Directions: Answer all 5 questions. Time: One hour. You may use one sheet of A4 paper with notes on one side. Try to communicate your ideas clearly.

1. Let $f \in C^{2}(\mathbb{R})$ be a 2π periodic function, so f and its first two derivatives are 2π periodic. Say $f(x)=\sum_{k} c_{k} e^{i k x}$ is its Fourier series.
a) Show there is a constant m so that $\quad\left|c_{k}\right| \leq \frac{m}{1+k^{2}}$.
b) Show that the Fourier series converges uniformly.
2. Let $u(x, t)$ be a solution of $u_{t t}+b(x, t) u_{t}=u_{x x}$ for $0<x<L$. Assume u satisfies the initial conditions $u(x, 0)=0$ and $u_{t}(x, 0)=0$ and boundary conditions $u(0, t)=u(L, t)=0$.
a) If $b(x, t) \geq 0$, show that $u(x, t)=0$ for all $t>0$.
b) If $|b(x, t)| \leq M$ for some constant M show that $u(x, t)=0$ for all $t>0$.
3. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set and $u(x, t)$ a solution of $u_{t}=\Delta u$ in Ω with $u(x, t)=f(x)$ for $x \in \partial \Omega$. Also, let $v(x)$ satisfy $\Delta v=0$ in Ω with $v(x)=f(x)$ on $\partial \Omega$. Show that, in an appropriate sense,

$$
\lim _{t \rightarrow \infty} u(x, t)=v(x) .
$$

4. Let $\Omega \in \mathbb{R}^{3}$ be a bounded open set. Assume $L u:=-\Delta u+c(x) u \geq 0$, where $c(x)>0$ is a continuous function.
a) Show that u cannot assume a negative minimum at any point of Ω.
b) If u and v satisfy $L u=f$ and $L v=g$, respectively, in Ω with $f>g$ in Ω and $u=v$ on $\partial \Omega$, what can you conclude? Proof?
5. Pick a topic (or technique) in the course that interested you and give a brief summary of it. You may include theorems, proofs, ideas, examples, special cases, etc. You don't need to be really precise, but give the main ideas - as if you were describing it to a friend at coffee.
[Please don't jabber. First think and plan calmly. Please do not write more than one page.]
