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Preface

These notes are from an intensive one week series of twenty lectures given
to a mixed audience of advanced graduate students and more experienced
mathematicians in Japan in July, 1983. As a consequence, these they are not
aimed at experts, and are frequently quite detailed, especially in Chapter 6
where a variety of standard techniques are presented. My goal was to in-
troduce geometers to some of the techniques of partial differential equations,
and to introduce those working in partial differential equations to some fas-
cinating applications containing many unresolved nonlinear problems arising
in geometry. My intention is that after reading these notes someone will feel
that they can cope with current research articles. In fact, the quite sketchy
Chapter 5 and Chapter 6 are merely intended to be advertisements to read
the complete details in the literature. When writing something like this,
there is the very real danger that the only people who understand anything
are those who already know the subject. Caveat emptor .

In any case, I hope I have shown that if one assumes a few basic results on
Sobolev spaces and elliptic operators, then the basic techniques used in the
applications are comprehensible. Of course carrying out the details for any
specific problem may be quite complicated—but at least the ideas should be
clearly recognizable.

These notes definitely do not represent the whole subject. I did not
have time to discuss a number of beautiful applications such as minimal
surfaces, harmonic maps, global isometric embeddings (including the Weyl
and Minkowski problems as well as Nash’s theorem), Yang-Mills fields, the
wave equation and spectrum of the Laplacian, and problems on compact
manifolds with boundary or complete non-compact manifolds. In addition,
these lectures discuss only existence and uniqueness theorems, and ignore
other more qualitative problems. Although existence results seem to hold the
center of the stage in contemporary applications, a more balanced discussion
would be important in a longer series of lectures.

The lectures assumed some acquaintance with either Riemannian geom-
etry or partial differential equations. While mathematicians outside of these
areas should be able to follow these notes, it may be more difficult for them
to appreciate the significance of the questions or results.

By the ruthless schedule of my charming hosts, these notes are to be
typed shortly after the completion of the lectures. My hosts felt (wisely, I
think) that it would be more useful to have an informal set of lecture notes
available quickly rather than with longer time for a more polished manuscript.
Inevitably, as befits a first draft, there will be rough edges and outright errors.
I hope none of these are serious and would appreciate any corrections and
suggestions for subsequent versions.

One thing I know I would do is add a few additional sections to Chapter
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1. In particular, there should really be some mention of Green’s functions
and at least a vague summary of the story for boundary value problems—
especially the Dirichlet problem (see [N-3], pp. 41-50 for what I have in
mind). Also, the dry, technical flavor of Chapter 1 should be balanced by a
few more easy—but useful—applications of the linear theory. For instance,
Moser’s result on volume forms [MJ-1] uses only simple Hodge theory. But
my time deadline has come.

I hope these notes are useful to someone seeking a rapid introduction
with a minimum of background. This task is made much easier because of the
recent books [Au-4] and [GT], where one can find most of the missing details.
I am grateful to many Japanese mathematicians. In addition to helping make
my visit so pleasant, they are also proofreading the typed manuscript; all I’ll
see is the finished product. Finally, I wish to give special thanks to Professor
T. Ochiai for his extraordinary hospitality and thoughtfulness. I also thank
the National Science Foundation for their support.

Srinagar, India
10 August 1983

Note added, June, 1993. This is an essentially unrevised version of the
lectures I gave in Japan in July, 1983. The only notable addition is a section
discussing the Hodge Theorem, I also took advantage of the retyping into
TEX to make a few corrections and minor clarifications in the wording. Alas,
retyping introduces its own errors.

[To Do: incorporate the following into the preface]
Throughout these lectures we will need some background material on

elliptic and, to a lesser extent, parabolic partial differential operators. Equa-
tions that are neither elliptic nor parabolic do arise in geometry (a good
example is the equation used by Nash to prove isometric embedding results);
however many of the applications involve only elliptic or parabolic equations.
For this material I have simply inserted a slightly modified version of an Ap-
pendix I wrote for the book [Be-2]. This book may also be consulted for
basic formulas in geometry.2 At some places, I have added supplementary
information that will be used later in the lectures. I suggest that one should
skim this chapter quickly, paying more attention to the examples than to the
generalities, and then move directly to Chapter 6. One can refer back to the
introductory material if the need arises.

Most of our treatment is restricted to compact manifolds without bound-
ary. This is simply to avoid the extra steps required to adequately discuss

2For reference, some basic geometry formulas are collected in an Appendix at the end
of these notes.
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appropriate boundary conditions. One can also eliminate most of the com-
plications in thinking about manifolds by restricting attention to the two
dimensional torus with its Euclidean metric, so the Laplacian is the basic
uxx + uyy , and one is considering only doubly periodic functions, say with
period 2π . Even simpler, yet still often fruitful and non-trivial, is to reduce
to the one dimensional case of functions on the circle. Here ∆u = +u′′ .
This also points out one critical sign convention: for us the Laplacian has
the sign so that ∆u = +u′′ for functions on R

1 (except that in the special
case of the Hodge Laplacian on differential forms, we write ∆ = dd∗ + d∗d
as in equation (2.4) below, where in the particular case of 0 -forms this gives
the opposite sign).

To discuss the Laplacian and related elliptic differential operators, one
must introduce certain function spaces. It turns out that the spaces one
thinks of first, namely C0, C1, C2 , etc. are, for better or worse, not ap-
propriate; one is forced to use more complicated spaces. For instance, if
∆u = f ∈ Ck , one would like to have u ∈ Ck+2 . With the exception of the
special one dimensional case covered by the theory of ordinary differential
equations, this is false for these Ck spaces (see the example in [Mo, p. 54]),
but which is true for the spaces to be introduced now. For proofs and more
details see [F, §8-11] and [GT].

Unless stated otherwise, to be safe we will always assume that the open
sets we consider are connected.

For simplicity M will always denote a C∞ connected Riemannian mani-

fold without boundary, n = dim M , and E and F are smooth vector bundles
(with inner products) over M . Of course, there are related assertions if M
has a boundary or if M is not C∞ . Sometimes we will write (Mn, g) if we
wish to point out the dimension and the metric, g . The volume element is
written dxg , or sometimes dx . By smooth we always mean C∞ ; we write
Cω for the space of real analytic functions.

We also use standard multi-index notation, so if x = (x1, . . . , xn) is a
point in R

n and j = (j1, . . . , jn) is a vector of non-negative integers, then
|j| = j1 + · · · + jn , xj = xj1

1 · · · xjn
n , and ∂j = (∂/∂x1)

j1 · · · (∂/∂xn)jn

——————
Here and below we will use the notation a(x, ∂ku) , F (x, ∂ku) , etc. to

represent any (possibly nonlinear) differential operator of order k (so here
∂ku actually represents the k -jet of u ).

Last Revised: February 29, 2016
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Chapter 1

Linear Differential Operators

1.1 Introduction

Three models from classical physics are the source of most of our knowledge of partial
differential equations:

wave equation: uxx + uyy = utt

heat equation: uxx + uyy = ut

Laplace equation: uxx + uyy = 0.

Because the expression uxx + uyy arises so often, mathematicians generally uses the
shorter notation ∆u (physicists and engineers often write ∇2u ).

One thinks of a solution u(x, y, t) of the wave equation as describing the motion of a
drum head Ω at the point (x, y) at time t . We denote the boundary by ∂Ω . A typical
problem is to specify

initial position u(x, y, 0)
initial velocity ut(x, y, 0)
boundary condition u(x, y, t) for (x, y) ∈ ∂Ω and t ≥ 0.

and seek the solution u(x, y, t) . Although we shall essentially not mention the wave
equation again in these lectures, it is fundamental.

For the heat equation, u(x, y, t) gives the temperature at the point (x, y) at time t .
Here a typical problem is to specify

initial temperature u(x, y, 0)
boundary temperature u(x, y, t) for (x, y) ∈ ∂Ω and t ≥ 0

and seek u(x, y, t) for (x, y) ∈ Ω , t > 0 . This boundary condition is called a Dirichlet
boundary condition.

As a alternate, instead of specifying the boundary temperature, one might specify
that all or part of the boundary in insulated, so heat does not flow across the boundary
at those points. Mathematically one writes this as ∂u/∂ν = 0 , where ∂u/∂ν means
the directional derivative in the direction ν normal to the boundary. This is called a
Neumann boundary condition. Note that if one investigates heat flow on the surface of a
sphere or torus—or any compact manifold without boundary—then there are no boundary
conditions for the simple reason that there is no boundary.

It is clear that if a solution u(x, y, t) of the heat equation is independent of t , so one
is in equilibrium, then u is a solution of the Laplace equation (it is called a harmonic
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2 Chapter 1. Linear Differential Operators

function). Using the heat equation model, a typical problem is the Dirichlet problem,
where one specifies

boundary temperature u(x, y) = ϕ(x, y) for (x, y) ∈ ∂Ω

and one seeks the (equilibrium) temperature distribution u(x, y) for (x, y) ∈ Ω . One
might also specify a Neumann boundary condition

∂u

∂ν
= ψ(x, y)

on all or part of the boundary.
From these physical models, it is intuitively plausible that in equilibrium, the max-

imum (and minimum) temperatures cannot occur at an interior point of Ω unless u ≡
const., for if there were a local maximum temperature at an interior point of Ω , then the
heat would flow away from that point and contradict the assumed equilibrium. This is
the maximum principle: if u satisfies the Laplace equation then

min
∂Ω

u ≤ u(x, y) ≤ max
∂Ω

u for (x, y) ∈ Ω.

Of course, one must give a genuine mathematical proof as a check that the model described
by the differential equation really does embody the qualitative properties predicted by
physical reasoning such as this.

For many mathematicians, a more familiar occurrence of harmonic functions is as the
real or imaginary parts of a analytic function f(z) = u + iv of one complex variable z .
Indeed, one should expect that harmonic functions have many of the properties of analytic
functions. For instance, they will automatically be smooth, and Liouville’s theorem holds
in the form: “a harmonic function defined on all of R

n that is bounded below must be a
constant.” Note that although harmonic functions do form a linear space—since they are
the kernel of a linear map—they will not have the additional special algebraic properties of
analytic functions: closed under multiplication, inverses 1/f(z) , and under composition.
These algebraic properties of analytic functions are a significant aspect of their special
nature and importance.

The inhomogeneous Laplace equation ∆u = f(x, y) is also of importance to us, par-
ticularly because in these notes almost all of our discussion will concern compact manifolds
without boundary, so there will be no boundary conditions.

In elementary courses in differential equations one main task is to find explicit formulas
for solutions of differential equations. This can only be done in the simplest situations, the
resulting formulas being fundamental in more advanced work where one must gain insight
without such explicit formulas.

example 1.1 [Laplace Equation on a Torus] We will think of the two-dimensional
torus T 2 as the square [0, 2π]× [0, 2π] with the sides identified. Thus, smooth functions
on the torus will be doubly periodic with period 2π . When can one solve the Laplace
equation

uxx + uyy = f(x, y) ? (1.1)

It is natural to use Fourier series. Thus we write f as a Fourier series and seek u as a
Fourier series:

f(x, y) =
∑

fkℓe
i(kx+ℓy), u(x, y) =

∑

ukℓe
i(kx+ℓy).
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The smoothness of these functions will depend on the rate of decay of their Fourier coeffi-
cients. Working formally, one substitutes u and f into the differential equation ∆u = f
and matches coefficients

∑

−(k2 + ℓ2)ukℓe
i(kx+ℓy) =

∑

fkℓe
i(kx+ℓy).

For equality to hold we find that

ukℓ =
−fkℓ

k2 + ℓ2
(1.2)

and make the important observation that a necessary condition for a solution to exist is
that f00 = 0 , that is, from the formula for the Fourier coefficient

∫

T 2

f(x, y) dx dy = 0.

With hindsight this necessary condition was obvious by just integrating (1.1) over T 2 .
From our explicit formula for the Fourier coefficients of u , this condition is also sufficient,

u(x, y) =
∑ −fkℓ

k2 + ℓ2
ei(kx+ℓy)

Moreover, we see that the Fourier coefficients of u decay more quickly than those of f ,
so u will be smoother than f . This will be made more precise in Step 6 of Theorem
3.1, where we use Sobolev spaces that will be introduced later in this chapter. After one
studies the convergence of the Fourier series, then it is easy to fully justify all of the formal
computations we made in this example.

The solution of the Laplace equation is unique, except that one can add a constant to
any solution. ¤

It is useful to remark that the identical approach to solve the wave equation formally
on the torus has immediate and serious difficulties because equation (1.2) is replaced by
ukℓ = −fkℓ/(k2 − ℓ2) , whose denominator is zero whenever k = ±ℓ .

example 1.2 [Heat Equation] Let (Mn, g) be a compact Riemannian manifold with-
out boundary; the torus T 2 of the preceding example with the “flat” Riemannian metric
g = dx2 + dy2 is a useful example. We wish to solve the heat equation

ut = ∆u for x ∈ M, (1.3)

where ∆ is the Laplace (or Laplace-Beltrami) operator of the metric g . The simplest
way to define the Laplacian is to require that Green’s Theorem holds:

∫

∇u · ∇ϕdxg = −
∫

(∆u)ϕdxg (1.4)

for all smooth functions ϕ with compact support. Here dxg =
√

det g dx =
√

|g| dx is
the Riemannian element of volume on (M, g) .

It is instructive to compute the Laplacian in local coordinates. We use functions ϕ
whose support lies in a coordinate patch. Then writing gij for the inverse of the metric
gij

∇u · ∇ϕ =

n
∑

i,j=1

gij ∂u

∂xi

∂ϕ

∂xj
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so an integration by parts gives
∫

∇u · ∇ϕdxg =

∫

∑

i,j

gij ∂u

∂xi

∂ϕ

∂xj

√

|g| dx

= −
∫





∑

i,j

∂

∂xi

(

gij
√

|g| ∂u

∂xj

)



 ϕdx

= −
∫





1
√

|g|
∑

i,j

∂

∂xi

(

gij
√

|g| ∂u

∂xj

)



 ϕdxg. (1.5)

Comparing the right-hand sides of (1.4) and (1.5) we obtain the desired formula.

∆u =
1

√

|g|

n
∑

i,j=1

∂

∂xi

(

gij
√

|g| ∂u

∂xj

)

. (1.6)

For the flat torus, gij = δij of course. Our initial condition is

u(x, 0) = f(x), (1.7)

where f is a prescribed function on M .
Guided by ordinary differential equations we can write the “solution” as

u(x, t) = et∆f. (1.8)

To make sense of this we use a spectral representation of ∆ . Thus, let λj and ϕj

be the eigenvalues and corresponding eigenfunctions of −∆

−∆ϕj = λjϕj . (1.9)

For the flat torus the eigenvalues are the numbers

λkℓ = k2 + ℓ2

with corresponding orthonormal eigenfunctions

ϕkℓ =
1

2π
ei(kx+ℓy),

where k and ℓ take all possible positive and negative integer values. Although one can
compute the eigenfunctions and eigenvalues explicitly for only a few special manifolds, by
general theory, it turns out that for any (M, g) the λj ’s, j = 0, 1, . . . are a discrete set
of real numbers converging to ∞ . There is a corresponding complete (in L2(M) ) set of
orthonormal eigenfunctions. Moreover, multiplying (1.9) by ϕj and integrating by parts
(or using the divergence theorem if you prefer), we obtain

λj =

∫

|∇ϕj |2 dxg
∫

ϕ2
j dxg

≥ 0. (1.10)

Here the smallest eigenvalue is λ0 = 0 whose corresponding eigenfunction (normalized to
have norm 1 ) is the constant ϕ0 = 1/

√

Vol(M) .
Formally, we seek a solution of (1.3) as an eigenfunction expansion

u(x, t) =
∑

aj(t)ϕj(x).
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Substituting this into (1.3) and using the initial condition we obtain

u(x, t) =
∑

j

fje
−λjtϕj(x), (1.11)

where

fj =

∫

f(y)ϕj(y) dyg.

