38 \# 7$

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 Strauss P. $41 \# 6$
[Last revised: January 23, 2015]

