Problem Set 4

Due: Thurs. Feb. 12 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week. Please read all of Chapter 3 and Chapter 4 in the Strauss text.

1. [One goal of this problem is to understand "periodic boundary conditions". See Part (e) below.]

Say a function $u(t)$ satisfies the differential equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) u^{\prime}+c(t) u=0 \tag{1}
\end{equation*}
$$

on the interval $[0, A]$ and that the coefficients $b(t)$ and $c(t)$ are both bounded, say $|b(t)| \leq M$ and $|c(t)| \leq M$ (if the coefficients are continuous, this is always true for some M).
a) Define $E(t):=\frac{1}{2}\left(u^{\prime 2}+u^{2}\right)$. Show that for some constant γ (depending on $\left.M\right)$ we have $E^{\prime}(t) \leq \gamma E(t)$. [Suggestion: use the simple inequality $2 x y \leq x^{2}+y^{2}$.]
b) Show that $E(t) \leq e^{\gamma t} E(0)$ for all $t \in[0, A]$. [Hint: First use the previous part to show that $\left.\left(e^{-\gamma t} E(t)\right)^{\prime} \leq 0\right]$.
c) In particular, if $u(0)=0$ and $u^{\prime}(0)=0$, show that $E(t)=0$ and hence $u(t)=0$ for all $t \in[0, A]$. In other words, if $u^{\prime \prime}+b(t) u^{\prime}+c(t) u=0$ on the interval $[0, A]$ and that the functions $b(t)$ and $c(t)$ are both bounded, and if $u(0)=0$ and $u^{\prime}(0)=0$, then the only possibility is that $u(t) \equiv 0$ for all $t \geq 0$.
d) Use this to prove the uniqueness theorem: if $v(t)$ and $w(t)$ both satisfy equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) u^{\prime}+c(t) u=f(t) \tag{2}
\end{equation*}
$$

and have the same initial conditions, $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$, then $v(t) \equiv$ $w(t)$ in the interval $[0, A]$.
e) Assume the coefficients $b(t), c(t)$, and $f(t)$ in equation (2) are periodic with period P, that is, $b(t+P)=b(t)$ etc. for all real t. If $\phi(t)$ is a solution of equation (2) that satisfies the periodic boundary conditions

$$
\begin{equation*}
\phi(P)=\phi(0) \quad \text { and } \quad \phi^{\prime}(P)=\phi^{\prime}(0) \tag{3}
\end{equation*}
$$

show that $\phi(t)$ is periodic with period $P: \phi(t+P)=\phi(t)$ for all $t \geq 0$. Thus, the periodic boundary conditions (3) do imply the desired periodicity of the solution
2. Let C be a circle of radius 1 and let $u(\theta, t)$ be the temperature at a point θ, at time t. To make this well-defined, we need that $u(\theta+2 \pi)=u(\theta)$. Say $u(\theta, t)$ satisfies the heat equation $u_{t}=u_{\theta \theta}$. Let

$$
E(t)=\frac{1}{2} \int_{-\pi}^{\pi} u^{2}(\theta, t) d \theta .
$$

a) Show that $E^{\prime}(t) \leq 0$.
b) If the initial temperature $u(\theta, 0)=0$, show that $u(\theta, t)=0$ for all $t \geq 0$.
3. Let $u(x, t)$ be the temperature at time t at the point $x,-L \leq x \leq L$. Assume it satisfies the heat equation $u_{t}=u_{x x}$ for $0<t<\infty$ with the boundary condition $u(-L, t)=u(L, t)=0$ and initial condition $u(x, 0)=f(x)$.
a) Show that $E(t):=\frac{1}{2} \int_{-L}^{L} u^{2}(x, t) d x$ is a decreasing function of t.
b) Use this to prove uniqueness for the heat equation with these specified initial and boundary conditions $u(-L, t)=f(t), u(L, t)=g(t)$.
c) If $u(x, 0)=\varphi(x)$ is an even function of x, and $u(-L, t)=u(L, t)$ show that the temperature $u(x, t)$ at later times is also an even function of x.
4. Find a formula for the solution of

$$
u_{x x}+u_{x t}-20 u_{t t}=0 \quad \text { with } \quad u(x, 0)=\varphi(x) \text { and } u_{t}(x, 0)=\psi(x) .
$$

Your result should be something like equation (8) on page 36 of the text.
5. [The dulcimer, P. $38 \# 5$] Solve the wave equation $u_{t t}=c^{2} u_{x x}$ with initial conditions $u(x, 0)=0$ and $u_{t}(x, 0)=g(x)$, where $g(x)=1$ if $|x|<a$ and $g(x)=0$ for $|x| \geq a$. This corresponds to hitting the string with a hammer of width $2 a$. Draw sketches of snapshots of the string (i.e., plot u versus x) for $t=\frac{1}{2} a / c, t=a / c, t=\frac{3}{2} a / c, t=2 a / c$ and $t=\frac{5}{2} a / c$. [Remark: This is very similar to p. $38 \# 3$].
6. Solve the wave equation $u_{t t}=c^{2} u_{x x}$ for the semi-infinite string $x \geq 0$ with the initial and boundary conditions

$$
u(x, 0)=3-\sin x, \quad u_{t}(x, 0)=0, \quad u(0, t)=3-t^{2} .
$$

7. p. $60 \# 1$
8. p. $60 \# 4$
9. [p. $66 \# 1]$ Find an explicit formula for the solution of the wave equation $u_{t t}=u_{x x}$ on the half-line $0<x<\infty$ with initial conditions $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x)$ and the homogeneous Neumann boundary condition $u_{x}(0, t)=0$.
10. p. $66 \# 3$
[Last revised: June 28, 2015]