One can rewrite this solution (1.11) as

u(x, t) =

∫

H(x, y; t)f(y) dyg, (1.12)

with
H(x, y; t) =

∑

j

e−λjtϕj(x)ϕj(y). (1.13)

The function H is called heat kernel or Green’s function for the problem (1.3)–(1.7). The
formulas (1.12)–(1.13) are our interpretation of (1.8), so et∆ is an integral operator (1.12)
with kernel H . Then

trace et∆ =

∫

H(y, y; t) dyg =
∑

j

e−λjt. (1.14)

We will use this formula in Chapter 2.7.
It is difficult to extract much information from (1.12)-(1.13) unless one has more

information on the λj ’s, ϕj ’s or some formula other than (1.13) giving properties of H .
These properties depend on the manifold M as well as the metric g . Nontheless, one
easy consequence of (1.11) and (1.12) is a simple formula for the equilibrium temperature:

lim
t→∞

u(x, t) = average of f =
1

Vol(M)

∫

f dx. (1.15)

To prove this, one notes from (1.10) that λ0 = 0 , λj > 0 for j ≥ 1 and, as pointed out

above, ϕ0(x) = constant = Vol(M)−
1
2 . Then by (1.13)

lim
t→∞

H(x, y, t) = Vol (M)−1

so the assertion now follows from (1.12). The formula (1.15) states that the equilibrium
temperature is the average of the initial temperature—which is amusing but hardly sur-
prising. ¤

example 1.3 [Laplace Equation on a Compact Manifold] We can apply the
method of the previous example to extend the first example to solve the Laplace equation

∆u = f

on an arbitrary compact connected manifold ( M, g ) without boundary. As a preliminary
step, we observe that the only solution of the homogeneous equation is u = const. . This
follows by multiplying the equation by u and then integrating by parts:

0 =

∫

M

u∆u dxg = −
∫

M

|∇u|2 dxg
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Thus ∇u = 0 so u is a constant. If we simply integrate ∆u = f over M , then by the
divergence theorem just as on the torus we obtain the necessary condition for solvability

0 =

∫

M

∆u dxg =

∫

M

f dxg

To find a formula for a solution we simply replace the use of Fourier series in our
discussion of the torus T 2 by the eigenvalues and eigenfunctions of the Laplacian. Thus,
we write

f(x) =
∑

fkϕk(x) and we seek u(x) =
∑

ukϕk(x),

where, since the ϕk are orthonormal, in the L2 inner product we have

fk = 〈f, ϕk〉 and uk = 〈u, ϕk〉.

Substituting in the Laplace equation gives

uk = − fk

λk
.

Just as in the case of the torus, because λ0 = 0 we again are led to the necessary
condition 〈f, ϕ0〉 = 0 for solvability. Because ϕ0 is a constant, this means that f must
be orthogonal to the constants. We can formally write the solution as,

u(x) = −
∑ 〈f, ϕk〉

λk
ϕ(x).

It is sometimes convenient to rewrite this in the form

u(x) =

∫

M

G(x, y)f(y) dyg (1.16)

where we have introduced Green’s function or Green’s kernel

G(x, y) = −
∑ ϕk(x)ϕk(y)

λk

Conceptually, the advantage of formula (1.16) is that it shows that we should think of
this integral operator as the “inverse” of the Laplacian. We must be careful in using the
word “inverse” here since there is the necessary condition that f be orthogonal to the
constants, and also that the solution u is only unique up to an additive constant. ¤

Many are dismayed when the solutions of differential equations are presented, as we
did in both of our examples, by infinite series. Infinite series are more often thought of
as questions than as answers. Yet these infinite series have already yielded some useful
information and concepts. They also indicate directions of thought toward proving related
results using procedures that do not involve infinite series. The goal of computations is not
formulas, it is not numbers. It is insight and understanding. Over the past two centuries
the above infinite series have greatly enriched us.

1.2 Hölder Spaces

From calculus one knows that

regularity: if u′′ = f ∈ Ck then u ∈ Ck+2

existence: if f ∈ Ck then there is a u ∈ Ck+2 with u′′ = f.
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Thus, one might anticipate that, at least locally,

if ∆u = f ∈ Ck then u ∈ Ck+2

given any f ∈ Ck there is some u ∈ Ck+2 such that ∆u = f.

Each of these last two assertions is false except in dimension one (see the example in
[Mo, p. 54]). But they are almost true. The trouble is that the spaces Ck are not really
appropriate. After a century we have learned to use the Hölder spaces Ck, α , where
0 < α < 1 , and Sobolev spaces Hp,k , 1 < p < ∞ (here the p is as in the Lebesgue
spaces Lp ). If in the above assertions one replaces Ck and Ck+2 by Ck, α and Ck+2,α

(or by Hp,k and Hp, k+2 ), then they become true.
With this as motivation, we define the Hölder spaces in this section and Sobolev spaces

in the next section.
Let A ⊂ R

n be the closure of a connected bounded open set and 0 < α < 1 . Then
f : A → R is Hölder continuous with exponent α if the following expression is finite

[f ]α,A = sup
x,y∈A
x6=y

|f(x) − f(y)|
|x − y|α . (1.17)

The simplest example of such a function is f(x) = |x|α in a bounded set containing the
origin. Let Ω ⊂ R

n be a connected bounded open set. The Hölder space Ck, α(Ω) is
the Banach space of real valued functions f defined on Ω all of whose kth order partial
derivatives are Hölder continuous with exponent α . The norm is

|f |k+α = ‖f‖Ck(Ω) + max
|j|=k

[∂jf ]α,Ω, (1.18)

where ‖ ‖Ck(Ω) is the usual Ck norm. On a manifold, M , one obtains the space

Ck, β(M) by using a partition of unity. Note that if 0 < α < β < 1 , then Ck, β(M) →֒
Ck, α(M) and by the Arzela—Ascoli theorem, this embedding is compact [For Banach
spaces A , B , a continuous map T : A → B is compact if for any bounded set Q ⊂ A ,
the closure of its image T (Q) is compact. Equivalently, for every bounded sequence
xj ∈ A there is a subsequence xjk

so that T (xjk
) converges to a point in B .]

The Hölder space for α = 1 is just the space of Lipschitz continuous functions. They
do not (yet) fit into the theory; see [FK] for more recent information.1

1.3 Sobolev Spaces

For f ∈ C∞(M), 1 ≤ p < ∞ , and an integer k ≥ 0 define the norm

‖f‖k,p =

[∫

M

∑

0≤|j|≤k

|Djf |p dxg

]1/p

, (1.19)

where |Djf | is the pointwise norm of the j -th covariant derivative. The Sobolev space
Hp,k(M) is the completion of C∞(M) in this norm; equivalently, by using local co-
ordinates and a partition of unity, one can describe Hp,k(M) as equivalence classes of
measurable functions all of whose partial derivatives up to order k are in Lp(M) . The
space Hp,k(M) is a Banach space, and is reflexive if 1 < p < ∞ . If p = 2 these spaces

1As an exercise, show that if a function is Hölder continuous for some α > 1 , then it
must be a constant.
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are Hilbert spaces with the obvious inner products. This simplest case, p = 2 , is generally
adequate for linear problems (such as Hodge theory); nonlinear problems make frequent
use of arbitrary values of p . The alternate notation Hp,k , Lp

k , and W p
k are often used

instead of Hp,k . For a vector bundle E with an inner product one defines Hp,k(E)
similarly.2

Note that if (within the same differentiable structure) one changes the metric on a
compact Riemannian manifold (M, g) , then the norms and inner products on the spaces
Ck, α(M) and Hp,k(M) do change; however the new norms are equivalent to the old ones
so the topologies do not change.

1.4 Sobolev Embedding Theorem

It is important to investigate relationships among these spaces Ck, α and Hp,k and also to
the familiar spaces Ck(Ω) . For instance, as we shall see shortly, there is a psychologically
reassuring fact that if f ∈ Hp,k for all k , then f ∈ C∞ .

The essence of this study are inequalities relating the various norms. The inequalities
are called Sobolev inequalities. This is quite simple if Ω is the interval Ω = {0 < x < c}
in R

1 . For convenience, say c ≥ 1 . Then

u(x) = u(y) +

∫ x

y

u′(t) dt ≤ |u(y)| +
∫ c

0

|u′(t)|dt

so, integrating this with respect to y we obtain (using c ≥ 1 )

|u(x)| ≤
∫ c

0

(|u′(t)| + |u(t)|) dt. (1.20)

Using Hölder’s inequality for the Lp version, one can rewrite the above as

‖u‖C0 ≤ ‖u‖H1,1 ≤ c1/r‖u‖Hp,1 for any p ≥ 1, and 1
p + 1

r = 1.

Thus, a Cauchy sequence in Hp,1 is also Cauchy in C0 , so we have a continuous embed-
ding of Hp,1 →֒ C0 . Observe that if, say, u(0) = 0 , then we can let y = 0 in the first
step above and obtain

|u(x)| ≤
∫ c

0

|u′(t)| dt. (1.21)

In this case it is particularly clear that the Sobolev inequalities are just generalizations on
the mean value theorem, since they show how one can estimate a function in terms of its
derivatives. As an exercise, it is interesting to show that (1.21) also holds if one replaces
the assumption u(0) = 0 with

∫ c

0
u = 0 . In general one needs a term involving |u| in

(1.20) since otherwise one could add a constant to u and increase the left side but not
the right.

In higher dimensions, Ω ⊂ R
n , the story is similar but more complicated. The result

is called the Sobolev embedding theorem.
First we give a few easy but useful observations. One is that if f ∈ C0(M) and if we

write
‖f‖∞ = max

x∈M
|f(x)|

2While we write C∞(M) for smooth real (or complex) valued functions on M , by
C∞(E) we mean smooth sections of a vector bundle E .
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then
lim

p→∞
‖f‖Lp(M) = ‖f‖∞ (1.22)

Proof: Given ǫ > 0 , let Mǫ = {x ∈ M : |f(x)| ≥ ‖f‖∞ − ǫ} . Then

(‖f‖∞ − ǫ)Vol(Mǫ)
1/p ≤ ‖f‖Lp(M) ≤ ‖f‖∞ Vol(M)1/p.

Now let p → ∞ .
Another elementary inequality—an immediate consequence of Hölder’s inequality ap-

plied to f = 1 · f —states that if 1 ≤ q ≤ p , then

‖f‖Lq(M) ≤ Vol(M)(p−q)/pq‖f‖Lp(M). (1.23)

This shows that if both ℓ ≤ k and r ≤ p , then there is a continuous injection Hp,k(M) →֒
Hq,ℓ(M) . We used this above with k = ℓ = 1 to obtain the Lp version of (1.20) from
the L1 version.The Sobolev Embedding Theorem gives many other such relationships.
Among other things, they generalize the mean value theorem in that they give estimates
for various norms of a function in terms of norms of its derivatives. Recall that n = dimM
and let δ(p, k) = k − n

p .

Theorem 1.1 [Sobolev Inequalities and Embedding Theorem]. Let 0 ≤ ℓ ≤
k be integers and assume f ∈ Hp,k(M) .
(a) If δ(p, k) < ℓ (that is, k − ℓ < n/p ) and if q satisfies

δ(q, ℓ) ≤ δ(p, k), equivalently,
1

p
− k − ℓ

n
≤ 1

q
, (1.24)

then there is a constant c > 0 independent of f such that

‖f‖ℓ,q ≤ c‖f‖k,p. (1.25)

Thus there is a continuous inclusion Hp,k(M) →֒ Hq,ℓ(M) . Moreover, if ℓ < k and
strict inequality holds in (1.24), then this inclusion is a compact operator.
(b) If ℓ < δ(p, k) < ℓ + 1 (that is, k − ℓ − 1 < n/p < k − ℓ ), let α = δ(p, k) − ℓ so
0 < α < 1 . Then there is a constant c independent of f such that

‖f‖δ(p,k) = ‖f‖ℓ+α ≤ c‖f‖k,p. (1.26)

Thus, there is a continuous inclusion Hp,k(M) →֒ Cδ(p,k) = Ck−n
p (M) = Cℓ+α(M) and

a compact inclusion Hp,k(M) →֒ Cγ(M) for 0 < γ < δ(p, k) .

For the inclusion Hp,k(M) →֒ Cℓ, α we naturally identify functions that differ only on
sets of measure zero. The compactness assertions of part (a) in this theorem were proved
by Rellich for p = 2 and generalized by Kondrachov. Note that all of the above results are
proved first for a smoothly bounded open set in R

n and then extended to vector bundles
over compact manifolds using a partition of unity.

Some useful special cases (or easy consequences) of the theorem are:

(i) if f ∈ Hp,k(M) and p > n , then f ∈ Ck−1(M) ,

(ii) the inclusion Hp,k+1(M) →֒ Hp,k(M) is compact,

(iii) if f ∈ Hp,k(M) and pk > n , then f ∈ C0(M) ,

(iv) C∞ = ∩k Hp,k for any 1 < p < ∞ ,
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(v) if f ∈ H2,1(M) , then f ∈ L2n/(n−2)(M) (here n ≥ 3) , and there are constants
A , B > 0 independent of f such that

‖f‖L2n/(n−2) ≤ A‖Df‖L2 + B‖f‖L2 . (1.27)

The value q = 2n/(n − 2) in (1.27) is the largest number for which (1.25) holds in the
case k = 1 , p = 2 . It is a “limiting case” of the Sobolev inequality. The smallest value
of A for which there is some constant B such that (1.27 holds is known (see [GT; p. 151]
and also [Au-4]). This smallest constant is independent of the manifold M . On the other
hand, for fixed B > 0 the smallest permissible value of A does depend on the geometry
of M and is related to the isoperimetric inequality (see [Gal]), [SalC]. Related inequalities
for limiting cases have been found [T-1], [BW], [Au-2], [L], and play an important role in
several recent geometric problems.

Since the condition (1.24) and the related condition in part b) may seem mysterious,
it may be useful to point out that they are both optimal and easy to discover by using
“dimensional analysis”. Because this technique is not as widely known as it should be,
we illustrate it for example with ℓ = 0 in (1.24). Let ϕ ∈ C∞

c (|x| < 1) , ϕ 6≡ 0 , and let
fλ(x) = ϕ(λx) ∈ C∞

c (|x| < 1) for λ ≥ 1 . Applying (1.25) with ℓ = 0 to the fλ and
doing a brief computation, one obtains

‖ϕ‖Lq ≤ cλ
k+n(

1
q − 1

p )‖ϕ‖k,p.

Letting λ → ∞ there is a contradiction unless (1.24) holds. This example uses the con-
formal map x 7→ λx ; it leads one to suspect that conformal deformations of metrics lead
one to the limiting case of the Sobolev inequality. This suspicion is verified in Chapter 5.1.

There is a separate collection of related theorems, called trace theorems, concerning the
restrictions of functions in Sobolev spaces to submanifolds. This is particularly important
for boundary value problems since the boundary is usually a submanifold of some sort. A
typical result is that if Γ ⊂ Ω is a smooth hypersurface, then for k > 1/2 the restriction

operator γ : H2,k(Ω) → H2,s− 1
2 (Γ) is a continuous map onto all of H2,k− 1

2 . To make
sense of this, one needs to define Sobolev spaces Hp,k (and related Besov spaces) where
k is not necessarily an integer. Since we will not need these results, we forgo further
discussion (see [Ad]).

1.5 Adjoint

History sometimes takes a surprising path. Before matrices were even defined the adjoint
of a differential operator was introduced by Lagrange (the Lagrange identity for ordi-
nary differential equations); moreover, Green proved the self-adjointness of the Laplacian
(Green’s second identity). On R

1 with the L2 inner product, the adjoint of D = d/dx
is found simply by integrating by parts: for all ϕ , ψ ∈ C∞

c (i.e. compact support)

〈ϕ, Dψ〉 =

∫

ϕψ̄′ dx = −
∫

ϕ′ψ̄ dx = 〈−Dϕ, ψ〉.

