Homework Set 2

[Submit any 5 problems. Due: Wednesday 30 Jan. in class.]

1. Let S^{1} be the circle so $f \in C^{1}\left(S^{1}\right)$ means that f and its first derivative are both continuous and periodic with period 2π. Write the Fourier series as $f(x)=\sum_{k} f_{k} \frac{e^{i k x}}{\sqrt{2 \pi}}$, so the Fourier coefficients are f_{k}.
a) If $f \in \mathbb{C}^{1}\left(S^{1}\right)$, show that for some constant c we have $\left|f_{k}\right| \leq \frac{c}{|k|}$.
b) If $\left|f_{k}\right| \leq \frac{c}{\left|k^{2}\right|}$, show that $f \in C\left(S^{1}\right)$.
c) Show that $f \in C^{\infty}\left(S^{1}\right)$ if and only if for every $s \geq 0$ there is a constant $c(s)$ so that for all k one has $\left|f_{k}\right| \leq \frac{c(s)}{(1+|k|)^{s}}$.
2. Show that for any $f \in C^{\infty}\left(T^{2}\right)$ and any real γ there is a (unique) solution $u \in \mathbb{C}^{1}\left(T^{2}\right)$ of

$$
u_{x}-\gamma u_{y}+u=f(x, y)
$$

Moreover, show that this solution $u \in \mathbb{C}^{\infty}\left(T^{2}\right)$.
3. [Semi-infinite string] For $x>0$ let $u(x, t)$ be a solution of the wave equation with

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \text { for } x>0, \quad \text { while } u(0, t)=0 \text { for } t>0
$$

Show that for $x>0$ and $t>0$

$$
u(x, t)=\left\{\begin{array}{lll}
\frac{1}{2}[f(x+c t)+f(x-c t)] & \text { for } & x>c t \\
\frac{1}{2}[f(c t+x)-f(c t-x)] & \text { for } & x<c t .
\end{array}\right.
$$

As an example, draw a sketch of the solution at $t=0,2,4,6,8$ for the specific initial position

$$
f(x)= \begin{cases}(x-2)(3-x)) & \text { for } 2 \leq x \leq 3 \\ 0 & 0 \leq x \leq 2 \text { and } x>3\end{cases}
$$

4. For the wave equation on the semi-infinite interval $0<x$, solve the initial-boundary value problem if the end at $x=0$ is free (Neumann boundary condition):

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \text { for } x>0, \quad \text { while } \quad u_{x}(0, t)=0 \text { for } t>0
$$

5. Find the motion $u(x, t)$ of a string $0 \leq x \leq \pi$ whose motion is damped:

$$
u_{t t}+2 u_{t}=u_{x x},
$$

with

$$
u(x, 0)=\sin 3 x-2 \sin 5 x, \quad u_{t} x, 0=0, \quad u(0, t)=u(\pi, t)=0 .
$$

6. Let $x \in \mathbb{R}^{3}$. Maxwell's equations for an electromagnetic field $E(x, t)=\left(E_{1}, E_{2}, E_{3}\right)$, $B(x, t)=\left(B_{1}, B_{2}, B_{3}\right)$ in a vacuum are

$$
E_{t}=\operatorname{curl} B, \quad B_{t}=-\operatorname{curl} E, \quad \operatorname{div} B=0, \quad \operatorname{div} E=0 .
$$

Show that each of the components E_{j} and B_{j} satisfy the wave equation $u_{t t}=u_{x x}$.
7. For a finite string $0<x<L$ let u be a solution of the modified wave equation

$$
\begin{equation*}
u_{t t}+b(x, t) u_{t}=u_{x x}+a(x, t) u_{x} \tag{1}
\end{equation*}
$$

with zero Dirichlet boundary conditions: $u(0, t)=u(L, t)=0$, define the energy as

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+u_{x}^{2}\right) d x \tag{2}
\end{equation*}
$$

where we assume that $|a(x, t)|,|b(x, t)|<M$ for some constant M.
a) Show that $E(t) \leq e^{\alpha t} E(0)$ for some constant α depending only on M.
b) What happens if you replace the Dirichlet boundary conditions by the Neumann boundary condition $\nabla u \cdot N=0$ on the boundary (ends) of the string?
c) Generalize part a) to a bounded region Ω in \mathbb{R}^{n}.
8. Let $u(x, t)$ be a solution of the wave equation (1) for $x \in \mathbb{R}$. Use an energy argument to show that the solution u has the same domain of dependence and range of influence as in the special case where $a(x, t)=b(x, t)=0$.
9. Consider the equation

$$
\begin{equation*}
u_{x x}-3 u_{x t}-4 u_{t t}=0 . \tag{3}
\end{equation*}
$$

a) Find a change of variable $\xi=a x+b t, \eta=c x+d t$ so that in the new coordinates the equation is the standard wave equation

$$
u_{\xi \xi}=u_{\eta \eta} .
$$

b) Use this to solve (3) with the initial conditions

$$
u(x, 0)=x^{2}, u_{t}(x, 0)=2 e^{x}
$$

10. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and consider the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\sum_{j, k=1}^{n} a_{j k} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}},
$$

where the coefficients $a_{j k}$ are constants and (without loss of generality — why?) $a_{k j}=$ $a_{j k}$. If the matrix $A=\left(a_{j k}\right)$ is positive definite, show there is a change of variable $x=S y$, where S is an $n \times n$ invertible matrix, so that in these new coordinates the equation becomes the standard wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\sum_{\ell=1}^{n} \frac{\partial^{2} u}{\partial^{2} y_{\ell}} .
$$

11. Let $x \in \mathbb{R}^{n}$.
a) If function $w(x)$ depends only on the distance to the origin, $r=\|x\|$, show that

$$
\Delta u=\frac{\partial^{2} u}{\partial^{2} r}+\frac{n-1}{r} \frac{\partial u}{\partial r}
$$

b) Investigate solutions $u(x, t), x \in \mathbb{R}^{3}$ of the wave equation $u_{t t}=\Delta u$ where $u(x, t)=$ $v(r, t)$ depends only on r and t. For instance, are there solutions of the form $v(r, t)=\varphi(r) g(r-t)$?
[Last revised: April 3, 2008]

