Let $f(x)$ and $\mathrm{g}(\mathrm{x})$ be continuous real-valued functions for $x \in \mathbb{R}$ and assume that f or g is zero outside some bounded set (this assumption can be relaxed a bit). Define the convolution

$$
\begin{equation*}
(f * g)(x):=\int_{-\infty}^{\infty} f(x-y) g(y) d y \tag{1}
\end{equation*}
$$

One preliminary useful observation is

$$
\begin{equation*}
f * g=g * f \tag{2}
\end{equation*}
$$

To prove this make the change of variable $t=x-y$ in the integral (1).
Remark 1 Note that if g is zero outside of the interval $[a, b]$,, then $(f * g)(x)=\int_{a}^{b} f(x-y) g(y) d y$, so only the values of f on the interval $[x-b, x-a]$ are used. Thus if $x \in[c, d]$, then the convolution only involves the values of f on $[c-b, d-a]$.
Remark 2 Similarly, if f is zero outside of the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $x \in[c, d]$, then the convolution only involves the values of g on the interval $\left[c-\frac{1}{2}, d+\frac{1}{2}\right]$.

Smoothness of $f * g$.
Theorem 1 If $f \in C^{1}(\mathbb{R})$ then $f * g \in C^{1}(\mathbb{R})$. Better yet, if $f \in C^{k}(\mathbb{R})$ and $g \in C^{\ell}(\mathbb{R})$, then $f * g \in$ $C^{k+\ell}(\mathbb{R})$.

Proof This is clearer if we write $h(x):=(f * g)(x)$. Then

$$
\begin{equation*}
\frac{h(x)-h\left(x_{0}\right)}{x-x_{0}}=\int_{-\infty}^{\infty} \frac{f(x-y)-f\left(x_{0}-y\right)}{x-x_{0}} g(x) d x . \tag{3}
\end{equation*}
$$

We will be done if we can show that $\left[f(x-y)-f\left(x_{0}-y\right)\right] /\left(x-x_{0}\right)$ converges uniformly to $f^{\prime}\left(x_{0}-\right.$ $y)$. To do this we use the integral form of the mean value theorem:

$$
\begin{aligned}
f(x-y)-f\left(x_{0}-y\right) & =\int_{0}^{1} \frac{d f\left(x_{0}-y+t\left(x-x_{0}\right)\right)}{d t} d t \\
& =\left[\int_{0}^{1} f^{\prime}\left(x_{0}-y+t\left(x-x_{0}\right)\right) d t\right]\left(x-x_{0}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\frac{f(x-y)-f\left(x_{0}-y\right)}{x-x_{0}}-f^{\prime}\left(x_{0}-y\right)=\int_{0}^{1}\left[f^{\prime}\left(x_{0}-y+t\left(x-x_{0}\right)\right)-f^{\prime}\left(x_{0}-y\right)\right] d t \tag{4}
\end{equation*}
$$

Since f^{\prime} is assumed continuous and is zero outside of a bounded set, it is uniformly continuous. Thus, given any $\varepsilon>0$ there is a $\delta>0$ so that if $\left|x-x_{0}\right|<\delta$ then

$$
\left|f^{\prime}\left(z+t\left(x-x_{0}\right)\right)-f^{\prime}(z)\right|<\varepsilon
$$

for all values of z. In our case $z=x_{0}-y$. Thus the left side of (4) tends to zero uniformly for all choices of x_{0} and y. Consequently, $h \in C^{1}(\mathbb{R})$.
Repeating this we conclude that if $f \in C^{k}$ then $h \in C^{k}$. Because of (2) $f^{(k)} * g=g * f^{(k)}$, so we can repeat this reasoning to show that $g * f^{(k)} \in C^{\ell}$. Thus $f * g \in C^{k+\ell}$. Note that although g might not
be zero outside a bounded set, because f is zero outside a bounded set, the integration in $g * f^{(k)}$ is only over a bounded set - in which the derivatives of g are uniformly continuous.

Approximate Identities

Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties
(a) $\varphi_{n}(t) \geq 0$,
(b) $\varphi_{n}(t)=0$ for $|t| \geq 1 / n$,
(c) $\int_{-\infty}^{\infty} \varphi_{n}(t) d t=1$.

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and zero outside a bounded set. Define

$$
\begin{equation*}
f_{n}(x):=\left(f * \varphi_{n}\right)(x)=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t . \tag{6}
\end{equation*}
$$

Theorem $2 f_{n}(x) \in C^{\infty}$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. Thus, on a compact set any continuous function can be approximated arbitrarily closely in the uniform norm by a smooth function.