Thus, the adjoint of d/dx is −d/dx . More correctly, because d/dx is an unbounded
operator on L2 and thus not defined on the whole Hilbert space, this is the formal
adjoint. The strict Hilbert space adjoint requires additional attention to the domain of
definition of the operator . We used smooth functions with compact support to avoid
issues concerning the boundary and smoothness.
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The usual rules hold for the adjoint of a sum and the adjoint of a product: (L+M)∗ =
L∗ + M∗ and (LM)∗ = M∗L∗ . The second derivative operator D2 is thus formally self-
adjoint.

Similarly, if E and F are smooth Hermitian vector bundles over M and if P :
C∞(E) → C∞(F ) is a linear differential operator, then one can use the L2 inner product
to define the formal adjoint, P ∗ , by the usual rule

〈Pu, v〉F = 〈u, P ∗v〉E

for all smooth sections u ∈ C∞(E)c , and v ∈ C∞(F )c . Since the supports of u and v
can be assumed to be in a coordinate patch, one can compute P ∗ locally using integration
by parts.

example 1.4 If P is the kth order linear differential operator, with possible complex
coefficients, then

Pu =
∑

|α|≤k

aα(x) ∂αu,

and
P ∗v =

∑

|α|≤k

(−1)|α|∂α(a(x)αv).

If the coefficients aα in this example are matrices then, as one should anticipate, the
formula for P ∗ uses the Hermitian adjoint ( = conjugate transpose) of the aα . ¤

1.6 Principal Symbol

For a linear constant coefficient differential operator

Pu =
∑

|α|≤k

aα∂αu,

a standard approach to solving Pu = f is to use Fourier analysis. Then, say on R
n ,

taking the Fourier transform gives
P (ξ)û = f̂ , (1.28)

where
P (ξ) =

∑

|α|≤k

i|α|aαξα

is an ordinary polynomial in ξ . To solve the equation one then simply divides both sides
of (1.28) by P (ξ) and takes the inverse Fourier transform. We used this method on the
first example in Section 1.1 on the torus. As seen already in that example, there could
be difficulties because of possible zeroes of P (ξ) and with the convergence of the inverse
Fourier transform, but the approach is at least clear in principle. This is essentially how
Ehrenpreis and Malgrange, independently, proved that one can always solve Pu = f ,
when f ∈ C∞

c .

For the variable coefficient case, one can obtain useful information by freezing the
coefficients at one point and examining the corresponding constant coefficient case. This
leads one to define the symbol of a linear differential operator. To a linear differential
operator P : C∞(E) → C∞(F ) of order k , at every point x ∈ M and for every



12 Chapter 1. Linear Differential Operators

ξ ∈ T ∗
x M one can associate an algebraic object, the principal symbol σξ(P ;x) , often

written simply σξ(P ) . If, in local coordinates,

Pu =
∑

|α|≤k

aα(x)∂αu, (1.29)

where the aα are dim F × dimE matrices, then σξ(P ;x) is the matrix

σξ(P ;x) = ik
∑

|α|=k

aα(x)ξα (i =
√
−1). (1.30)

One sometimes deletes the factor ik here and in (1.31). While this slightly complicates
the property (iii) below, it eliminates using awkward factors of i in examples in which
M could be a real manifold so complex numbers might seem out of place.

To define the principal symbol invariantly, let Ex and Fx be the fibers of E and
F at x ∈ M , let u ∈ C∞(E) with u(x) = z , and let ϕ ∈ C∞(M) have ϕ(x) = 0 ,
dϕ(x) = ξ , then σξ(P ;x) : Ex → Fx is the following endomorphism

σξ(P ;x)z =
ik

k!
P (ϕku)|x. (1.31)

It is straightforward to verify that this definition does not depend on the choices of either
u or ϕ . This definition shows that the variable ξ in the symbol is an element of the
cotangent bundle.

The principal symbol is useful because many of the properties of P depend only on
the highest order derivatives appearing in P ; the principal symbol is a simple invariant
way to refer to this highest order part of P . (It is also sometimes valuable to define
the complete symbol, which also includes the lower order derivatives in P , not just its
principal part).

To illustrate the value of the principal symbol, shortly we will use an algebraic property
of σξ(P ) to define an elliptic differential operator. This algebraic property of ellipticity
then will implie analytic conclusions, such as the smoothness of solutions of the Pu = 0 .
Before this, we collect several obvious, but useful, algebraic properties;

(i) σξ(P + Q) = σξ(P ) + σξ(Q)

(ii) σξ(PQ) = σξ(P )σξ(Q)

(iii) σξ(P
∗) = σξ(P )∗ (Hermitian adjoint of σξ(P ) ).

In (i) we assume that P and Q have the same order, while in (ii) we assume that the
composition PQ makes sense. Note that without the factor ik in (1.30), (1.31), the
property (iii) would need an extra factor (−1)k since (∂/∂x)∗ = −∂/∂x .

example 1.5 On a manifold M , the exterior derivative, d , acts on the space Ωp(M)
of smooth differential p-forms, d : Ωp(M) → Ωp+1(M) . It is linear and has the defining
property d(ϕα) = dϕ ∧ α + ϕdα for any ϕ ∈ C∞(M), α ∈ Ωp(M) . Thus

σξ(d)α = iξ ∧ α. (1.32)

Similarly, for any vector bundle E over a manifold M , the covariant derivative D :
Λ0(E) → Λ1(E) satisfies D(ϕv) = dϕ ⊗ v + ϕDv for any ϕ ∈ C∞(M), v ∈ Λ0(E) .
Consequently

σξ(D)v = iξ ⊗ v. (1.33)

For the heat equation ut − ∆u = 0 , the principal symbol does not contain the time
derivative information and is thus a bit too crude for this case.



Chapter 2

Linear Elliptic Operators

2.1 Introduction

If V and W are finite dimensional inner product spaces and L : V → W is a linear
map, one knows that one can solve the equation Lx = y if and only if y is orthogonal to
ker L∗ . [Proof: we show that (image L)⊥ = ker L∗ . Now z ⊥ image L ⇔ 〈Lx, z〉 = 0 for
all x ⇔ 〈x, L∗z〉 = 0 for all x ⇔ L∗z = 0 .] This assertion can be summarized by

W = L(V ) ⊕ ker L∗, (2.1)

and can also be formulated as an alternative:

Either one can always solve Lx = y , or else ker L∗ 6= 0 , in which case a
solution exists if and only if y is orthogonal to kerL∗ .

Application: Let U , V , and W be finite dimensional vector spaces with inner prod-
ucts. If A : U → V and B : V → W are linear maps with adjoints A∗ and B∗ , define
the linear map C : V → V by

C = AA∗ + B∗B.

If U
A−−−−→ V

B−−−−→ W is exact [that is, image (A) = ker(B) ], then C : V → V is
invertible. This is a straightforward consequence of (2.1).

One can define the index of L by the rule

indexL = dim kerL − dim coker L. (2.2)

By (2.1) dim coker L = dim kerL∗ . Since the matrices L and L∗ have the same rank,
then indexL = dim W − dimV . It is independent of L and is thus uninteresting. If L
is a continuous map between Hilbert spaces, the above reasoning is still valid and shows
that (image L)⊥ = ker L∗ . Hence image L = (ker L∗)⊥ . However, in order to pass to the
analog of (2.1) one needs that the image of L be a closed subspace; also the index may
not be finite.

Fredholm realized that the above alternative, an algebraic property, also holds for
linear elliptic differential operators. Moreover, the index is finite—and turns out to be
very interesting. In honor of Fredholm, in a Hilbert space we we use the name Fredholm
operator for one whose image is closed, and whose kernel and cokernel are both finite
dimensional; the index is defined for this class of operators.

Solutions of elliptic differential equations, such as the Laplace equation, uxx+uyy = 0 ,
also have a striking analytic property that many mathematicians meet first in the special
case of the Cauchy-Riemann equations: the solutions are as smooth as possible. For

13
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instance, if an elliptic equation has real analytic coefficients, then all solutions are real
analytic. As a contrast, solutions of the wave equation uxx − uyy = 0 , which also has
analytic coefficients, need not be smooth since, for instance, any function of the form
u(x, y) = f(x − y) is a solution.

2.2 The Definition

A linear differential operator P : C∞(E) → C∞(F ) is elliptic at a point x ∈ M if the
symbol σξ(P ;x) is an isomorphism for every real non-zero ξ ∈ T ∗

x M−{0} . It is clear that
P being elliptic implies that its formal adjoint, P ∗ , is also elliptic. Since the definition
of the symbol was given invariantly, the definition of elliptic does not depend on a choice
of coordinates.

For a system of equations, a necessary condition for ellipticity is that dimEx = dimFx

and that each of the equations in the system have the same order. There is, however, a
more general definition of ellipticity for systems, called elliptic in the sense of Douglas-
Nirenberg, that allows different orders in the various dependent variables (see [DN] and
[ADN-2]).

example 2.1 Consider the second order scalar equation

Pu =
∑

i,j

aij(x)
∂2u

∂xi∂xj
+

∑

j

bj(x)
∂u

∂xj
+ c(x)u, (2.3)

where u and the coefficients are real-valued functions. Then for each x and ξ the symbol
is the 1 × 1 matrix

σξ(P ;x) = −
∑

i,j

aij(x)ξiξj .

Hence P is elliptic at x if and only if the matrix (aij(x)) is positive (or negative) definite.
Given a Riemannian metric g , for us the primary example of an elliptic operator is

the Laplacian (or Laplace-Beltrami operator) ∆g (usually written just as ∆ ) acting on
scalar-valued functions. In local coordinates (x1, . . . .xn) with gij the inverse of g the
formula is (1.6)

∆u :=

n
∑

i,j=1

gij ∂2u

∂xi∂xj
+ lower order terms.

Ellipticity follows because gij is positive definite. ¤

example 2.2 [Cauchy-Riemann] The Cauchy-Riemann equation for a function of one
complex variable z = x + iy is

∂ϕ

∂z̄
= 1

2

( ∂

∂x
+ i

∂

∂y

)

ϕ = F.

Its symbol is

σξ

( ∂

∂z̄

)

= i
2 (ξ1 + iξ2),

which clearly shows the ellipticity. The formal adjoint is ( ∂
∂z̄ )∗ = 1

2 (− ∂
∂x + i ∂

∂y ) . Note
that

−4

(

∂

∂z̄

)∗(
∂

∂z̄

)

ϕ = (ϕxx + ϕyy)
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is the Laplacian.
Occasionally one splits everything into real and imaginary parts to write the Cauchy-

Riemann equations as the usual system of two real equations. Thus, say ϕ = u + iv and
F = a + ib . Then

1
2

(

1 0
0 1

)

∂

∂x

(

u
v

)

+ 1
2

(

0 −1
1 0

)

∂

∂y

(

u
v

)

=

(

a
b

)

.

In this form the symbol is

σξ(
∂

∂z̄
) = i

2

(

ξ1 0
0 ξ1

)

+ i
2

(

0 −ξ2

ξ2 0

)

= i
2

(

ξ1 −ξ2

ξ2 ξ1.

)

.

It is clearly invertible if (ξ1, ξ2) 6= 0. ¤

example 2.3 [Hodge Laplacian] Let C∞(E)
P→ C∞(F )

Q→ C∞(G) , where P and
Q are first order linear differential operators and E , F , G are Hermitian vector bundles
over M . The second order operator

L = PP ∗ + Q∗Q : C∞(F ) → C∞(F ) (2.4)

is elliptic at x if the following symbol sequence is exact at Fx for every ξ ∈ T ∗
x M −{0} :

Ex
σξ(P ;x)−−−→ Fx

σξ(Q;x)−−−→ Gx (2.5)

( The fact that exactness implies ellipticity is a consequence of the Application after
(2.1) above.

The rule (2.4) is a useful construction of an elliptic operator. A particular case is if
P = 0 ; in this situation we see that if σξ(Q) is injective then Q∗Q is elliptic. An example
is where Q := ∇ is the gradient operator. Then −Q∗ is the divergence operator and
Q∗Q is the Laplacian on functions.

The best-known general instance of this construction is the Hodge Laplacian where
E = Λp−1 , F = Λp , and G = Λp+1 are spaces of differential forms, and P and Q are
both exterior differentiation whose symbol we computed in (1.32). Using this symbol it is
easy to verify that the sequence (2.5) is exact (for the exterior algebra, use a basis one of
whose elements is ξ ). Then the Hodge Laplacian ∆H := dd∗ + d∗d is elliptic. It acts on
the space Ωp = C∞(Λp) of smooth p-forms. In the special case of R

n with its standard
metric, the Hodge Laplacian on real-valued functions is

∆Hu = −[ux1x1
+ ux2x2

+ · · · + uxnxn
].

Note the minus sign on the right is the sign convention used by many geometers’ and is
always used for the Hodge Laplacian, despite inevitable confusion.

¤

An operator P is underdetermined elliptic at x if σξ(P ;x) is surjective for every
ξ ∈ T ∗

x M − {0} (the simplest example is the divergence of a vector field on R
n ). In this

case PP ∗ is elliptic at x . Similarly, P is overdetermined elliptic at x if σξ(P ;x) is
injective for every ξ ∈ T ∗

x M − {0} (the simplest example is the gradient of a real-valued
function; another example is the Cauchy-Riemann equation for an analytic function of
several complex variables). In this case P ∗P is elliptic at x .
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2.3 Schauder and Lp Estimates

We observed in the Introduction that to prove a version of the Fredholm alternative for a
linear elliptic operator, we need to show that the image is closed. The following functional
analysis lemma shows that this is equivalent to proving an inequality.

Lemma 2.1 [Peetre] Let X , Y , and Z be reflexive Banach spaces with X →֒ Y
a compact injection and L : X → Z a continuous linear map. Then the following are
equivalent:
a) The image L(X) is closed and ker L is finite dimensional,
b) There are constants c1 and c2 such that for all x ∈ X

‖x‖X ≤ c1‖Lx‖Z + c2‖x‖Y . (2.6)

To prove a) ⇒ b) write X = X1 ⊕ ker L so the restriction of L to X1 is injective.
The closed graph theorem then gives (2.6).

To prove b) ⇒ a), since X →֒ Y is compact, the unit ball in kerL is compact so
ker L is finite dimensional. Now decompose X = X1 ⊕ ker L . Because L : X1 → Z is
injective and X →֒ Y is compact, reasoning by contradiction one finds that all x ∈ X1

satisfy
‖x‖X ≤ c‖Lx‖Z (2.7)

with some new constant c . Say Lxj → z for some xj ∈ X1 . To show that the image of
L is closed we find x in X , so that z = Lx . But (2.7) implies the xj are Cauchy in X
so xj → x for some x ∈ X1 . Now by continuity z = lim Lxj = Lx . ¤

From this lemma, we now understand that the main technical step in the theory of
linear elliptic differential operators is establishing an inequality. Recall that E and F
are vector bundles over M and that M is compact without boundary.1

Theorem 2.2 basic elliptic estimates Let P : C∞(E) → C∞(F ) be a linear
elliptic differential operator of order k . Then there are constants c1, c2, . . . , c6 such that

(a) [Schauder estimates] for every u ∈ Ck+ℓ, α(E) ,

‖u‖k+ℓ+α ≤ c1‖Pu‖ℓ+α + c2‖u‖C(E) ≤ c3‖u‖k+ℓ+α (2.8)

(b) [ Lp estimates] for every u ∈ Hp,k+ℓ(E), 1 < p < ∞ ,

‖u‖p,k+ℓ ≤ c4‖Pu‖p,ℓ + c5‖u‖L1 ≤ c6‖u‖p,k+ℓ. (2.9)

Moreover, if one restricts u so that it is orthogonal (in L2(E) ) to ker P then we
can let c2 = c5 = 0 —with new constants c1 and c4 .

It is conceivable that if we restrict P to Hp,k+ℓ(E) , then ker P could get smaller as ℓ
increases. In fact, since the coefficients in P are smooth, the elliptic regularity Theorem
2.3 shows that kerP ⊂ C∞(E) so there is no ambiguity. Note that the right-hand sides
in (2.8)-(2.9) are obvious. The moral of (2.8)-(2.9) is that in these Hölder and Sobolev
spaces, ‖Pu‖ defines a norm equivalent to the standard norm, except that one must
add an extra term if kerP 6= 0 , since the ‖Pu‖ is only a semi-norm. This theorem is
proved—in greater generality—in [DN], [ADN-1 and 2], and [Mo, Theorem 6.4.8]; since
M has no boundary, all one really needs are the simpler “interior estimates” from these
references coupled with a partition of unity argument. (In particular, one does not need
the assumption of “proper ellipticity” here, or elsewhere in this chapter.)

