Convolution

Let f(x) and g(x) be continuous real-valued functions fo& R and assume that or g is zero
outside some bounded set (this assumption can be relaxed a bit). Defooenbleition

(fxg)(x / f(x—y)g(y)dy (1)

One preliminary useful observation is
fxg=gxf. 2
To prove this make the change of variable x—vy in the integral (1).

Remark 1 Note thatifg is zero outside of the intervéd, b|,, then(f xg)(x) = fa (x—y)g(y)dy,
so only the values of on the intervalx—b,x—a] are used. Thus ik € [c,d], then the convolution
only involves the values of on[c—b,d—a].

Remark 2 Similarly, if f is zero outside of the intervat-3, 3] andx € [c, d], then the convolution
only involves the values af on the intervallc— 3, d + 1].

SMOOTHNESS OFf % Q.

Theorem 1 If f € CY(R) then fxgc C'(R). Better yet, if f € CX(R) and g€ C'(R), then fxgc
CKM(R).

PROOF This is clearer if we writeh(x) := (f xg)(x). Then

b0 —Pbo) _ * Tx=y)=Tl0 =Y) ) ®)

X—Xo —o X—Xo

We will be done if we can show thaf (x—y) — f(xo—Y)]/(x—Xo) converges uniformly tdf’(xo —
y). To do this we use the integral form of the mean value theorem:

f(x—y)— f(Xo—y)—/Oldf(xo_y;t(x_x‘)»dt

- [/Olf’(xo—y+t(X—Xo))dt (X—X0).

Then f = ) L
x—y)— f(xo—
= 20—y = [ (o= y+tix—0) - Foa-yld @)
Since f’ is assumed continuous and is zero outside of a bounded set, it is uniforntlpumus.
Thus, given any > 0 there is & > 0 so that if[x— Xg| < & then

[f'(z+t(x—x0)) — f'(2)] < &
for all values ofz. In our casez = xg—Yy. Thus the left side of (4) tends to zero uniformly for all
choices ofxy andy. Consequentlyh € C1(R).

Repeating this we conclude thatfife Ck thenh e C¥. Because of (2f ¥ xg= g« f, so we can
repeat this reasoning to show tht f(K) € C* . Thus f g e C***. Note that althougly might not



be zero outside a bounded set, becafiggzero outside a bounded set, the integratiog:#f ) is
only over a bounded set — in which the derivativegyafre uniformly continuous.

APPROXIMATE IDENTITIES
Let ¢n(t) be a sequence of smooth real-valued functions with the properties

(@) 6n(t) >0,  (b) dn(t)=0 for [t| >1/n,  (c) [ o:ocl)n(t)dt:l. (5)

Note: because of (b), this integral is only ovell/n <t <1/n.
Assumef (x) is uniformly continuous for alk € R and zero outside a bounded set. Define

o) = ()0 = [ Hx-Ognlt)cl ©

Theorem 2 f,(x) € C* converges uniformly to f(x) for all x € R. Thus, on a compact set any
continuous function can be approximated arbitrarily closely in the uniform norm by a smooth func-
tion.

PrROOF The smoothness of the approximatiofysis an immediate consequence of Theorem 1.

Since f(x) = f(X) (/7. ¢n(t)dt) = [, F(X)n(t)dt ,
000~ 100 = [ [F(x=1) = F(x)gn(0)ct. )

ft|<1/n
Since f is uniformly continuous, given ang > 0 there is @ > 0 such that if|t| < & then |f(x—
t)— f(x)| < € forall x. If 1/n< 3, then by (5c)

00~ Tl <& [ dnlt)dt—e. (®)

lt|<1/n
Since the right side is independentothis shows that in the uniform norinf, — f{|» < €.

Since the operator$,(f) := f ¢, — f, so in this sensd, converges to the identity operatby
we sometime call th&, (or the ¢,) approximate identities.

EXAMPLE Assumef(x) is continuous on the intervaé, b]. Then f: f(x) sinAxdx — 0.

PROOF If f € Cl([a b)) this is easy to show by an integration by parts, usifigx)| <M for
some constani.
If f is only continuous, use Theorem 2 to find a smog(tk) with ||f —g||» < € on [a,b]. Then

< +

b b b
/ f(X) sinAxdx /[f(x)—g(x)]sin)\xdx /g(x)sin)\xdx

Since|| f —g||. < €, the first term on the right is small. Becaugés smooth, the second term goes
to zero ash — .

In many applications the condition (5b) is too restrictive.
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Theorem 3 Theorem 1isvalid if you replace (5b) with:

For every >0, Ilim dn(t)dt =0. (5b")

n— J|t|>5

PrRoOOF Replace (7) by

Givene > 0, pick d as was done above. Then

|d] <€ dn(t)dt <e.
[t <8

To estimatel,, say|f (x| <M for all x. Then by our assumption on tigg,,

13| §2M/ dn(t)dt — O,
[t|>d

This proves that| f, — f||o« — O.