Proof The smoothness of the approximations f_{n} is an immediate consequence of Theorem 1.
Since $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$,

$$
\begin{equation*}
f_{n}(x)-f(x)=\int_{|t| \leq 1 / n}[f(x-t)-f(x)] \varphi_{n}(t) d t . \tag{7}
\end{equation*}
$$

Since f is uniformly continuous, given any $\varepsilon>0$ there is a $\delta>0$ such that if $|t|<\delta$ then $\mid f(x-$ $t)-f(x) \mid<\varepsilon$ for all x. If $1 / n<\delta$, then by (5c)

$$
\begin{equation*}
\left|f_{n}(x)-f(x)\right|<\varepsilon \int_{|t| \leq 1 / n} \varphi_{n}(t) d t=\varepsilon \tag{8}
\end{equation*}
$$

Since the right side is independent of x this shows that in the uniform norm $\left\|f_{n}-f\right\|_{\infty}<\varepsilon$.
Since the operators $T_{n}(f):=f * \varphi_{n} \rightarrow f$, so in this sense T_{n} converges to the identity operator I, we sometime call the T_{n} (or the φ_{n}) approximate identities.

EXAMPLE Assume $f(x)$ is continuous on the interval $[a, b]$. Then $\int_{a}^{b} f(x) \sin \lambda x d x \rightarrow 0$.
Proof: If $f \in \mathbb{C}^{1}([a, b])$ this is easy to show by an integration by parts, using $\left|f^{\prime}(x)\right| \leq M$ for some constant M.
If f is only continuous, use Theorem 2 to find a smooth $g(x)$ with $\|f-g\|_{\infty}<\varepsilon$ on $[a, b]$. Then

$$
\left|\int_{a}^{b} f(x) \sin \lambda x d x\right| \leq\left|\int_{a}^{b}[f(x)-g(x)] \sin \lambda x d x\right|+\left|\int_{a}^{b} g(x) \sin \lambda x d x\right|
$$

Since $\|f-g\|_{\infty}<\varepsilon$, the first term on the right is small. Because g is smooth, the second term goes to zero as $\lambda \rightarrow \infty$.

In many applications the condition (5b) is too restrictive.

Theorem 3 Theorem 1 is valid if you replace (5b) with:

$$
\begin{equation*}
\text { For every } \delta>0, \quad \lim _{n \rightarrow \infty} \int_{|t|>\delta} \varphi_{n}(t) d t=0 . \tag{5b’}
\end{equation*}
$$

Proof Replace (7) by

$$
\begin{aligned}
f_{n}(x)-f(x) & =\int_{|t| \leq \delta}[f(x-t)-f(x)] \varphi_{n}(t) d t+\int_{|t|>\delta}[f(x-t)-f(x)] \varphi_{n}(t) d t \\
& =J_{1}+J_{2} .
\end{aligned}
$$

Given $\varepsilon>0$, pick δ as was done above. Then

$$
\left|J_{1}\right| \leq \varepsilon \int_{|t| \leq \delta} \varphi_{n}(t) d t \leq \varepsilon .
$$

To estimate J_{2}, say $\mid f\left(x \mid \leq M\right.$ for all x. Then by our assumption on the φ_{n},

$$
\left|J_{2}\right| \leq 2 M \int_{|t|>\delta} \varphi_{n}(t) d t \rightarrow 0 .
$$

This proves that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$.
Weierstrass used essentially this argument to prove his Approximation Theorem (see below) with

$$
u(x, t):=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{4 t}} f(y) d y,
$$

He was thinking of $t=1 / n \rightarrow 0$. Then $\lim _{t \rightarrow 0} u(x, t) \rightarrow f(x)$. This classical formula was well-known since $u(x, t)$ is the solution of the heat equation $u_{t}=u_{x x}$ for $x \in \mathbb{R}, t>0$ with initial temperature $u(x, 0)=f(x)$.

We'll use this idea but with a different integrand to prove
Theorem 4 (Weierstrass Approximation Theorem) Let f be a continuous function. Then on any compact set it can be approximated uniformly by a polynomial.

Proof We prove this where f is continuous on a compact set $\left[a^{\prime}, b^{\prime}\right]$ in \mathbb{R}. The same proof works for a compact set in \mathbb{R}^{n}.
As a preliminary step, extend f as a continuous function to a slightly larger interval $[a, b]$ so that this extended function satisfies $f(a)=f(b)=0$ (for the interval $a \leq x \leq a^{\prime}$ use a straight line between the points $(a, 0)$ and $\left(a^{\prime}, f\left(a^{\prime}\right)\right)$, with a similar extension at the right end, $x=b^{\prime}$). We can now extend f as a continuous function to all of \mathbb{R} by letting $f(x)=0$ outside of $[a, b]$. By scaling the x-axis, we may further assume that $f(x)=0$ for $|x| \geq 1 / 2$.
Our approximations are

$$
\begin{equation*}
f_{n}(x):=f * \varphi_{n}(x)=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t . \tag{9}
\end{equation*}
$$