1In the following we consider a linear differential operator P : C∞(E) → C∞(F ) ,
of order k ; clearly this operator can be extended uniquely to act on Ck+ℓ, α(E) and
Hp,k+ℓ(E) . We presume this extension has been done whenever needed.
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While we used Peetre’s Lemma 2.1 to motivate the above theorem, in reality the lemma
was observed only after the theorem had been found and its usefulness appreciated. The
lemma does clarify our understanding why the inequalities in the theorem are basic. Note,
too, that it does not apply to the Hölder spaces since they are not reflexive.

In the next two sections these estimates will be used to discuss both the regularity
(smoothness) of solutions and the existence of solutions. We’ll discuss regularity first, so
the these results will be available when we turn to existence.

example 2.4 As a brief preview, for a second order linear elliptic operator P on a smooth
manifold M without boundary, we obtain the decomposition

L2(F ) = image (P (H2,2) ⊕ ker P ∗ (2.10)

from (2.9) with p = 2 . Observe that P : H2,2 → L2 is continuous so the proof of (2.2)
gives ker P ∗ = (image P (H2,2))⊥ . Therefore, to prove (2.10) it is enough to show that
image P (H2,2) is a closed subspace (in any Hilbert space, (V ⊥)⊥ = V ). Because the
injection H2,2 →֒ L2 is compact, this follows from Peetre’s Lemma 2.1 and the basic
inequality (2.9). ¤

2.4 Regularity (smoothness)

In brief, solutions of elliptic equations are as smooth as the coefficients and data permit
them to be. The results are, of course, local. First we consider the case of a linear system,

Pu :=
∑

|α|≤k

aα(x)∂αu = f(x). (2.11)

Recall that Cω is the space of real analytic functions.

Theorem 2.3 [Regularity] Assume P is elliptic in an open set Ω ⊂ R
n and that

u ∈ Hp,k(Ω) for some 1 < p < ∞ satisfies Pu = f (almost everywhere). In the following
assume that ℓ ≥ 0 is an integer, p ≤ r < ∞ , and 0 < σ < 1 .
a) If aα(x) ∈ Cℓ and f ∈ Hr,ℓ , then u ∈ Hr,k+ℓ .

b) If aα(x) ∈ Cℓ, σ and f ∈ Cℓ, σ , then u ∈ Ck+ℓ, σ .

c) If aα(x) ∈ C∞ and f ∈ C∞ , then u ∈ C∞ .

d) If aα(x) ∈ Cω and f ∈ Cω , then u ∈ Cω .

One can read this theorem as a table, each of the four columns below being separate
theorems:

If aα(x) is in Cℓ Cℓ, σ C∞ Cω

while f(x) is in Hr,ℓ Cℓ, σ C∞ Cω

then u(x) is in Hr,k+ℓ Ck+ℓ, σ C∞ Cω

This theorem is an amalgamation of [ADN II, Th. 10.7], [DN, Th. 4] and [Mo, Theo-
rems 6.2.5 and 6.6.1], where slightly more general results are proved.

Upon first seeing such results, one may wonder if there is any practical situation in
which the coefficients are not in C∞ . To answer this effectively, one looks at nonlinear
equations, where one often needs results for linear equations with minimal smoothness
assumptions (indeed, one even wants results with bounded measurable coefficients). We
will see one aspect of this in Example 2.6 below.
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example 2.5 To illustrate the use of both the Lp and Schauder theory, we examine a
nonlinear equation. Let Ω be a bounded open set, either in R

n or on a smooth manifold.
Say f(x, s) is a bounded C∞ function on Ω × R and say u ∈ H2,2(M) is a solution of

∆u = f(x, u).

We claim that, in fact, u ∈ C∞(Ω) . Because |f(x, u)| is bounded, it is in Lr = Hr,0 for
all r < ∞ . Thus, by the first column of the elliptic regularity theorem 2.3, u ∈ Hr,2 for
all r < ∞ . Choosing some r > n = dim M the Sobolev Embedding Theorem 1.1 then
implies that u ∈ C1, α for some 0 < α < 1 , and therefore so is ∆u = f(x, u) . By the
second column of the regularity theorem again u ∈ C3, α . Thus ∆u = f(x, u) ∈ C3, α , so
u ∈ C5, α etc. This reasoning is often called a “bootstrap argument”, since the regularity
of u is “raised by its own bootstraps”. ¤

example 2.6 Here is a more complicated instance using a bootstrap argument. Again,
let Ω be a bounded open set. Say u ∈ C2 is a solution of the elliptic equation

∑

i,j

aij(x, u,∇u)
∂2u

∂xi∂xj
= f(x, u,∇u),

where, to insure ellipticity, aij(x, s, v) is positive definite for all x ∈ Ω and all values
of the other variables. Both the coefficients aij(x, s, v) and f(x, s, v) are assumed C∞

functions of their variables. As in the previous example we will show that u ∈ C∞ .
To prove this we use another bootstrap argument. Since u ∈ C2 then the functions
aij(x, u(x),∇u(x)) and f(x, u(x),∇u(x)) are in C1 as functions of x , and hence in Cσ

for all 0 < σ < 1 . By the second column of the elliptic regularity Theorem 2.3 then
u ∈ C2, σ for all 0 < σ < 1 . Thus aα and f are in C1, σ so u ∈ C3, σ etc. The same
proof works if we had assumed only that u ∈ Hp,2 for some p > n . ¤

2.5 Existence

The estimates of Theorem 2.2 allow one to prove that for a linear elliptic operator the
image of P is closed. As a consequence, the existence theory of a linear elliptic operator
on a compact manifold can be stated exactly as in the finite dimensional case stated in
the Introduction to this chapter. It is often called the Fredholm alternative. Moreover,
dim kerP is finite so the index, as defined by (2.2) makes sense—and this time it turns
out to be interesting since it does depend on the operator.

Theorem 2.4 [Fredholm Alternative] Let P : C∞(E) → C∞(F ) be a linear
elliptic differential operator of order k .

(a) Then both ker P and ker P ∗ ⊂ C∞ and they are also finite dimensional.

(b) If f ∈ H2,ℓ(F ) , then there is a solution u ∈ H2,k+ℓ(E) of Pu = f if and only if f
is orthogonal in ( L2(F ) ) to ker P ∗ ; this solution u is unique if one requires that u is
orthogonal (in L2(E) ) to ker P .

(c) If E = F , the eigenspaces [ = ker(P − λI) ] are therefore finite dimensional.

(d) Moreover, for 1 < p < ∞ , if f ∈ Hp,ℓ , Cℓ, α , or C∞ , then a solution u is in
Hp,k+ℓ , Ck+ℓ, α , or C∞ , respectively.

(e) For a scalar elliptic operator dim ker P = dim ker P ∗ , so one has “existence if and
only if uniqueness”.

The proof for f ∈ H2,ℓ or C∞ can be found, for example in [W, Chapter 6], while
part d) is a consequence of the elliptic regularity Theorem 2.3.
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For elliptic operators on vector bundles, i.e., for systems of equations, one generalizes
part e) by using the index of P , defined just as for matrices. From part b), coker P =
ker P ∗ , so, by part a) the index is a finite. Part e) asserts that a scalar elliptic operator has
indexP = 0 . For the general case of a Fredholm operator L , a critical observation was
that indexL , which is obviously an integer, does not change if one deforms the operator
L continuously. It also does not change if one adds a compact operator to L . This
implies that the index of an elliptic operator depends only on topological data and led
I.M. Gelfand to suggest that there should be a formula for indexP in terms of topological
data of the vector bundle and the symbol of the operator. Atiyah-Singer found that
formula. The result has been enormously powerful and useful. Among other things, this
formula generalized the Riemann-Roch theorem. In Section 2.7 we will sketch the first
step of one approach to proving the Atiyah-Singer index theorem.

It is easy to see that for a linear elliptic operator P , all the information concerning
the index is contained in its symbol. If P : H2,m → L2 has order m , we can write P as
P = Pm + Q , where Pm involves only derivatives of order m while Q contains all the
lower order derivatives. Because Q : H2,m−1 → L2 is continuous and H2,m →֒ H2,m−1 is
compact by the Sobolev theorem, we find that Q : H2,m →֒ H2,m−1 → L2 is a compact
perturbation of P . Consequently, the index of P depends only on the highest order
terms, so all the information on the index of P is contained in the symbol of P .

The following corollary is in part a restatement of the Fredholm alternative for Hölder
and Sobolev spaces. Although we are still assuming the coefficients in our operator are
smooth, there are similar versions in more general situations. Here we also extend part of
Theorem 2.4 to underdetermined and overdetermined systems. The usefulness of part b)
below to geometric problems was pointed out in [BE].

Corollary 2.5 Let P : C∞(E) → C∞(F ) be a linear differential operator of order k .
(a) If P is either elliptic or underdetermined elliptic, then ker P ∗ ⊂ C∞ is finite dimen-
sional and

i) Hp,ℓ(F ) = P (Hp,k+ℓ(E)) ⊕ ker P ∗ (1 < p < ∞),
ii) Cℓ, α(F ) = P (Ck+ℓ, α(E)) ⊕ ker P ∗,
iii) C∞(F ) = P (C∞(E)) ⊕ ker P ∗.

(b) If P is overdetermined elliptic, then these decompositions remain valid if one replaces
ker P ∗ by the intersection of ker P ∗ with Hp,ℓ(F ) , Cℓ, α(F ) , and C∞(F ) , respectively
(if ℓ < k , then ker P ∗ ∩ Hp,ℓ(F ) are distributions).

Proof. (a) If P is elliptic, this is immediate. If P is underdetermined elliptic, apply
Theorem 2.4 to Q = PP ∗ . Note that since in L2 〈Qv, v〉 = 〈PP ∗v, v〉 = ‖P ∗v‖2 then
ker Q = kerP ∗ .

(b) First we prove the portion using part (a)(i) of Corollary 2.5. Since P ∗P is elliptic
and—in the L2(F ) inner product— imageP ∗ is orthogonal to kerP (= kerP ∗P ) , by (i)
of Corollary 2.5 for any f ∈ Hp,ℓ(F ) there is a solution u ∈ Hp,ℓ+k(E) of P ∗Pu = P ∗f .
Thus Pu − f ∈ ker P ∗ ∩ Hp,ℓ(F ) . But Pu is orthogonal to kerP ∗ ∩ Hp,ℓ(F ) , since if
Ψ ∈ (ker P ∗) ∩ Hp,ℓ(F ) then in L2 , 〈Pu, Ψ〉 = 〈u, P ∗Ψ〉 = 0 . Therefore Pu − f = 0 if
and only if f is orthogonal to kerP ∗ ∩Hp,ℓ(F ) . The proof of the remaining cases where
f ∈ Ck, α or C∞ is similar. ¤

example 2.7 The existence result is even interesting for ordinary differential equations,
although it is rarely mentioned. We work on the circle S1 , which is the simplest compact
manifold without boundary.
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Let Lu = u′ +a(x)u for x on the circle S1 and a ∈ C∞(S1) a real valued function.
Then L∗v = −v′ +a(x)v , dim kerL∗ ≤ 1 and one can solve u′ +a(x)u = f(x) ∈ C∞(S1)
if and only if

∫

S1 f(x)z(x) dx = 0 for all z ∈ ker L∗ .
The special case where a(x) ≡ 0 so z(x) ≡ 1 is especially easy. For the general case,

we obtain the standard explicit formula—in detail—since it is all too often viewed as a
complicated formula without any insight that it illustrates an important basic idea in an
elementary setting. Just as with diagonalizing matrices, one seeks a change of variable
u = qw that simplifies the problem (this is probably the simplest example of a “gauge
transformation”). Here q is an non-zero function but for a system of equations, where
u is a vector and a a matrix, q is an invertible matrix. Then Lu = qw′ + (q′ + aq)w .
This clearly simplifies if we choose q so that q′ + aq = 0 . Then the equation for w is
thus qw′ = f . Formally, if we let D = d/dx , then we can write this symbolically as
qD(q−1u) = f so the operator L = qDq−1 is “similar” to the simple operator D . Thus

w =

∫

q−1f so u(x) = cq(x) + q(x)

∫ x

0

q−1(t)f(t) dt,

where c is a constant (again note that formally, L−1 = qD−1q−1 , as expected). All this
is local. Since we want u to be a smooth function on the circle, then we need u to be
periodic:

0 = u(1) − u(0) = cq(1) + q(1)

∫ 1

0

q−1(t)f(t) dt − cq(0). (2.12)

If q(1)−q(0) 6= 0 , this can be solved uniquely for c . If q(1)−q(0) = 0 , then the kernel of
L (on functions on the circle) is not zero and (2.12) becomes a condition for the solvability.
Since q−1 is a solution of the homogeneous adjoint equation, (2.12) is the condition we
sought.

You may find it interesting to extend this to the case of a first order linear system on
the circle. Then pick q(x) to be a matrix solution of q′ + aq = 0 with q(0) = I . You
may find it helpful to observe that q∗−1 is a solution of the homogeneous adjoint equation
L∗v = −v′ + a∗v = 0 . ¤

example 2.8 It is easy to prove directly that the elementary one dimensional equation
u′′ = f on the circle, S1 , has a solution if and only if f is orthogonal to the constants,
that is,

∫

S1

f(x) dx = 0.

Note that in this case, the constants are in the kernel of the homogeneous equation (the
local solution u(x) = cx is a global smooth function on S1 if and only if c = 0 ). Another
useful exercise is to analyze the solvability of u′′ + u = f on S1 , where to be specific, we
fix that S1 is the circle 0 ≤ x ≤ 2π with the end points identified. ¤

example 2.9 In order to apply the existence portion of these results and solve Pu = f
on M , one needs to know that ker P ∗ = 0 . As an example of a case that arises frequently,
consider the scalar equation

Pu = −∆u + c(x)u, (2.13)

where c(x) > 0 (recall the sign convention ∆u = +u′′ on R ). We present two proofs
that ker P = 0 . The first uses the obvious maximum principle that if Pu ≥ 0 then
u ≤ 0 , that is, u can not have a positive local maximum—since at such a point −∆u ≥ 0
and cu > 0 so Pu > 0 there. If u ∈ ker P , then it can not have a positive maximum or
negative minimum. Hence u = 0 . (In Section 2.6 we will prove the stronger version that
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assumes only c ≥ 0 ). This basic idea is equally applicable to real second order nonlinear
scalar equations.

For the second proof, multiply the equation Pu = 0 by u and integrate over M ,
then integrate by parts (the divergence theorem) to obtain

0 =

∫

M

u(−∆u + cu) dxg =

∫

M

(|∇u|2 + cu2) dxg.

Since c > 0 , then clearly u = 0 . The same proof still works if c ≥ 0 (6≡ 0) . Moreover,
it is also applicable to vector-valued functions u with c a positive definite matrix—and
similar equations on vector bundles. Bochner and others have used it effectively to prove
“vanishing theorems” in geometry. See Chapter 3 below.

In this example, P = P ∗ . Thus ker P ∗ = 0 ; we conclude that for any f ∈ C∞(M)
there is a unique solution of −∆u + cu = f . Moreover, u ∈ C∞ .

If c(x) ≡ 0 , both of these methods of proof show that on scalar functions ker ∆ is
the constant function. Consequently:

One can solve ∆u = f if and only if

∫

M

f dxg = 0. ¤ (2.14)

In some respects our definition of ellipticity is more general than one might suspect
— or desire. Here is an example, due to R.T. Seeley [S], of an elliptic operator P having
every complex number λ as an eigenvalue. Let M be any compact Riemannian manifold
with Laplacian ∆ and let 0 ≤ θ < 2π be a coordinate on the circle S1 . Then the
operator

Pu = −
(

e−iθ ∂

∂θ

)2

u − e−2iθ∆u (2.15)

(or take the real and imaginary parts if one prefers a pair of real equations) is elliptic on
S1 × M . Making the change of variable t =

√
λeiθ , we see that for any complex λ 6= 0 ,

u = exp(±i
√

λ exp iθ) is an eigenfunction with eigenvalue λ , while if λ = 0 then u ≡ 1
is an eigenfunction.

