Problem Set 3

Due: Thurs. Feb. 5 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week. Please read the first half of Chapter 3 in the Strauss text.
Most of the following problems are from the Strauss text. Lots of problems. Fortunately, many of them are short.

1. Problem p. $27 \# 1$ was equivalent to showing that the solution to $u^{\prime \prime}+c u=0$ on $0 \leq x \leq 1$ with $u(0)=u(1)=0$ may not be unique for certain values of $c>0$. Consider the related problem

$$
\begin{equation*}
u^{\prime \prime}-c(x) u=0 \quad \text { where } \quad c(x)>0 . \tag{1}
\end{equation*}
$$

a) Show that there is no point x_{0} in $0<x<1$ where $u\left(x_{0}\right)>0$ and u has a local maximum. Thus, u cannot have a positive maximum at an interior point of this interval.
b) Siimilarily, show that there is no point x_{0} in $0<x<1$ where u can have a negative local minimum.
c) Conclude that if $u(0)=u(1)=0$. then $u(x)=0$ in the whole interval.

Moral: The sign of c is important.
2. p. $31 \# 1$
3. p. $31 \# 5$
4. p. $38 \# 8$
5. p. $38 \# 11$
6. p. $41 \# 4$
7. p. $45 \# 1$
8. p. $46 \# 4$
9. To apply p. $46 \# 7$ a (which we proved in class) it is useful to know the explicit solution to some special cases of

$$
\begin{equation*}
u_{t}-u_{x x}=f(x, t) \quad \text { in } \quad 0<x<L \quad \text { with } \quad u(0, t)=\phi(t), u(L, t)=\psi \tag{2}
\end{equation*}
$$

a) If M, a, and b are constants, find the (unique) solution of

$$
v_{t}-v_{x x}=M \quad \text { with } \quad v(0, t)=a \quad \text { and } \quad v(L)=b .
$$

b) If $u(x, t)$ is a solution of equation (2) with $f \leq M, \phi \leq a$, and $\psi \leq b$, find an explicit function that gives an upper bound for u.
10. p. $52 \# 1$
11. p. $53 \# 11$
12. p. $54 \# 16$
[Last revised: March 16, 2015]