Because for us (see below) $\varphi_{n}(x)=0$ for $|x| \geq 1$ this integral will be only over the interval $|x| \leq 1$. If in (9) the functions φ_{n} are polynomials, then the approximations $f * \varphi_{n}$ are also polynomials. However, polynomials will never satisfy the restrictions required of the φ_{n}. Our $\varphi_{n}(x)$, defined below, will be polynomials for $|x| \leq 1$ and zero for $|x| \geq 1$. As we observed in the Remark 2 after equation (2), since our $f(x)=0$ for $|x| \geq 1 / 2$, if $x \in[c, d]$, then the convolution $f_{n}(x)=f * \varphi_{n}$ will only use the values of $\varphi_{n}(x)$ for $\left.x \in c-\frac{1}{2}, d+\frac{1}{2}\right]$. In particular, if $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, then the convolution $f_{n}(x)=f * \varphi_{n}$ will only use the values of $\varphi_{n}(x)$ for $x \in[-1,1]$ - which is exactly where φ_{n} is a polynomial. Note that if x is in a larger interval, the f_{n} will converge to f - but the f_{n} will not be polynomials.
Define the functions $\varphi_{n}(x)$ as

$$
\varphi_{n}(x)= \begin{cases}\frac{\left(1-x^{2}\right)^{n}}{c_{n}} & \text { if }|x| \leq 1 \tag{10}\\ 0 & \text { if }|x|>1\end{cases}
$$

where

$$
\begin{equation*}
c_{n}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \tag{11}
\end{equation*}
$$

was chosen so that φ_{n} satisfies the condition (5c). We will verify the modified property (5 b ') of Theorem 3 by showing that for any $\delta>0$ in the region $|x|>\delta$ the functions $\varphi_{n}(x)$ converge uniformly to zero.
To show this we estimate the constants c_{n} in equation (11). After the change of variable $t=x^{2}$

$$
\begin{equation*}
c_{n}=2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\int_{0}^{1}(1-t)^{n} \frac{d t}{\sqrt{t}} \tag{12}
\end{equation*}
$$

Since for $n \geq 2$ the second derivative of $(1-t)^{n}$ is positive for all $0 \leq t \leq 1$, it is convex and thus lies above its tangent line at $t=0$. Thus $(1-t)^{n} \geq 1-n t$ for $0 \leq t \leq 1$. Consequently, if $0 \leq n t \leq 1 / 2$ we find $1-n t \geq 1 / 2$ so $(1-t)^{n} \geq 1 / 2$. This estimate on the interval $0 \leq t \leq \frac{1}{2 n}$ therefore gives the inequality

$$
\begin{equation*}
c_{n} \geq \int_{0}^{\frac{1}{2 n}}(1-t)^{n} \frac{d t}{\sqrt{t}} \geq \frac{1}{2} \int_{0}^{\frac{1}{2 n}} \frac{d t}{\sqrt{t}}=\frac{1}{\sqrt{2 n}} \tag{13}
\end{equation*}
$$

Consequently, if $1 \geq|x|>\delta$, then from the definition (10)

$$
0 \leq \varphi_{n}(x)=\frac{\left(1-x^{2}\right)^{n}}{c_{n}} \leq \sqrt{2 n}\left(1-x^{2}\right)^{n} \leq \sqrt{2 n}\left(1-\delta^{2}\right)^{n}
$$

This has the form $\sqrt{2 n} b^{n}$ where $0<b<1$. Thus

$$
\text { For every } \delta>0, \quad \lim _{n \rightarrow \infty} \int_{|x|>\delta} \varphi_{n}(x) d x=0
$$

Thus we have verified the assumptions of Theorem 3, so our approximations $f_{n}(x)$, which are polynomials for $|x| \leq 1 / 2$, converge uniformly to $f(x)$.

EXAMPLE In the function space $L_{2}([0,1])$ the norm comes from an inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(x) \overline{g(x)} d x \quad \text { so } \quad\|f\|_{2}=\sqrt{\langle f, f\rangle} .
$$

We say f and g are orthogonal if $\langle f, g\rangle=0$. Assume that the continuous function f is orthogonal to $1, x, x^{2}, \ldots$, so

$$
\int_{0}^{1} f(x) x^{k} d x=0, \quad k=0,1,2, \ldots
$$

We claim the only possibility is that $f(x) \equiv 0$ for all $x \in[0,1]$. In brief, this is because f is orthogonal to all polynomials p, but by the Weierstrass approximation theorem, polynomials are dense in $L_{2}([0,1])$ so f is essentially orthogonal to itself. Thus $f \equiv 0$. In greater detail, find a polynomial p so that $\|f-p\|_{\infty}<\varepsilon$ in $[0,1]$. Then $\langle f, p\rangle=0$ so by the Schwarz inequality

$$
\|f\|_{2}^{2}=\langle f, f-p\rangle+\langle f, p\rangle \leq\|f\|_{2}\|f-p\|_{2} \leq \varepsilon\|f\|_{2} .
$$

Then $\|f\|_{2} \leq \varepsilon$ for any $\varepsilon>0$. This gives a contradiction.