This awkward situation does not occur for “strongly elliptic operators”. To define
these let P : C∞(E) → C∞(E) and regard the symbol in local coordinates as a square
matrix whose ij element is [σξ(P ;x)]ij . Strong ellipticity at x means that for some some
c > 0 ( γ and c may depend on x , but not on ξ or η ) the following quadratic form
Q(η) is definite:

Q(η) = Re
{

∑

i,j

[σξ(P ;x)]ijηiη̄j

}

≥ c|η|2 (2.16)

for all complex vectors η and all real vectors ξ ∈ T ∗
x M with |ξ| = 1 . Replacing ξ by

−ξ reveals that the order of P must be even. The Hodge Laplacian on differential forms
or tensors is strongly elliptic, for example, while the Cauchy-Riemann equation on R

2 ,
equation (2.15), and the second order operator (∂/∂x + i ∂/∂y)2 on R

2 are not strongly
elliptic.

Theorem 2.6 [Mo, 6.5.4] If P : C∞(E) → C∞(E) is strongly elliptic, then it is
elliptic (clearly) and its eigenvalues are discrete, having a limit point only at infinity.

2.6 The Maximum Principle

The maximum principle is a standard tool for second order scalar elliptic equations. The
essential idea has already been used in Example 2.9. Its strength, both for linear and
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especially nonlinear equations is that it makes only modest assumptions and the technique
applies in a variety of situations. Despite its elementary character, by ingenious arguments
one can apply the maximum principle to prove deep results. One instance is Alexandrov’s
moving plane technique which he first used to study embedded hypersurfaces with constant
mean curvature;another is Caffarelli’s proof of Krylov’s basic boundary estimate (see [K-3,
Chapter IV.3]).

We will prove several different versions of the maximum principle. All of them begin
with the following weak maximum principle.

In local coordinates in a connected open set Ω in either R
n or an n− dimensional

manifold, consider the scalar elliptic operator

Lu = −
∑

i,j

aij(x)
∂2u

∂xi∂xj
+

∑

j

bj(x)
∂u

∂xj
, (2.17)

where we assume the uniform ellipticity condition for all x ∈ Ω and all ξ ∈ R
n

µ|ξ|2 ≤
∑

aijξiξj ≤ m|ξ|2

for some µ,m > 0 . Also assume the coefficients b = (b1, . . . , bn) are bounded, |b| < const..
It will be clear in our proofs that we will usually only need that these assumptions hold
locally, in the neighborhood of each point.

Theorem 2.7 [weak maximum principle]
a) If u ∈ C2(Ω) satisfies Lu < 0 in Ω , then u cannot attain a local maximum.
b) If u ∈ C2(Ω) satisfies Lu + c(x)u < 0 in Ω and c(x) ≥ 0 , then u cannot attain a
local non-negative maximum.

Proof. If u had a local maximum at p , then the first derivatives of u would be zero there
and the hessian matrix uij = ∂2u/∂xi∂xj would be negative semidefinite at p . Thus
∑

aij(p)uij(p) ≤ 0 (indeed, if A = (aij) is a positive definite matrix and B = (bij) is
negative semidefinite, then

∑

aijbij ≤ 0 , as one can see more easily by diagonalizing A ).
Consequently Lu ≥ 0 at p , which contradicts Lu < 0 . The proof of part b ) is identical.
¤

Replacing u by −u one immediately obtains a corresponding minimum principle.
This is true throughout this section.

Motivated by the classical version of maximum principle that holds for the Laplace
equation uxx + uyy = 0 , one may ask if there is a version of the maximum principle of
part a above that assumes only Lu ≤ 0 . The result is the strong maximum principle,
due to E. Hopf. It is proved by a technical device which reduces the proof to the weak
maximum principle. One can organize the proof in several different ways. We will begin
with a boundary point maximum principle which is important by itself.

Theorem 2.8 [boundary point maximum principle]
a) Assume that u ∈ C2(Ω), u < M satisfies Lu ≤ 0 in Ω , and that u(p) = M at a
point p ∈ ∂Ω . Also assume that p is on the boundary of a ball B whose closure is in
Ω ∪ {p} . If the outer normal directional derivative, ∂u/∂ν , exists at p , then either

∂u

∂ν

∣

∣

∣

p
> 0 or u ≡ constant. (2.18)

b) Instead, assume u satisfies Lu + cu ≤ 0 where c(x) is a bounded function. If either
M ≥ 0 and c(x) ≥ 0 , or if M = 0 with no sign condition on c(x) , then (2.18) still
holds.
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Proof. In order to treat both parts of the theorem together, we will think of part a) as
the case where c ≡ 0 and let c+(x) = max(c(x), 0) .

Let R be the radius of the ball B and r be the distance from its center, which we
may assume is at the origin. We claim there is a smooth function v = v(r) with the
properties i) v > 0 in B , ii) v = 0 and vr < 0 on the boundary of B , and iii) in the
annular region A = {r : R/2 < r < R} ⊂ B we have Lv + c+v < 0 .

Before we exhibit v , we show how to use it to prove the theorem. Let w = u−M +ǫv .
Since u(x) < M on |x| = R/2 , we can choose ǫ > 0 so that w(x) ≤ 0 on |x| = R/2 .
Together with v(R) = 0 , this gives w(x) ≤ 0 on the whole boundary of A . Observe that
for either parts a), where c ≡ 0 , or b), because (c − c+)(u − M) ≥ 0 , we know that

(L + c+)(u − M) = (L + c)(u − M) − (c − c+)(u − M) ≤ −cM ≤ 0.

Therefore Lw + c+w < 0 . Thus by the weak maximum principle w ≤ 0 throughout
A . Because w(p) = 0 this implies that its outer normal derivative (if it exists) satisfies
∂w/∂ν|p ≥ 0 , that is,

∂u

∂ν

∣

∣

∣

∣

p

≥ −ǫ
dv

dr

∣

∣

∣

∣

p

> 0.

We exhibit v . Let v(r) = e−λr2 − e−λR2

, where λ > 0 will be chosen shortly. Clearly
v > 0 in B and both v = 0, vr < 0 on ∂B . Also, using the uniform ellipticity, bounds
on the coefficients, and that R/2 < r < R in A , we get

(L + c+)v = e−λr2

[−4λ2
∑

ij

aijxixj + 2λ
∑

i

(aii + bixi)] + c+v

≤ e−λr2

[−4λ2µR2 + 2λ(nm + |b|R) + c+].

Therefore, by choosing λ sufficiently large we can insure that Lv + c+v < 0 in A . ¤

The strong maximum principle is a consequence of this boundary point maximum
principle.

Theorem 2.9 [strong maximum principle]
a) Assume u ∈ C2(Ω) satisfies Lu ≤ 0 in Ω . If u has a local maximum, then it is
constant.
b) Assume u ∈ C2(Ω) satisfies Lu + c(x)u ≤ 0 in Ω , where c(x) ≥ 0 . If u has a local
non-negative maximum, then it is constant. Moreover, if c(x) > 0 somewhere, then to
satisfy Lu + c(x)u ≤ 0 this constant must be zero.
c) Assume u ∈ C2(Ω) satisfies Lu + c(x)u ≤ 0 in Ω and u(x) ≤ 0 . Then either u < 0
or u ≡ 0 (there is no assumption on c ).

Proof. We treat parts a) and b) together. Since the connectedness of Ω is essential,
we will use it explicitly. Say u has a local maximum M at some interior point of Ω .
Let ΩM ⊂ M be the set where u(x) = M . It is evident that this set is closed and, by
assumption, not empty. We show that it is open. Because Ω is connected, this will prove
that ΩM , is all of Ω and thus that u is constant.

To show that ΩM is open, say u(p) = M . Pick a sufficiently small δ so that the
ball |x − p| < 2δ is in Ω . We claim that u ≡ M in the smaller ball |x − p| < δ . This
will show that ΩM is open.

Reasoning by contradiction, assume u(x0) < M for some x0 in the smaller ball. Pick
the largest ball B centered at x0 so that u < M in B but u(q) = M for at least one
point q on ∂B , the boundary of B (since u(p) = M , the radius of B is at most δ ). We
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can now apply the boundary point maximum principle, Theorem 2.8, to find a directional
derivative at q that is positive; this is impossible since u has a local maximum at q so
all of its first derivatives are zero there. This proves that ΩM is open.

For part c), write c−(x) = min(c(x), 0) . Then u satisfies Lu + c+u = −c−u ≤ 0 .
If u were zero somewhere, it would have a local maximum there and hence be a constant
by part b). ¤

remark 2.1 The function u(x) = sin x satisfies −u′′ − u = 0 on the interval Ω = {0 <
x < π} and has a positive maximum. This shows that either the assumption on c(x) —
or some related assumption—is needed in part b). This is a special case of the following.
Let ϕ be an eigenfunction and λ the corresponding eigenvalue of the operator L on Ω
with the Dirichlet boundary condition ϕ = 0 on ∂Ω (for a compact manifold without
boundary there is no boundary condition). Then

(L − λ)ϕ = 0.

Then ϕ (or −ϕ ) has an interior positive maximum, also illustrating the need for
some condition such as on the sign of c . This also proves that the eigenvalues of L with
Dirichlet boundary conditions are positive.

In addition, one can use this example as motivation we can replace the sign condition
on c by the optimal condition for part b) to hold; this condition is that the lowest
eigenvalue, λ1 of the operator L + c is at most zero, λ1 ≤ 0 . If the boundary of Ω is
smooth, then one can let v = u/ϕ1 and apply the strong maximum principle to v . This
has been clarified and the maximum principle extended to situations where the boundary
of Ω is not smooth in [BNP].

Under the assumptions of part b) a negative maximum may occur. For instance, the
function u(x) = − cosh x satisfies u′′ − u = 0 and has a negative maximum at x = 0 .

The next Corollary is a standard application of the maximum principle.

Corollary 2.10 Assume u ∈ C2(Ω) ∩C(Ω) satisfies Lu + cu = 0 in a bounded domain
Ω with c(x) ≥ 0 . Then

max
Ω

|u| ≤ max
∂Ω

|u| (2.19)

Proof. Since Ω is compact, |u| attains its maximum somewhere. Replacing u by −u if
needed, we may assume that u ≥ 0 there. If u is not a constant, this cannot be at an
interior point of Ω . ¤

remark 2.2 If one deletes the assumption that u ∈ C(Ω) , the this Corollary is still true
if in equation 2.19 we replace max by sup.

Corollary 2.11 If u satisfies Lu + cu = 0 with c(x) ≥ 0 on a compact manifold M
without boundary, then u must be a constant. If c(x) > 0 somewhere, then u ≡ 0 .

The most typical and most important application of the maximum principle is to
compare solutions of related problems.

Theorem 2.12 [comparison principle] Let Ω be a bounded domain and c ≥ 0
there. If u and v are in C2(Ω)∩C(Ω) and satisfy Lu+ cu ≤ Lv + cv in Ω with u ≤ v
on ∂Ω , then u ≤ v throughout Ω .

In particular, if Lu+ cu = Lv + cv in Ω with u = v on ∂Ω , then u = v throughout
Ω .
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Proof. Let w = u−v . Then Lw+ cw ≤ 0 in Ω . Either w is a constant or else it cannot
have a local non-negative maximum. In either case, since w ≤ 0 on ∂Ω , we conclude
that w ≤ 0 . ¤

example 2.10 [uniqueness of the Dirichlet problem] One immediate conse-
quence is the uniqueness of the Dirichlet problem

Lu + cu = f in Ω with u = ϕ on ∂Ω, (2.20)

assuming Ω is bounded and c ≥ 0 . If Ω is unbounded, the assertion is false; for instance
u(x, y) = y is harmonic in the upper half plane {y > 0} and zero on the boundary.

example 2.11 [continuous dependence] Another immediate consequence is that in
the uniform norm, the solution u of the Dirichlet problem 2.20 in a bounded domain Ω
with c ≥ 0 depends continuously on the boundary data ϕ . Indeed, if u is a solution of
equation (2.20) while v is a solution of the same equation but with v = ψ on ∂Ω where
|ϕ−ψ| < ǫ , then applying the estimate (2.20) to w = u− v we conclude that |u− v| < ǫ
throughout Ω . ¤

The example in Remark 2.1 of eigenfunctions of L which are zero on ∂Ω also shows
that some condition, such as the sign assumption on c is needed for uniqueness.

remark 2.3 Stampacchia proved a version of the maximum principle that is appropriate
for certain elliptic equations whose coefficients need not be continuous and for “weak”
solutions. Here is the essential idea in the special case of the Laplacian. Say u is a
solution of −∆u + cu ≥ 0 in a bounded set Ω with u = 0 on the boundary. Let
v ∈ H2,1 be non-negative. Then, multiplying the equation by v and integrating by parts,
we see that

∫

Ω

(∇u · ∇v + cuv) dx ≥ 0 (2.21)

For the next step we use the fact that if Ψ(s) is Lipshitz continuous, and z(x) is in H2,1 ,
then Ψ(z(x)) is also in H2,1 (see [GT]). In partcular v(x) = max (u(x), 0) = 1

2 (u+ |u|) ∈
H2,1 . With this choice of v the previous formula becomes

∫

u≥0

(|∇v|2 + cv2) dx ≥ 0.

If c ≥ 0 this implies that ∇v = 0 . Since u = 0 on the boundary of Ω , we conclude that
v ≡ 0 and hence that u ≤ 0 throughout Ω .

This proof uses only that u ∈ H2,1 satisfies equation (2.21) for all non-negative
v ∈ H2,1 . In the language of Section 4.2 below, u is a weak solution of −∆u + cu ≥ 0 .
¤

2.7 Proving the Index Theorem

There are several different proofs of the index theorem. We will give the first step of one
approach using the heat equations

ut = −L∗Lu and ut = −LL∗u,
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where L is a linear elliptic operator. Let K1 and K2 be the heat kernels associated
with these two equations (see (1.3), (1.12)–(1.14)). We claim that

i(L) =

∫

[K1(y, y; t) − K2(y, y; t)] dy (2.22)

for all t > 0 , that is,

i(L) = trace(e−tL∗L − e−tLL∗

) =
∑

j

(eλjt − e−µjt), (2.23)

where λj are the eigenvalues of L∗L and µj those of LL∗ . Notice that if λj 6= 0
is an eigenvalue of L∗L , then it is also an eigenvalue of LL∗ (since L∗Lϕ = λϕ
then LL∗(Lϕ) = λ(Lϕ) ). Also, the multiplicity of the eigenvalue λ = 0 of L∗L is
dim kerL∗L = dim kerL , with a similar statement for µ = 0 . Therefore the non-zero
eigenvalue terms in (2.23) all cancel, while the zero eigenvalue terms give the index of L .

Having the formula (2.22) for the index one needs other properties of the heat kernels
K1 and K2 to obtain a formula expressing the integrand in (2.22) in terms of topological
information such as characteristic classes of the manifold. There are several ways of doing
this. One method investigates the asymptotic behavior of the heat kernels as t → 0 or
t → ∞ . See [At] for further discussion.

2.8 Linear Parabolic Equations

Since we will be using parabolic equations to solve some elliptic equations, we must collect
a few of the basic facts. The simplest parabolic equation is the heat equation

∂u

∂t
= ∆u (2.24)

on a compact manifold M . We may think of u(x, t) as the temperature at the point
x ∈ M at time t . The initial value problem (or Cauchy problem) is: given the initial
temperature distribution,

u(x, 0) = ϕ(x), (2.25)

find the temperature, u(x, t) for all t > 0 . Thus, solve (2.24)-(2.25).
More generally we can replace (2.24) by

∂u

∂t
= Lu + f(x, t) (2.26)

where L is a linear strongly elliptic differential operator (see [F, Part 2.9], [H-1], and
[LSU, Chapter IV.5 and Chapter VII]).

