Problem Set 4

DUE: Thurs. Feb. 12 in class. [Late papers will be accepted until 1:00 PM Friday.]

This week. Please read all of Chapter 3 and Chapter 4 in the Strauss text.

1. [One goal of this problem is to understand "periodic boundary conditions". See Part (e) below.]

Say a function u(t) satisfies the differential equation

$$u'' + b(t)u' + c(t)u = 0 \tag{1}$$

on the interval [0, A] and that the coefficients b(t) and c(t) are both bounded, say $|b(t)| \leq M$ and $|c(t)| \leq M$ (if the coefficients are continuous, this is always true for some M).

- a) Define $E(t) := \frac{1}{2}(u'^2 + u^2)$. Show that for some constant γ (depending on M) we have $E'(t) \leq \gamma E(t)$. [SUGGESTION: use the simple inequality $2xy \leq x^2 + y^2$.]
- b) Show that $E(t) \leq e^{\gamma t} E(0)$ for all $t \in [0, A]$. [HINT: First use the previous part to show that $(e^{-\gamma t} E(t))' \leq 0$].
- c) In particular, if u(0) = 0 and u'(0) = 0, show that E(t) = 0 and hence u(t) = 0 for all $t \in [0, A]$. In other words, if u'' + b(t)u' + c(t)u = 0 on the interval [0, A] and that the functions b(t) and c(t) are both bounded, and if u(0) = 0 and u'(0) = 0, then the only possibility is that $u(t) \equiv 0$ for all $t \ge 0$.
- d) Use this to prove the uniqueness theorem: if v(t) and w(t) both satisfy equation

$$u'' + b(t)u' + c(t)u = f(t)$$
(2)

and have the same initial conditions, v(0) = w(0) and v'(0) = w'(0), then $v(t) \equiv w(t)$ in the interval [0, A].

e) Assume the coefficients b(t), c(t), and f(t) in equation (2) are periodic with period P, that is, b(t + P) = b(t) etc. for all real t. If $\phi(t)$ is a solution of equation (2) that satisfies the *periodic boundary conditions*

$$\phi(P) = \phi(0) \text{ and } \phi'(P) = \phi'(0),$$
 (3)

show that $\phi(t)$ is periodic with period $P: \phi(t+P) = \phi(t)$ for all $t \ge 0$. Thus, the periodic boundary conditions (3) do imply the desired periodicity of the solution

2. Let C be a circle of radius 1 and let $u(\theta, t)$ be the temperature at a point θ , at time t. To make this well-defined, we need that $u(\theta + 2\pi) = u(\theta)$. Say $u(\theta, t)$ satisfies the heat equation $u_t = u_{\theta\theta}$. Let

$$E(t) = \frac{1}{2} \int_{-\pi}^{\pi} u^2(\theta, t) \, d\theta.$$

- a) Show that $E'(t) \leq 0$.
- b) If the initial temperature $u(\theta, 0) = 0$, show that $u(\theta, t) = 0$ for all $t \ge 0$.
- 3. Let u(x,t) be the temperature at time t at the point $x, -L \le x \le L$. Assume it satisfies the heat equation $u_t = u_{xx}$ for $0 < t < \infty$ with the boundary condition u(-L,t) = u(L,t) = 0 and initial condition u(x,0) = f(x).
 - a) Show that $E(t) := \frac{1}{2} \int_{-L}^{L} u^2(x,t) \, dx$ is a decreasing function of t.
 - b) Use this to prove uniqueness for the heat equation with these specified initial and boundary conditions u(-L,t) = f(t), u(L,t) = g(t).
 - c) If $u(x,0) = \varphi(x)$ is an even function of x, and u(-L,t) = u(L,t) show that the temperature u(x,t) at later times is also an even function of x.
- 4. Find a formula for the solution of

$$u_{xx} + u_{xt} - 20u_{tt} = 0$$
 with $u(x, 0) = \varphi(x)$ and $u_t(x, 0) = \psi(x)$.

Your result should be something like equation (8) on page 36 of the text.

- 5. [THE DULCIMER, P. 38 #5] Solve the wave equation $u_{tt} = c^2 u_{xx}$ with initial conditions u(x,0) = 0 and $u_t(x,0) = g(x)$, where g(x) = 1 if |x| < a and g(x) = 0 for $|x| \ge a$. This corresponds to hitting the string with a hammer of width 2a. Draw sketches of snapshots of the string (i.e., plot u versus x) for $t = \frac{1}{2}a/c$, t = a/c, $t = \frac{3}{2}a/c$, t = 2a/c and $t = \frac{5}{2}a/c$. [REMARK: This is very similar to p. 38 #3].
- 6. Solve the wave equation $u_{tt} = c^2 u_{xx}$ for the semi-infinite string $x \ge 0$ with the initial and boundary conditions

$$u(x,0) = 3 - \sin x$$
, $u_t(x,0) = 0$, $u(0,t) = 3 - t^2$.

7. p. 60 #1

- 8. p. 60 #4
- 9. [p. 66 #1] Find an explicit formula for the solution of the wave equation $u_{tt} = u_{xx}$ on the half-line $0 < x < \infty$ with initial conditions $u(x, 0) = \varphi(x)$, $u_t(x, 0) = \psi(x)$ and the homogeneous Neumann boundary condition $u_x(0, t) = 0$.
- 10. p. 66 #3

[Last revised: June 28, 2015]