Problem Set 9

Due: Thurs. April 2 in class. [Late papers will be accepted until 1:00 PM Friday.]
This week. Please read the Chapter 9 in the Strauss text.

1. Strauss, p. $196 \# 3$
2. Strauss, p. $196 \# 5$
3. Strauss, p. $196 \# 6$
4. Strauss, p. 197 \#11
5. Strauss, p. 197 \#13
6. Strauss, p. 233 \#1
7. Strauss, p. $233 \# 2$
8. Strauss, p. $233 \# 6$ (a)

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 a) Let A be a positive definite $n \times n$ real matrix (so, by definition, A is assumed to be a symmetric matrix), and $b \in \mathbb{R}^{n}$. Consider the quadratic polynomial

$$
Q(x):=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle .
$$

Show that Q is bounded below, that is, there is a constant m so that $Q(x) \geq m$ for all $x \in \mathbb{R}^{n}$.
b) If $x_{0} \in \mathbb{R}^{n}$ minimizes Q, show that $A x_{0}=b$. [Moral: One way to solve $A x=b$ is to minimize Q.]
c) Let $\Omega \in \mathbb{R}^{n}$ be a bounded region with smooth boundary and $F(x)$ a bounded continuous function. Also, let \mathcal{S} be the set of smooth functions $u(x)$ on Ω that are zero on the boundary, $u(x)=0$ for all $x \in \partial \Omega$. Define

$$
J(u):=\iint_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}+F(x) u\right] d x .
$$

If $u_{0}(x) \in \mathcal{S}$ minimizes $J(u)$ for all $u \in \mathcal{S}$, show that $\Delta u_{0}=F$ in Ω - and of course $u_{0}=0$ on $\partial \Omega$. [Moral: One way to solve $\Delta u=F$ with $u=0$ on $\partial \Omega$ is to seek a function in \mathcal{S} that mimimizes $J(u)$.]
[Last revised: April 14, 2015]

