Homework Set 9

Due: Thurs, April 9, 2009. Late papers accepted until 1:00 Friday.

1. Let $f(z)$ be holomorohic in the unit disk, $|z|<1$ with $|f(z)|<M$ in the closed disk $|z| \leq 1$. Say $f\left(c_{k}\right)=0$, where $\left|c_{k}\right| \nearrow 1$. If $\sum\left(1-\left|c_{k}\right|\right)=\infty$, show that $f(z)$ is identically zero, while if $\sum\left(1-\left|c_{k}\right|\right)<\infty$, exhibit such a function that is not identically zero.
[Hint: Use the Blaschke product $\varphi(z)=\prod_{k}\left(\frac{z-c_{k}}{1-\bar{c}_{k} z}\right)$.]
2. a) Give an example of a function $f(z)$ is holomorphic in $|z| \leq 1$ and satisfies $|f(z)|=1$ on $|z|=1$, but f is not an entire function.
b) Show that every such function must be rational.
3. Prove that the roots of the polynomian $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ depend continuously on the coefficients a_{0}, \cdots, a_{n-1}.
4. Show that the functions $z^{n}, n=0,1,2, \ldots$ form a normal family in $|z|<1$.
5. Assume the disk $A=\{|z-a| \leq r\}$ is inside $D=\{|z|<1\}$. Find a univalent conformal map of the annular region between A and D onto an annulus of the form $\{\rho<|w|<1\}$.
Equivalently, let C_{1} and C_{2} be nonintersecting circles in the complex plane. Show there is a Möbius transformation that maps them onto concentric circles.
6. The points z_{1} and z_{2} are symmetric with respect to a circle if every circle (or straight line) that contains these points intersects the circle orthogonally. If z_{1} and z_{2} are symmetric with respect to a circle C and $h(z)$ is a Möbius transformation, show that their images $w_{j}=h\left(z_{j}\right)$ are symmetric with respect to the image of the circle, $h(C)$.
7. Let $\Omega \in \mathbb{C}$ be the intersection of the disks $|z-1|<2$ and $|z+1|<2$.
a) Find an injective conformal map from Ω to the unit disk.
b) Is there a conformal map that maps points on the imaginary axis in Ω to the interval between $\pm i$ on the imaginary axis? If so, is this map uniquely determined?
8. Let $\Omega \in \mathbb{C}$ be a (connected) simply connected open set that is symmetric under the map $z \rightarrow \bar{z}$ (symmetric across the real axis).
a) Can you always find a conformal map from Ω to the open unit disk that maps the real points in Ω to points on the real axis?
b) Can you find a map f with the property that $f(\bar{z})=\overline{f(z)}$?
9. A real function $u(x, y)$ is biharmonic if it satisfies $\Delta^{2} u=0$. Here

$$
\Delta^{2} u=\Delta(\Delta u)=u_{x x x x}+2 u_{x x y y}+u_{y y y y}
$$

Show that locally a biharmonic $u(x, y)$ has the form

$$
u(x, y)=\operatorname{Re}[\bar{z} \varphi(z)+\psi(z)]
$$

where φ and ψ are analytic.

