Homework Set 9

DUE: Thurs, April 9, 2009. Late papers accepted until 1:00 Friday.

1. Let f(z) be holomorphic in the unit disk, |z| < 1 with |f(z)| < M in the closed disk $|z| \le 1$. Say $f(c_k) = 0$, where $|c_k| \ge 1$. If $\sum (1 - |c_k|) = \infty$, show that f(z) is identically zero, while if $\sum (1 - |c_k|) < \infty$, exhibit such a function that is not identically zero.

[HINT: Use the Blaschke product $\varphi(z) = \prod_{k} \left(\frac{z - c_k}{1 - \bar{c}_k z} \right)$.]

- 2. a) Give an example of a function f(z) is holomorphic in $|z| \le 1$ and satisfies |f(z)| = 1 on |z| = 1, but f is not an entire function.
 - b) Show that every such function must be rational.
- 3. Prove that the roots of the polynomian $p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$ depend continuously on the coefficients a_0, \dots, a_{n-1} .
- 4. Show that the functions z^n , n = 0, 1, 2, ... form a normal family in |z| < 1.
- 5. Assume the disk $A = \{|z-a| \le r\}$ is inside $D = \{|z| < 1\}$. Find a univalent conformal map of the annular region between A and D onto an annulus of the form $\{\rho < |w| < 1\}$.

Equivalently, let C_1 and C_2 be nonintersecting circles in the complex plane. Show there is a Möbius transformation that maps them onto *concentric* circles.

- 6. The points z_1 and z_2 are symmetric with respect to a circle if every circle (or straight line) that contains these points intersects the circle orthogonally. If z_1 and z_2 are symmetric with respect to a circle *C* and h(z) is a Möbius transformation, show that their images $w_j = h(z_j)$ are symmetric with respect to the image of the circle, h(C).
- 7. Let $\Omega \in \mathbb{C}$ be the intersection of the disks |z-1| < 2 and |z+1| < 2.
 - a) Find an injective conformal map from Ω to the unit disk.
 - b) Is there a conformal map that maps points on the imaginary axis in Ω to the interval between $\pm i$ on the imaginary axis? If so, is this map uniquely determined?
- 8. Let $\Omega \in \mathbb{C}$ be a (connected) simply connected open set that is symmetric under the map $z \to \overline{z}$ (symmetric across the real axis).
 - a) Can you always find a conformal map from Ω to the open unit disk that maps the real points in Ω to points on the real axis?
 - b) Can you find a map f with the property that $f(\overline{z}) = \overline{f(z)}$?

9. A real function u(x, y) is *biharmonic* if it satisfies $\Delta^2 u = 0$. Here

$$\Delta^2 u = \Delta(\Delta u) = u_{xxxx} + 2u_{xxyy} + u_{yyyy}.$$

Show that locally a biharmonic u(x, y) has the form

$$u(x,y) = \operatorname{Re}\left[\overline{z}\varphi(z) + \psi(z)\right],$$

where ϕ and ψ are analytic.