Many of the results for elliptic equations have related versions for parabolic equations
of the type (2.26). But first we must define what a parabolic equation is. To avoid a long
discussion, we will limit ourselves to a special case, which, however, will be adequate us.
In local coordinates consider linear systems of the form

∂u

∂t
− Lu :=

∂u

∂t
−

∑

i,j

Aij(x, t)
∂2u

∂xi∂xj
+

∑

Bi(x, t)
∂u

∂xi
+ C(x, t)u, (2.27)

where u = (u1, . . . , uN ) is a vector, the Aij , Bi and C are N × N matrices, and
for each ij , the matrix Aij has the form Aij(x, t) = aij(x, t)I . The equation (2.27) is
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parabolic at (x, t) if the matrix (aij(x, t)) is positive definite. The equation ut = ∆u on
a tensor field u is of this form.

Before presenting anything difficult, we state a version of the maximum principle for
scalar parabolic operators of the form

Pu = ut −
∑

(

aijuij + biui + cu
)

, (2.28)

where ui = ∂u/∂xi etc., and the coefficients aij(x, t) , bi , and c are continuous with
(aij(x, t)) positive definite.

Theorem 2.13 [Maximum Principle] Assume u(x, t) is a smooth function satis-
fying Pu ≤ 0 for x ∈ M and 0 ≤ t ≤ T . If c ≤ 0 , then u can not have a
positive maximum at a point (x, t) with t > 0 unless u ≡ constant. In particular,
u(x, t) ≤ max|u(x, 0)| .

See [PW] for a proof. There is an obvious proof if c < 0 . First make a linear change
of variables so that at this point uij is diagonal. Then use the fact that at an interior
positive maximum ut = ui = 0 while the hessian, uij is positive semidefinite. The case
where c(x) ≤ 0 needs an extra trick we forgo.

A useful variant of this is in [H-1, p. 101]. As an easy corollary we have a uniqueness
result for the initial value problem

Pu = f(x, t) for t > 0 with u(x, 0) = ϕ(x). (2.29)

Corollary 2.14 [Uniqueness] There is at most one solution of (2.29).

Proof. To prove this, say Pu = 0 with u(x, 0) = 0 for 0 < t ≤ T . First assume c < 0
in (2.28). Then by the maximum principle above, u(x, t) ≤ 0 . Applying the maximum
principle to −u we find that u(x, t) ≥ 0 . Thus u(x, t) ≡ 0 for all 0 ≤ t ≤ T . To reduce
to the case c < 0 we use a standard device and let u(x, t) = v(x, t)eαt , where α is a
constant to be determined. Then

0 = Pu = eαt[Pv + αv] with v(x, 0) = 0. (2.30)

By choosing α appropriately, v satisfies an equation of the form (2.28) with c < 0 . The
previous reasoning applies to show v = 0 and hence u = 0 . ¤

In order to state the basic existence theorem and related inequalities, we introduce the
appropriate spaces for (2.27). These are needed because (2.27) is second order in the space
variables x , but only first order in time t . For an open set Ω ⊂ R

n , let QT = Ω× [0, T ]
for some T > 0 , let δ = k + α , where k ≥ 0 is an integer and 0 < α < 1 , and define
Cδ,δ/2(QT ) to be the Banach space of functions u(x, t) whose derivatives ∂r

t ∂s
xu (here s

is a multi-index) are continuous for 2r + |s| ≤ k and have finite norm

‖u‖α,α/2 =
∑

2r+|s|≤k

‖∂r
t ∂s

xu‖C(QT ) + max
2r+|s|=k

[∂r
t ∂s

xu]α,α/2 , (2.31)

where, as in (1.17)

[v]α,β = sup
0≤t≤T

(

[v, (·, t)]α,Ω

)

+ sup
x∈Ω

(

[v(x, ·)]β,[0,T ]

)

is a Hölder norm with exponent α in the space variable and β in the time variable. One
defines these spaces on a manifold—or vector bundle—using a partition of unity in the
usual manner.
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For a linear parabolic operation L of the form (2.27), we next state the main result
for the initial value problem

ut − Lu = f(x, t) for t > 0 with u(x, 0) = ϕ(x) (2.32)

assuming the coefficients of L belong to Cα,α/2(QT ) (with δ = k +α as above, but now
QT = M × [0, T ] ).

Theorem 2.15 For any f ∈ Cδ,δ/2(QT ) and any ϕ ∈ Cδ+2(M) , there is a unique
solution u ∈ Cδ+2,δ/2+1(QT ) of (2.32). Moreover, u satisfies the basic inequality

‖u‖δ+2,δ/2+1 ≤ c1(‖ut − Lu‖δ,δ/2 + ‖u(·, 0)‖δ+2), (2.33)

where the constant c1 is independent of u (but does depend on coefficients of L ), and
the first two norms are over QT , while the last norm is over M .

A proof of this for a single equation is in [LSU, Theorem 5.2, p. 320]; a related proof
for systems is in Chapter VII of the same reference. One can prove a similar result using
Sobolev spaces in place of the Hölder spaces ([LSU, Theorem 9.1, p. 341-342] and [H-1
p. 120-121]).



Chapter 3

Geometric Applications of Linear Elliptic

Operators

3.1 Introduction

We will give a few standard examples where linear elliptic equations arise in geometry.
For a first reading, we suggest that one work with the two-dimensional flat torus. The
smooth functions on this torus are then the smooth doubly periodic functions in ordinary
Euclidean space so no geometric complications arise. It is amazing that one can build
such a rich theory of Riemannian manifolds using only the slender assumption that they
are locally like Euclidean space, except that one permits a more flexible way to measure
arc length.

3.2 Hodge Theory

a) Hodge Decomposition

One obtains the classical Hodge decomposition theorem for a real compact connected
orientable Riemannian manifold Mn without boundary as an immediate consequence of
the Fredholm alternative, in particular, part (a) of Corollary 2.5, applied to the Hodge
Laplacian

∆H = dd∗ + d∗d (3.1)

(see (2.4)) acting on the space Ωp(M) of smooth, i.e. C∞ , differential p-forms. Note
that d∗2 = 0 simply because d2 = 0 . Introduce the space Hp of harmonic p-forms,
where we define Hp = ker ∆H acting on Ωp(M) . This space Hp is finite dimensional
by Theorem 2.4. Also, h ∈ Hp if and only if h is both closed ( dh = 0 ) and co-closed
( d∗h = 0 ) because

〈h, ∆Hh〉 = 〈h, dd∗h + d∗dh〉 = ‖d∗h‖2 + ‖dh‖2

If ϕ ∈ Ωp(M) , then by picking an orthogonal basis for Hp we can decompose ϕ as
the orthogonal sum ϕ = ψ + h , where h ∈ Hp and ψ ⊥ Hp . Part (a) of Corollary 2.5
shows there is a solution ω of ∆Hω = ψ . Thus

ϕ = ∆Hω + h = dd∗ω + d∗dω + h,

that is,

Ωp(M) = image
{

∆H(Ωp(M))
}

⊕ Hp,

29
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with the terms on the right being orthogonal. We can rewrite the above decomposition of
ϕ as

ϕ = dα + d∗β + h, (3.2)

where α = d∗ω and β = dω . Observe d2 = 0 implies that dα ⊥ d∗β because

〈dα, d∗β〉 = 〈d2α, β〉 = 0

Similarly, dα ⊥ h and d∗β ⊥ h . Equation (3.2) is the Hodge decomposition of an arbitrary
p-form into the orthogonal sum of exact, co-exact, and harmonic forms.

As a special case, we use the Hodge decomposition when ϕ is closed. Then applying
d to (3.2) gives 0 = dϕ = dd∗β , which implies ‖d∗β‖2 = 〈β, dd∗β〉 = 0 , so d∗β = 0 .
Hence we can write a closed form as

ϕ = dα + h.

Thus, h is the unique harmonic form in the same de Rham cohomology class as the closed
form ϕ . This proves that the space Hp of harmonic p-forms is isomorphic to the de Rham
p-cohomology group; it also implies that the de Rham group Hp

deR is finite-dimensional,
a fact that otherwise hardly is obvious. If βp is the pth Betti number, then

βp = dim Hp
deR = dimHp (3.3)

b) Poincaré Duality

We next prove Poincaré duality. This proof uses the Hodge star operator, ⋆ , which maps a
p–form to an n− p -form; it is defined at every point of an oriented Riemannian manifold
Mn by using the pointwise inner product of p-forms α and β :

α ∧ ⋆β = (α, β) dxg.

A special case is ⋆1 = dxg . One uses the orientation of M to define dxg globally. The
global and local inner products of p-forms are related by 〈ϕ, ψ〉 =

∫

U
(ϕ,ψ) dxg . From

these one can verify the following properties.

a). square: ⋆⋆ = (−1)p(n−p) .
The proof of this depends critically on the detailed construction of the pointwise inner
product on p -forms. One approach is, in an n dimensional inner product space V , extend
this inner product to the exterior algebra Λ(V ) = ⊕Λp(V ) by saying that if e1 , . . . , en

are orthonormal vectors then the p -vectors {ei1 ∧ ei2 ∧ . . .∧ eip
} with i1 < i2 < . . . < ip

are an orthonormal basis for Λp(V ) .

b). isometry: In the pointwise inner product, (⋆α, ⋆β) = (α, β) .
If α ∈ Λp(V ) and γ ∈ Λn−p(V ) , since α ∧ γ = (−1)p(n−p)γ ∧ α , then

(α, ⋆γ)dxg =(⋆γ, α)dxg = ⋆γ ∧ ⋆α = (−1)p(n−p) ⋆ α ∧ ⋆γ

=(−1)p(n−p)(⋆α, γ)dxg.

Applying this with γ = ⋆β for β ∈ Λp(V ) and using ⋆⋆ = (−1)p(n−p) we obtain the
desired isometry

(α, β)dxg = (−1)p(n−p)(α, ⋆ ⋆ β)dxg = (⋆α, ⋆β)dxg.

c). adjoint of d : d∗ = (−1)n(p+1)+1 ⋆ d⋆ .
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The computation of the adjoint goes as follows. For any open set U and any α ∈ Ωp−1(U)
and β ∈ Ωp(U) , then pointwise

d(α ∧ ⋆β) = dα ∧ ⋆β + (−1)p−1α ∧ d ⋆ β

= dα ∧ ⋆β − (−1)n(p+1)+1α ∧ ⋆ ⋆ d ⋆ β

= (dα, β) dxg − (α, (−1)n(p+1)+1 ⋆ d ⋆ β) dxg.

We integrate both sides of the above formula over U and assume that α and β vanish
outside of U . Using Stokes’ theorem we are done since the formal adjoint, d∗ , is defined
by the property 〈dα, β〉 = 〈α, d∗β〉 .

commutes with Laplacian: ∆H⋆ = ⋆∆H ,
This follows from ∆H = d∗d + dd∗ and the above formula for d∗ .

These imply that ⋆ is an isometry and maps harmonic forms to harmonic forms.
Thus ⋆ : Hp → Hn−p is an isometry. In particular dimHp = dimHn−p , which is called
Poincaré duality .

c) The de Rham Complex

As a final exercise using the Hodge Laplacian, we introduce the direct sum Ω(M) of the
space of all smooth differential forms, Ω(M) = ⊕0≤p≤nΩp(M) and give it the obvious
inner product by simply requiring that the various Ωp be orthogonal. Then we define the
differential operator d : Ω(M) → Ω(M) by having it act on each term in the usual way;
in particular, d2 = 0 . The adjoint, d∗ is computed on each term Ωp just as above and
also satisfies d∗2 = 0 .

One sees immediately that (d+d∗)2 = dd∗ +d∗d = ∆H is the Hodge Laplacian. This
implies that

D := d + d∗ : Ω(M) → Ω(M) (3.4)

is a first order elliptic differential operator, which one can think of as the square root of
∆H acting of Ω(M) . One often refers to Ω(M) with the operator D as the de Rham
complex.

It is easy to see that ker(d + d∗) = ker ∆H is the space of harmonic forms; one just
imitates the above proof that harmonic forms are both closed and co-closed.

Because D is self-adjoint, its index (see (2.2)) is zero. To obtain an operator with an
interesting index, we consider the odd and even parts of Ω(M) separately. Let

Ωeven(M) =
⊕

p even

Ωp(M) and Ωodd(M) =
⊕

p odd

Ωp(M)

and let D+ : Ωeven → Ωodd be the restriction of D to Ωeven . Similarly we define
D− : Ωodd → Ωeven and note D− = (D+)∗ . D+ is elliptic (because D is). Also
ker D = ker D2 (if D2u = 0 then 0 = 〈u, D2u〉 = ‖Du‖2 so Du = 0 ). If we let Hp be
the space of harmonic p -forms, then

ker D+ =
⊕

p even

Hp, ker D− =
⊕

p odd

Hp.

Because dimHp = βp , we obtain

index D+ =
∑

(−1)p dimHp = χ(M), (3.5)

where χ(M) is the Euler characteristic. By Poincaré duality, which we proved just above,
we note that for odd dimensional manifolds M this is zero .
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More generally, if one asks for the square root of the Laplacian on other vector spaces,
one is led to the various Dirac operators; another special case of the Dirac operator is the
Cauchy-Riemann operator. We discuss this a bit more in Section 3.5 below.

3.3 Eigenvalues of the Laplacian

On a smooth compact Riemannian manifold ( M, g ) without boundary, the Laplacian is
formally self-adjoint. It has eigenfunctions and eigenvalues with all of the same formal
properties as the eigenvectors and eigenvalues of a symmetric matrix. We will apply the
machinery of the previous chapter to carry out the proofs. We will treat the Laplacian on
functions; at the end we will remark how to extend this to the case of the Laplacian on
p -forms. Note that in the case of functions, the Laplacian has the opposite sign from the
convention we have used for the Hodge Laplacian on p -forms. Thus, in this section on
R

1 here we have ∆u = +u′′ . Also, since we will only be working in an L2 setting, we
will write the Sobolev spaces H2,k simply as Hk .

Theorem 3.1 On a smooth compact manifold without boundary, the Laplacian acting
has an infinite sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . and corresponding smooth
orthonormal eigenfunctions ϕj

−∆ϕj = λjϕj . (3.6)

Moreover, the eigenspaces are finite dimensional, the eigenvalues have no finite accumu-
lation point and the eigenfunctions are complete in L2 . If f is smooth, then its eigen-
function expansion converges uniformly in Ck for all k .

Step 1 λj ≥ 0 .
This follows by multiplying (3.6) by ϕj and integrating by parts:

∫

M

|∇ϕj |2 dxg = −
∫

M

ϕj ∆ϕj dxg = λj

∫

M

|ϕj |2 dxg = λj . (3.7)

If ϕ = 1 then the left side is zero and we see that the lowest eigenvalue is λ0 = 0
and the eigenfunction must be a constant. Since this eigenvalue is so obvious, it is usually
called the “trivial eigenvalue” but caution: since it is the first eigenvalue, is sometimes
labeled λ1 .

Step 2 The eigenspaces are finite dimensional and the eigenvalues have no finite accu-

mulation point. Thus λk → ∞ .
Let Sm = {ϕj} be an orthonormal set of all the eigenfunctions with eigenvalues

λj ≤ m . We will show that S is finite dimensional. From the formula (3.7) in Step 1 we
see that for some constant c

∫

M

|∇ϕj |2 dxg = λj ≤ m.

Thus the ϕj lie in a bounded set in H1 . By the Sobolev embedding theorem 1.1, they
thus are in a relatively compact set in L2 . But if this set had infinitely many elements
one could find an L2 convergent subsequence which would contradict the orthogonality.

