Final Examination

DIRECTIONS: Answer all 5 questions. Time: One hour. You may use one sheet of A4 paper with notes on *one* side. Try to communicate your ideas clearly.

1. Let $f \in C^2(\mathbb{R})$ be a 2π periodic function, so f and its first two derivatives are 2π periodic. Say $f(x) = \sum_k c_k e^{ikx}$ is its Fourier series.

a) Show there is a constant
$$m$$
 so that $|c_k| \le \frac{m}{1+k^2}$.

- b) Show that the Fourier series converges uniformly.
- 2. Let u(x,t) be a solution of $u_{tt} + b(x,t)u_t = u_{xx}$ for 0 < x < L. Assume u satisfies the initial conditions u(x,0) = 0 and $u_t(x,0) = 0$ and boundary conditions u(0,t) = u(L,t) = 0.
 - a) If $b(x,t) \ge 0$, show that u(x,t) = 0 for all t > 0.
 - b) If $|b(x,t)| \leq M$ for some constant M show that u(x,t) = 0 for all t > 0.
- 3. Let $\Omega \subset \mathbb{R}^2$ be a bounded open set and u(x,t) a solution of $u_t = \Delta u$ in Ω with u(x,t) = f(x) for $x \in \partial \Omega$. Also, let v(x) satisfy $\Delta v = 0$ in Ω with v(x) = f(x) on $\partial \Omega$. Show that, in an appropriate sense,

$$\lim_{t \to \infty} u(x, t) = v(x).$$

- 4. Let $\Omega \in \mathbb{R}^3$ be a bounded open set. Assume $Lu := -\Delta u + c(x)u \ge 0$, where c(x) > 0 is a continuous function.
 - a) Show that u cannot assume a negative minimum at any point of Ω .
 - b) If u and v satisfy Lu = f and Lv = g, respectively, in Ω with f > g in Ω and u = v on $\partial \Omega$, what can you conclude? Proof?
- 5. Pick a topic (or technique) in the course that interested you and give a brief summary of it. You may include theorems, proofs, ideas, examples, special cases, etc. You don't need to be really precise, but give the main ideas – as if you were describing it to a friend at coffee.
 [Decome don't is how First think and plan colvaly. Places do not write many than one need.

[Please don't jabber. First think and plan calmly. Please do not write more than one page.]