Weierstrass used essentially this argument to prove his Approximationérhgsee below) with

(x=y)?

@ f(y)dy,

u(xt) := 1/ e
T VA Jr
He was thinking ot =1/n— 0. Thentlircr)u(x,t) — f(x). This classical formula was well-known

sinceu(x,t) is the solution of théeat equation U = ux for x € R, t > 0 with initial temperature
u(x,0) = f(x).

We’'ll use this idea but with a different integrand to prove

Theorem 4 (WEIERSTRASSAPPROXIMATION THEOREM) Let f be a continuous function. Then
on any compact set it can be approximated uniformly by a polynomial.

PROOF We prove this wherd is continuous on a compact det, b']in R. The same proof works
for a compact set ifR".

As a preliminary step, extenfl as a continuous function to a slightly larger interfalb] so that

this extended function satisfiega) = f(b) = 0 (for the intervala < x < & use a straight line
between the pointga, 0) and (&, f(&')), with a similar extension at the right endl=b’). We can

now extendf as a continuous function to all & by letting f (x) = 0 outside offa, b]. By scaling

the x— axis, we may further assume thitx) = 0 for |x| > 1/2.

Our approximations are
fa(X) 1= f 5 On(X) = /: F(x—)n(t)dt. ©)
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Because for us (see below),(x) = 0 for x| > 1 this integral will be only over the intervak| <1.

If in (9) the functions,, are polynomials, then the approximatiohs ¢, are also polynomials.
However, polynomials will never satisfy the restrictions required of ghe Our ¢n(X), defined
below, will be polynomials forix| <1 and zero forjx| > 1. As we observed in the Remark 2 after
equation (2), since ouf(x) = 0 for |x| > 1/2, if x € [c,d], then the convolutiorf,(x) = f xdp will
only use the values afn(x) for xe c— 21, d+ 2. In particular, ifx € [, ], then the convolution
fa(x) = f * dn will only use the values obn(x) for x € [—1, 1] — which is exactly where, is a
polynomial. Note that if is in a larger interval, thd,, will converge tof — but the f, will not be

polynomials.
Define the functiong,(x) as

A iy < 1
X) = Cn - , 10
$n(X) {o if x| > 1 (10)
where L
Co = / (1—2)"dx (11)
-1

was chosen so thap,, satisfies the condition (5¢). We will verify the modified property (5b’)
of Theorem 3 by showing that for any> 0 in the region|x| > & the functions$,(x) converge
uniformly to zero.

To show this we estimate the constangsin equation (11). After the change of variattle- x?

1 1
cn:Z/O (1—x2)”dx:/0 - &

n JR—

V&
Since forn > 2 the second derivative oflL —t)" is positive for all 0<t <1, it is convex and
thus lies above its tangent line = 0. Thus(1—t)" > 1—nt for 0 <t < 1. Consequently, if
0<nt<1/2 we find 1-nt >1/2 so(1—-t)" > 1/2. This estimate on the interval Ot < 2—1n
therefore gives the inequality

(12)

3 dt _ 1 /= dt 1
Ch > 1—t”—>—/ —_ = —. 13
n_/o( )\/f_20 Vi V/2n (13)
Consequently, if > |x| > &, then from the definition (10)

(1—3)"

Ch

0< dn(X) = <V2n(1-x)" < v2n(1-&)".

This has the form/2nb" where O< b < 1. Thus

For everyd >0, lim dn(X)dx=0.

N— Jix|>d

Thus we have verified the assumptions of Theorem 3, so our approximéiiox), which are
polynomials for|x| < 1/2, converge uniformly tof (X).
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EXAMPLE In the function spacé;([0,1]) the norm comes from an inner product

<f,g>:_/01f(x)g(x)dx so |[fll2=/{F, ).

We sayf andg areorthogonal if (f, g) =0. Assume that the continuous functiénis orthogonal
to 1,X, X%, ..., SO

1
/ f(x)x*dx=0, k=0,1,2,....
0

We claim the only possibility is thaf(x) = 0 for all x € [0,1]. In brief, this is becausd is
orthogonal to all polynomialg, but by the Weierstrass approximation theorem, polynomials are
dense inLy([0,1]) so f is essentially orthogonal to itself. Thus= 0. In greater detail, find a
polynomial p so that||f — p|| < € in [0,1]. Then(f, p) = 0 so by the Schwarz inequality

IF13=(f, f—p)+(f, p) < | fll2llf — pllz <] f]2.

Then| f||2 <€ foranye > 0. This gives a contradiction.