Step 3 Eigenfunctions corresponding to different eigenvalues are orthogonal.
The proof for matrices works here too. One needs the fact that the Laplacian is

formally self-adjoint.
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Step 4 Existence of Eigenfunctions.
Proceeding inductively, say we already have the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λk ,

each eigenvalue repeated to the dimension of its eigenspace. Let Ek = {ϕj , j = 0, . . . , k}
be the corresponding set of smooth eigenfunctions. We will prove the existence of λk+1

and corresponding smooth eigenfunction. The proof uses techniques from the calculus of
variations, which we will again apply in Section 5.2. It also closely follows the standard
linear algebra technique for obtaining the successive eigenvalues of a positive quadratic
form. We will write E⊥

k for the H1 functions in the L2 orthogonal complement of Ek

and all unspecified norms will be L2 (since smooth functions are dense, this is equivalent
to taking the H1 closure of the smooth functions orthogonal to E ). Observe that, by
self-adjointness, ∆ maps E⊥

k to itself. Based on the linear algebra case, and using (3.7)
we are led to believe that the next eigenvalue, λk+1 , will be

λk+1 = λ := inf
u∈E⊥

k

〈u, −∆u〉
‖u‖2

= inf
u∈E⊥

k

‖∇u‖2

‖u‖2
. (3.8)

The fraction on the right is called the Rayleigh (or Rayleigh-Ritz), quotient.
Since Ek−1 ⊂ Ek , we immediately know that λ ≥ λk . We will show that λ is the

desired eigenvalue λk+1 .
Let uj ∈ E⊥

k be a sequence with ‖uj‖ = 1 so that ‖∇uj‖2 → λ . Then there is a
constant c1 so that ‖∇uj‖ < c1 . Because the H1 norm satisfies ‖f‖2

H1 = ‖∇f‖2+‖f‖2 ,
the {uj} are in a bounded set in H1 .

Bounded sets in (infinite dimensional) Hilbert spaces H , such as H1 , are not usually
compact, but they are weakly compact. To define this, we say that a sequence xj ∈ H
converges weakly to some x ∈ H if the numerical sequence 〈xj , z〉 −→ 〈x, z〉 converges
for any z in H . We write xj ⇀ x for weak convergence. The standard example is
that an orthonormal basis converges weakly to zero. Weak compactness means that any
bounded sequence {xj} has a subsequence (which we relabel xj ) that converges to some
element x of the Hilbert space.

The above example of an orthonormal basis also shows that the norm is not continuous
under weak convergence, but it is lower semicontinuous, that is, ‖x‖ ≤ lim inf‖xj‖ , which
is enough for many applications—including ours. The short proof that the norm is lower
semicontinuous under weak convergence is as follows. Say xj ⇀ x . Then

‖x‖2 = lim〈x, xj〉 ≤ lim inf‖x‖ ‖xj‖. (3.9)

Returning to our eigenvalue problem, since the {uj} are in a bounded set in H1 ,
there is a subsequence, which we relabel uj , that converges weakly to some v in H1 .
Moreover, by the Sobolev embedding theorem (actually, an older result due to Rellich) the
embedding of H1 in L2 is compact, and, as is easily proved, in a Hilbert space, compact
operators map weakly convergent sequences to sequences that converge in norm. Thus
the sequence uj also converges to u in L2 . This implies that ‖u‖ = 1 and, by lower
semicontinuity,

‖∇u‖ ≤ lim inf‖∇uj‖ = λ

However, from (3.8) we also know that ‖∇u‖ ≥ λ . Therefore ‖∇u‖ = λ so u gives the
desired minimum. Also, the weak convergence in H1 implies that for any v in H1 we
have

0 = lim [〈∇uj , ∇v〉 − λ〈uj , v〉] = [〈∇u, ∇v〉 − λ〈u, v〉], (3.10)

that is,

0 =

∫

M

[∇u · ∇v − λuv] dxg. (3.11)
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for any v in H1 . If we knew that u were twice differentiable, we could integrate this by
parts and conclude that

∫

M

(∆u + λu) v dxg = 0

for all v in H1 , and hence that ∆u + λu = 0 so u would be the desired eigenfunction.
Because of this, a function u that satisfies (3.11) for all v in H1 is called a weak solution
of ∆u + λu = 0 .

To show that this weak solution is a smooth solution, we us the observation that
the null space of Lw := −∆w + w is zero (see Example 2.9). Thus by the Fredholm
alternative, since u ∈ H1 there is a unique solution w ∈ H3 of Lw = (1 + λ)u . We
claim that u = w , and hence that u ∈ H3 . To prove that u = w , let z = w − u ∈ H1 .
Since u is a weak solution of Lw = (1 + λ)u , then z is a weak solution of Lz = 0 , that
is

∫

M

[∇z · ∇v + zv] dxg = 0

for all v ∈ H1 . In particular, letting v = z , we see that z = 0 . This proves that the
weak solution u is in H3 . Now we can use the bootstrap procedure of Example 2.5 to
conclude that u is the desired smooth eigenfunction. We label this eigenfunction ϕk+1 .

Step 5 L2 Completeness of the Eigenfunctions.
Let PN be the (self-adjoint) orthogonal projection onto the eigenspace spanned by

the first N eigenfunctions

PNf =
∑

j≤N

〈f, ϕj〉ϕj .

We wish to show that the f − PNf → 0 as N → ∞ . We will first prove this for any
f ∈ H2 . By definition of λN+1 (see (3.8)) we know that for any f ∈ H2

‖f − PNf‖2 ≤ 1

λN+1
〈∆(f − PNf), f − PNf〉. (3.12)

Now it is easy to verify, just as in linear algebra, that on functions in H2 we have
∆PN = PN∆ . Thus, if f ∈ H2 we know 〈∆PNf, f − PNf〉 = 0 so that

〈∆(f − PNf), f − PNf〉 = 〈∆f, f − PNf〉
= ‖∇f‖2 − ‖∇PNf‖2 ≤ ‖∇f‖2.

In equation (3.12), use this and the fact that λN+1 → ∞ to prove completeness for
functions in H2 . This also shows that

‖f‖2 − ‖PNf‖2 = ‖f − PNf‖2 −→ 0.

To extend this completeness proof to all functions f ∈ L2 , we use that smooth
functions are dense in L2 . Thus, there is a smooth function h so that ‖f − h‖ < 1

2ǫ .
Pick N so that ‖h − PNh‖ < 1

2ǫ . Since (f − PNf) ⊥ PN (f − h) for any h , the
Pythagorean theorem gives the “best L2 approximation property”

‖f − PNf‖2 = ‖f − PNh‖2 − ‖PN (f − h)‖2 ≤ ‖f − PNh‖2. (3.13)

Therefore
‖f − PNf‖ ≤ ‖f − PNh‖ ≤ ‖f − h‖ + ‖h − PNh‖ < ǫ.

Step 6 L2 Uniform Convergence of the Eigenfunction Expansion
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For smooth functions f , their eigenfunction expansions converge in Cj for all j ,
while for less smooth functions, the convergence is only for certain j . By the Sobolev
Inequality (1.26), this will be a consequence of the more precise statement that if f ∈ Hk

then the eigenfunction expansion converges in Hk . In Step 5 above we did the case k = 0 .
The essential ingredient is that for smooth functions we can use the invertible elliptic

operator −∆+I (which we also used above) to define a norm equivalent to the Hk norm.
Informally, we would like to define a first order operator Q = (−∆ + I)1/2 and then let

〈u, v〉Hk = 〈Qku, Qkv〉.

While one can develop a useful formalism to define such an operator Q , an ad hoc pro-
cedure is adequate for our immediate needs. For smooth functions the above formula
gives

〈u, v〉Hk = 〈u, (−∆ + I)kv〉. (3.14)

and we can treat the cases k even and k odd separately.

k even. If k , k = 2ℓ , we define the inner product to be

〈u, v〉Hk = 〈(−∆ + I)ℓu, (−∆ + I)ℓv〉.

so the corresponding norm is

‖u‖Hk = ‖(−∆ + I)ℓu‖.

The basic L2 inequalities for elliptic operators in Theorem 2.2 tells us that this definition
of the norm is equivalent to any other.

k odd If k = 2ℓ + 1 one can use the k even case to define the inner product

〈u, v〉Hk = 〈(−∆ + I)ℓu, (−∆ + I)ℓv〉 + 〈∇(−∆ + I)ℓu, ∇(−∆ + I)ℓv〉.

so
‖u‖2

Hk = ‖(−∆ + I)ℓu‖2 + ‖∇(−∆ + I)ℓu‖2 = ‖u‖2
H2ℓ + ‖∇u‖2

H2ℓ

For smooth functions, if k is even or odd these agree with (3.14). Thus, for a smooth
function f , let u = (−∆ + I)kf . Since ∆PN = PN∆ , the Schwarz inequality applied to
(3.14) then gives

‖f − PNf‖2
Hk ≤ ‖f − PNf‖ ‖u − PNu‖.

and we know the last term tends to zero by the L2 completeness (in fact, both factors
tend to zero). If f is not smooth but only in some Hk , then we can approximate it
by a smooth function h just as at the end of Step 5, only replacing (3.13) by the same
assertion in the Hk norm; here we again use (f − PNf) ⊥ PN (f − h) , only this time in
the Hk inner product. This completes the proof. ¤

For p -forms with p ≥ 1 , as we saw in the previous section, the eigenspace corre-
sponding to zero eigenvalue is just the space Hp of harmonic p -forms. Its dimension is a
topological invariant. There are several ways to prove the above theorem concerning the
eigenvalues and eigenfunctions. One is to use the Weitzenböck formulas (see (??), which
states that the Laplacian on the space Ωp of smooth p -forms can be written as1

∆α = ∇∗∇α −Rα,

1Recall that for this Hodge Laplacian we reverse the sign, so in the case of functions
on R it is −u

′′

.
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where ∇∗ is the formal adjoint of ∇ and R : Ωp → Ωp is an expression only involving
the curvature of the manifold. In the next section we shall use this in the special case of
1 -forms, where R is simply the Ricci curvature. Using this formula the above proof goes
through without change.

An alternate approach, which one could also use for the case we treated, is to use
more systematically the fact that the operator L = −∆ + I : Hk+2 → Hk is invertible.
Let G be the inverse operator (we use G since the inverse of Laplace-type operators are
frequently named Green’s operators). Then λ is an eigenvector of −∆ if and only if
1 + λ is an eigenvalue of L , which is true if and only if 1/(1 + λ) is an eigenvalue of G .
Moreover, G has the same eigenfunctions as does ∆ . The usefulness of G is because we
can also write

G : Hk L−1

−→Hk+2 inc−֒→Hk,

where inc is the natural inclusion of Hk+2 in Hk . Since by the Sobolev theorem, this
natural inclusion is a compact operator, the self-adjoint operator G : Hk → Hk is a
compact operator. One can then immediately apply the spectral theory of self-adjoint
compact operators to G and consequently obtain the spectral information for the Lapla-
cian. The resulting proof is not very different from that given above. We have preferred
the more direct approach above since it uses ideas from the calculus of variations, which
we will meet again in Chapter 5.2.

3.4 Bochner Vanishing Theorems

Bochner[Bo] made several geometric applications of the uniqueness proofs we gave in
Example 2.9. We will give two of them, since both the technique and results are interesting.

a) One-parameter Isometry Groups

The first concerns the existence of a one-parameter family of isometries of a compact
Riemannian manifold ( M, g ). These are maps that do not change the length of any
curves. The round sphere, the torus of revolution, in fact, all surfaces of revolution in R

3 ,
have an obvious one-parameter group of isometries. The flat torus also has one-parameter
groups of isometries. In all of these cases there are points where the curvature is positive
or zero. This is not a coincidence. We will now show that if a compact manifold has
negative Ricci curvature, then it cannot have a one parameter group of isometries.

One surprise is that this theorem is not difficult to prove. Say ϕt : (M, g) → (M, g)
is a one-parameter family of isometries for t ∈ (−ǫ, ǫ) . We will need the infinitesimal
generator of a one-parameter family of maps ϕt : M → M with ϕt|t=0 = id , the
identity map. The infintessimal generator is the vector field V = dϕt/dt|t=0 . We begin by
observing that if V is the infinitessimal generator of a one-parameter family of isometries,
then the Lie derivative, LV g := d

dtϕ
∗
t (g) = 0 . In tensor notation we will show that this

means

Vi;j + Vj;i = 0, (3.15)

where the semicolon ; indicates covariant differentiation. A vector field having the prop-
erty (3.15) is called a Killing vector field . For simplicity, we will prove (3.15) directly
without introducing the language of Lie derivatives.

Note that in local coordinates, under the map xi = ϕi
t(y) the metric g =

∑

gijdxidxj

becomes

ϕ∗
t (g) =

∑

gij(ϕt(y))
∂ϕi

t(y)

∂yk

∂ϕj
t (y)

∂yℓ
dykdyℓ. (3.16)
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That these maps are isometries implies the derivative of the right-hand side evaluated at
t = 0 must be zero,

∑

p

(

∂gkl

∂xp

∂ϕp

∂t
+

∑

i,j

gij (V i
,kδj

ℓ + δi
kV j

,ℓ)

)

= 0

for all k, ℓ . In this formula , means partial derivative with respect to the indicated
coordinate. To interpret this we use Riemannian normal coordinates at x , so that at the
one point x we have gij = δij and its first derivatives are zero, ∂gkl(x)/∂xp = 0 . In
these coordinates partial differentiation and covariant differentiation coincide. Thus the
last formula is seen to agree with (3.15).

Theorem 3.2 [Bochner] If (M, g) is a compact manifold with non-positive Ricci cur-
vature, then any Killing vector field has zero covariant derivative, that is, it is parallel. If
in addition the Ricci curvature at one point is negative, then (M, g) has no non-trivial
Killing vector fields, so it does not have any one-parameter families of isometries.

Proof. The insight for discovering this theorem in the first place is, “if you have an
interesting object, then taking its Laplacian may give something useful.” Say we have a
Killing vector field V . Then |V |2 is an interesting scalar-valued function so we compute
∆|V |2 . In tensor notation

∆|V |2 = (V iVi);j
;j = 2V i;jVi;j + 2V iVi;j

;j . (3.17)

Using the property (3.15) of Killing vector fields we have

Vi;j
;j = −Vj;i

;j = −V j ; ij.

The Ricci commutation formula (A.45), combined with V j
;j = 0 , which follows from

(3.15), gives

V j
;ij = V j

;ji + V kRki = V kRki.

Using these facts in (3.17) we conclude that for a Killing field

∆|V |2 = 2|∇V |2 − 2Ric(V, V ), (3.18)

where here we view the Ricci curvature as a quadratic form acting on the vector V . At
this point we can use either of the two methods used in Example 2.9.

Method 1 Since the Ricci curvature is nonpositive, from (3.18) ∆|V |2 ≥ 0 . Thus by the
maximum principle 2.9, |V | is a constant and the right side of (3.18) is zero. In particular
that ∇V = 0 , that is, V is parallel. If the Ricci curvature is negative at one point, then
since Ric(V, V ) = 0 , we must have V = 0 at that point and hence everywhere.

Method 2 Integrate this last formula over M :

0 =

∫

M

∆|V |2 dxg = 2

∫

M

[|∇V |2 − Ric(V, V )] dxg.

One can now repeat the procedure of Method 1. ¤
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b) Harmonic 1− forms

In Section 3.2, we wrote the Hodge Laplacian only in an abstract form (3.1). As was
mentioned at the end of Section 3.3, it can be expressed in a different way as a Weitzenböck
formula which is often useful:

∆Hω = ∇∗∇ω + ( curvature)ω, (3.19)

where ω is a p− form, ∇ is the covariant derivative, and “curvature” stands for an
expression involving the curvature of the manifold (see (??). The curvature expression in
(3.19) is quite simple in the special case of 1− forms when it becomes

∆Hω = ∇∗∇ω + Ric ω♯, (3.20)

where ω is a 1− form, ω♯ is the dual vector field (found using the Riemannian metric
g ) and Ric is the Ricci curvature of g . If one multiplies (3.20) by ω and integrates by
parts, one obtains

〈ω, ∆Hω〉 =

∫

[|∇ω|2 + Ric(ω♯, ω♯)].

