Problem Set 8

Due: Thurs. Mar. 26 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week. Please read the Chapters 7 and 9 in the Strauss text.
[Lots of problems. Again, fortunately, most of them are short.]

1. Strauss, p. $172 \# 1$
2. Strauss, p. 172 \#2
3. Strauss, p. $175 \# 1$
4. Solve $\Delta u=0$ in the annulus $1 \leq x^{2}+y^{2} \leq 2$ with $u(x, y)=1$ on the circle $x^{2}+y^{2}=1$ and $u(x, y)=7$ on $x^{2}+y^{2}=2$.
5. Suppose u is a twice differentiable function on \mathbb{R} which satisfies the ordinary differential equation

$$
u^{\prime \prime}+b(x) u^{\prime}-c(x) u=0
$$

where $b(x)$ and $c(x)$ are continuous functions on \mathbb{R} with $c(x)>0$ for every $x \in$ $(0,1)$.
a) Show that u cannot have a positive local maximum in the interval $(0,1)$, that is, have a local maximum at a point p where $u(p)>0$. Also show that u cannot have a negative local minimum in $(0,1)$.
[The example $u^{\prime \prime}+u=0$ has $u(x)=\sin x$ as a solution, which does have posivive local maxima and negative local minima. This shows that some assumption, such as our $c(x)>0$ is needed.]
b) If $u(0)=u(1)=0$, prove that $u(x)=0$ for every $x \in[0,1]$.
c) If u satisfies

$$
4 u_{x x}+3 u_{y y}-5 u=0
$$

in a region $\mathcal{D} \subset \mathbb{R}^{2}$, show that it cannot have a local positive maximum. Also show that u cannot have a local negative minimum.
d) Repeat the above for a solution of

$$
4 u_{x x}-2 u_{x y}+3 u_{y y}+7 u_{x}+u_{y}-5 u=0 .
$$

[REmARK: If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are positive semi-definite symmetric $n \times n$ matrices, then $\sum_{i, j=1}^{n} a_{i j} b_{i j} \geq 0$.]
e) If a function $u(x, y)$ satisfies the above equation in a bounded region $\mathcal{D} \in \mathbb{R}^{2}$ and is zero on the boundary of the region, show that $u(x, y)$ is zero throughout the region.
6. Consider the Dirichlet problem $\Delta u-5 u=0$ in a bounded region $\Omega \subset \mathbb{R}^{2}$ with $u(x, y)=$ $f(x, y)$ for points (x, y) on the boundary $\partial \Omega$. Prove the uniqueness in two ways: using a maximum principle (see the previous problem) and using an energy argument.
7. a) Let B be the ball $\left\{r^{2}=x^{2}+y^{2}+z^{2}<a^{2}\right\}$ in \mathbb{R}^{3}. Compute all the radial eigenfunctions $u(r)$ of $-\Delta$ with Neumann boundary conditions $\partial u / \partial r=0$ for $r=a$. Thus, you are solving $-\left[u_{r r}+\frac{2}{r} u_{r}\right]=\lambda u$. [SUGGESTION: the substitution $v(r)=r u(r)$ is useful. Note it implies $v(0)=0$.]
b) Compute the corresponding eigenvalues (there is an explicit formula).
c) Use this to solve the heat equation $u_{t}=\Delta u$ in B with $u_{r}=0$ on the boundary in the special case where the initial temperature, $u(x, 0)=\varphi(r)$ depends only on r. Your solution will be an infinite series. Please include a formula for finding the coefficients.
8. Strauss, p. $184 \# 2$
9. Strauss, p. $184 \# 5$
10. Strauss, p. 187 \#1
11. Strauss, p. 187 \#2
12. Strauss, p. $190 \# 2$
[Last revised: March 21, 2015]