Thus ∇ω = 0 and Ric(ω♯, ω♯) = 0 everywhere. If in addition we have Ric > 0 , at
one point, then ω = 0 . But by Hodge theory we know that the dimension of the space
of harmonic 1− forms is the first Betti number (see 3.3). Consequently, if a compact
manifold has β1 6= 0 then there is no Riemannian metric with positive Ricci curvature.
We collect these results in the next theorem.

Theorem 3.3 Bochner Vanishing Theorem If (M, g) is a compact n-dimensional
manifold with non-negative Ricci curvature, then any harmonic 1− form has zero covariant
derivative, that is, it is parallel. Thus, the first Betti number, b1 ≤ n . Moreover, if the
Ricci curvature at one point is positive, then b1 = 0 .

remark 3.1 This proof used Method 2 of the previous theorem. One could also have
applied Method 1 as follows. Use the Weitzenböck formula (3.20)to compute ∆|ω|2 for
any 1− form ω and obtain

∆|ω|2 = 2〈−∆Hω, ω〉 + 2|∇ω|2 + 2Ric(ω♯, ω♯).

This shows that if ω is harmonic and Ric ≥ 0 , then ∆|ω|2 ≥ 0 so by the maximum
principle the right side is zero. One now gets the same conclusion as before.

Using different methods one can prove the stronger assertion that Ric > 0 implies the
fundamental group, π1(M) is finite. However, the above technique applies in situations
where other methods are not available. This technique requires two ingredients:

(i) a Weitzenböck-type formula (3.19)where the “curvature” term is interesting,

and

(ii) some topological interpretation of the kernel of the operator.

We will use this procedure again in Section 3.6 when we discuss the Lichnerowicz vanishing
theorem. The survey article [Wu] and the book [LM] are good source for more information.
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3.5 The Dirac Operator

For the de Rham complex, in Section 3.2.c) above we found a first order self-adjoint elliptic
operator D whose square was the Laplacian. The Cauchy-Riemann equations are an even
simpler example. This leads one to seek other first order operators which are the square
root of the Laplacian.

First we work in R
n with the Laplacian acting on the vectors u = (u1, . . . , uN ) .

Below we will see that one must pick N appropriately in terms on n . Thus we seek
N × N constant matrices E1, . . . , En so that

(

n
∑

j=1

Ej
∂

∂xj

)2

= −
(

n
∑

j=1

∂2

∂x2
j

)

I. (3.21)

We use the minus sign on the right since we want the operator on the right to be the
Hodge Laplacian. Expanding the left side, we find that

E2
j = −I and EiEj + EjEi = 0 for i 6= j. (3.22)

Once one has these matrices, the Dirac operator is defined by

D =
∑

Ej
∂

∂xj
(3.23)

and satisfies (3.21).2 The Dirac operator is a first order self-adjoint elliptic operator. For
a given value of n , one must choose N sufficiently large in order to be able to obtain
the matrices Ej . Because of the multiplication property 3.22, one can reduce replace
any product such as E4E1E3 by one where the indices are strictly increasing, E1E3E4 .
Thus, products of the form Ej1Ej2 · · ·Ejk

, where the indices are strictly increasing, j1 <
j2 < ... < jk , form a basis for this algebra of matrices. This basis has 2n elements. It is
a useful exercise in algebra to find the Ej explicitly in the special case when n = 2 .

A bit more abstractly, matrices E1, . . . , En with the multiplication rules (3.22)generate
an algebra, called the Clifford algebra.

One can repeat this replacing Rn by any inner product space V . If e1, . . . , en are
an orthonormal basis, for any vectors u , v ∈ V the rules (3.22)can be summarized as

u · v + v · u = −2〈u, v〉. (3.24)

Thus, the Clifford algebra Cn(V ) of an n− dimensional inner product space V can be
described abstractly as the tensor algebra generated by e1, . . . , en divided out by the ideal
defined by (3.24). This also proves that the Clifford algebra does exist. The construction of
the exterior algebra of a vector space is quite similar, but it does not use the inner product.
From this construction it is clear that the dimension of Cn is 2n , that is N2 = 2n ; if
n = 2k then N = 2k .

The resulting sub-algebra of the algebra of all N × N matrices give a representation
of the Clifford algebra Cn of the inner product space V as matrices acting on a new
vector space of dimension N . The N− dimensional space that these matrices act on is
called the vector space S of spinors. Thus, spinors are by definition, the vector space on
which the Clifford algebra acts. The representation gives a map ρ : Cn → End(S) . If one
works over the complex numbers and if n is even, n = 2k , then the algebra is simple,,
that is, one obtains the whole algebra of N × N matrices.

2Dirac wanted a square root of the wave operation ¤u = uxx + uyy + uzz − utt , but
just replace t by iw and this is formally the same as what we did.
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remark 3.2 In the special case of V = R
n with n = 4 , then also N = 4 but one

should avoid the temptation of identifying the 4 -dimensional space S with R
4 . A useful

exercise is to actually find the matrices E1, . . . , E4 for this. There is no “easy” way to go
from the vector space V to the related vector space of spinors.

We have carried out this construction for a single inner product space V of dimension
n = 2k (this generalizes immediately to a vector space with a non-degenerate quadratic
form). For a Riemannian manifold (M, g) of dimension 2k , it is natural to attempt the
same construction at every point, replacing V by the tangent spaces. If one can do this,
then one obtains the vector space of spinors at every point, and the manifold is called a
spin manifold ; better, one should say the manifold is spinable, in analogy with orientable.

There is no difficulty in doing this over a disk. However, there is a topological ob-
struction for a manifold to admit a spin structure. One needs to assume M is orientable
and that M has a spin structure. The obstruction is expressed using the Stiefel-Whitney
classes w1 and w2 . One first needs that the manifold is orientable, that is w1 = 0 . To
be spinable one also must require that the 2nd Stiefel-Whitney class is zero, w2 = 0 .

Using an appropriately adapted connection ∇ on the space of spinors the Dirac op-
erator is written

D =

n
∑

j=1

Ej ∇j .

A good general reference for this material is [LM].

3.6 The Lichnerowicz Vanishing Theorem

Since one has a new elliptic operator, the Dirac operator, one should attempt to see if one
can again use the ideas in Bochner’s vanishing theorem. The corresponding Weitzenböck-
type formula is

D2 = ∇∗∇ + 1
4S (3.25)

where S is the scalar curvature of (M, g) . By identical reasoning as before, we find that
if the scalar curvature of g is positive, then ker D2 = ker D = 0 (the elements in ker D
are called harmonic spinors).

To use this, we need the analogue of the Betti number β1 ; this is supplied by the
Atiyah-Singer index theorem. Since D = D∗ is self-adjoint, then i(D2) = 0 . A non-
trivial index can be found by a construction motivated by the example of Section c)
above. As our substitute for the spaces Ωev and Ωodd of differential forms on a manifold
of dimension 2k , let τ be the Clifford product

τ = ikE1E2 . . . E2k

(essentially the volume element). By an easy computation τ2 = 1 . Since τ is an element
of the Clifford algebra, it acts on the spinors S and has eigenvalues ±1 . Let S+ and
S− be the corresponding eigenspaces (one can also define S± = image of the projector
(1 ± τ)/2) ). If Γ(S±) is the space of sections of the spinor bundle, then D : Γ(S+) →
−(S−) and D− : Γ(S−) → −(S+) so we can define D+ as the restriction of D to
Γ(S+) , and D− similarly. Then

i(D+) = dim ker D+ − dim ker D−.

As a consequence of our observations, if scalar curvature is positive then i(D+) = 0 .
On the other hand, for an oriented spin manifold of dimension 4k , the index theorem
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shows that the index i(D+) is the Â(M) -genus. Consequently, if Â(M) 6= 0 , then M
does not admit a metric with positive scalar curvature. This is Lichnerowicz’s vanishing
theorem. As is discussed in Section 7.2, there are no topological obstructions to negative
scalar curvature. Note that if there is no metric with positive scalar curvature, then there
is surely no metric with positive Ricci or sectional curvature.

See the discussion in [LM], which also has an enlightening way of obtaining Weitzenböck
formulas. Extensions of this and other topological obstructions to scalar curvature will be
discussed in Chapter 7.2.

3.7 A Liouville Theorem

As a change, instead of working on a compact manifold, we will let ( M, g ) be a complete
non-compact Riemannian manifold and prove a Liouville-type theorem. The classical
version states that a harmonic function in Euclidean n -space that is bounded from below
(or above) must be constant. The naive generalization to a complete Riemannian manifold
is false, as one can see in hyperbolic space. For instance, if one uses the unit disk in R

2

as the model for hyperbolic space, then the hyperbolic metric with Gauss curvature −4
is

g = (dx2 + dy2)/(1 − r2)2,

where r2 = x2 + y2 . Using (1.6) we find that the Laplace equation in this metric is

∆u = (1 − r2)2(uxx + uyy) = 0,

so every function that is harmonic in the Euclidean metric is also harmonic in the hyper-
bolic metric. In particular, there are many non-constant bounded harmonic functions in
the hyperbolic disk.

Yau[Y-1] proved that Liouville’s theorem is true for a complete Riemannian metric
g if its Ricci curvature is non-negative. In view of the above example, the curvature
assumption should not be surprising. He also proved that for a complete Riemannian
manifold, if a function u satisfies u∆u ≥ 0 and if it is in Lp for some p > 1 then it
must be constant. Note that no curvature assumption is made. The assunption u∆u ≥ 0 is
obviously satisfied both for harmonic functions and for non-negative subharmonic functions
(subharmonic means ∆u ≥ 0 ).

We prove this second result. In Euclidean space the desired result (with u ∈ L1 )
follows most quickly by letting R → ∞ in the “solid” mean value property:

u(x) ≤ 1

Vol(R)

∫

|y−x|≤R

u(y) dy

where V ol(R) is the volume of the ball of radius R . (This version of the mean value
property follows from integrating the usual version — where one has the average only over
a sphere — with respect to the radius). Letting R → ∞ one immediately obtains that
if u ∈ L1 then it must be zero. By an application of Hölder’s inequality one reaches the
same conclusion if u ∈ Lp for some p ≥ 1 .

For general complete Riemannian manifolds, if one makes the improbable assumption
that u has compact support (valid of course in the special case of a compact manifold
without boundary), then integrating u∆u ≥ 0 by parts gives

0 ≤
∫

u∆u dxg = −
∫

|∇u|2 dxg
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from which one clearly sees that ∇u = 0 and hence that u = const.

The virtue of this is that it suggests an approach not assuming u has compact support.
Introduce a piecewise-linear cut-off function η(t) with the properties 1 ) η(t) = 1 for
|t| ≤ 1 , 2 ) η(t) = 0 for t ≥ 2 and 3) |η′(t)| ≤ 1 . Fix a point x0 and consider
the balls BR and B2R centered both centered at x0 and having radii R and 2R ,
respectively. We will use the cut-off function ϕ(r) = η(r/R) , where r is the Riemannian
distance from x0 . Note that because of possible points in the “cut locus” (points where
r ceases minimizing the distance because of alternative shorter paths), the function r is
not necessarily smooth; however, since |∇r| = 1 almost everywhere, we see that ϕ is
Lipschitz continuous, which is enough for us.

Multiply u∆u ≥ 0 by ϕ2 (not just ϕ ), and integrate by parts over B2R to obtain

0 ≤
∫

B2R

ϕ2u∆u dxg = −
∫

B2R

(

2ϕu∇ϕ · ∇u + ϕ2|∇u|2
)

dxg. (3.26)

Therefore,
∫

B2R

ϕ2|∇u|2 dxg ≤
∫

B2R

2|ϕu∇ϕ · ∇u| dxg. (3.27)

The elementary — and very useful — inequality 2|xy| ≤ cx2 + c−1y2 , which is true for
any c > 0 , gives the estimate

2ϕu∇ϕ · ∇u ≤ cϕ2|∇u|2 + c−1u2|∇ϕ|2

Applying this with the choice of c = 1/2 in the above integral and using the properties
of the cut-off function ϕ we find

1

2

∫

BR

|∇u|2 dxg ≤ 1

2

∫

B2R

ϕ2|∇u|2 dxg

≤ 2

∫

B2R

|∇ϕ|2u2 dxg ≤ 2

R2

∫

B2R

u2 dxg.

Hence one can estimate |∇u| on one ball in terms of |u| on a larger ball:

∫

BR

|∇u|2 dxg ≤ 4

R2

∫

B2R

u2 dxg. (3.28)

From this, by letting R → ∞ we obtain the Liouville theorem that if u ∈ L2 and
∆u = 0 , then u is constant.

If we know that u ∈ Lp for some p > 1 and u ≥ 0 , we can still obtain the Liouville
theorem by a slight modification of this proof. Multiply the inequality u∆u ≥ 0 by
ϕ2up−2 , and integrate by parts over B2R to obtain a replacement for (3.27). Then
essentially the same inequalities, only this time using c = (p − 1)/2 , gives the following
generalization of (3.28)

∫

BR

up−2|∇u|2 dxg ≤ 16

R2(p − 1)2

∫

B2R

up dxg.

Again let R → ∞ . This completes the proof.

Note that in the fundamental estimate (3.28) no assumptions were made on the un-
derlying manifold. This inequality also shows that if u is bounded and the volume of the
manifold is bounded, then u must be a constant.
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3.8 Unique Continuation

a) The Question

Since classical harmonic functions in domains in Rn are real analytic, that is, they have
power series expansions, it follows that if a harmonic function has a zero of infinite order
at one point of a connected open set, then it must be identically zero in that set. This is
the unique continuation property. The same property is true for solutions of more general
second order elliptic equations whose coefficients are only modestly smooth.

We will consider functions that satisfy

|∆u| ≤ a|u| + b|∇u|

in a open set Ω on an n -dimensional Riemannian manifold (Mn, g) . Here ∆ is the
Laplacian in this metric g

∆u =
1√
g

∂

∂xi

(

gij√g
∂z

∂xj

)

,

where gij is the inverse of gij .
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Chapter 4

Nonlinear Elliptic Operators

4.1 Introduction

The lesson one learns from elementary calculus is that the essence of an object is frequently
captured by local information embodied in the derivative. Following this, by linearizing a
differential equation at a point one can apply the theory of linear differential operators to
nonlinear ones. The sort of information one obtains for the equation is despite its being
nonlinear. Smoothness of solutions is a typical local result that carries over to nonlinear
equations.

4.2 Differential Operators

In local coordinates on R
n one frequently finds differential operators of the special form

F (x, ∂ku) =
∑

|α|=k

aα(x, ∂ℓu)∂αu + f(x, ∂ℓu), (4.1)

where u is a vector-valued functions, α is a multi-index and |ℓ| < k . Such an equation
is called quasilinear since it is linear in the highest derivatives of u . It is genuinely linear
if in addition the coefficients aα —which may be complex matrices—do not depend on
u or its derivatives and f is linear in ∂ℓu . The usual formulas for the Riemann and
Ricci curvatures of a Riemannian manifold can be viewed as examples of second order
quasilinear differential operators in the metric g . Other examples are the minimal surface
equation—as well as all Euler-Lagrange equations for problems in the variations. On the
other hand, the Gauss curvature, K , of a surface z = u(x, y) in R

3 satisfies

uxxuyy − u2
xy = K(x, y)(1 + u2

x + u2
y)2, (4.2)

which is not quasilinear, it is fully nonlinear. Another fully nonlinear equation is the
Monge-Ampère equation for Kähler-Einstein metrics. It is customary to refer to nonlinear
equations involving the determinant of the hessian as “Monge-Ampère equations”. We
will discuss Kähler-Einstein metrics in Chapter 9.3.

One frequently meets second order equations, both linear and quasilinear, in divergence
form

divA(x, u,Du) = f(x, u,Du), (4.3)

where A is a vector field. The model case is when A = grad u

∆u = f(x, u,Du).

45



46 Chapter 4. Nonlinear Elliptic Operators

For example, on R
n equation (4.3) is

∑

i

∂

∂xi
Ai(x, u,Du) = f(x, u,Du).

If u ∈ C2 is a solution of (4.3) in an open set Ω ⊂ R , then for any ϕ ∈ H2,1 with
support in Ω , if we multiply (4.3) by ϕ and integrate by parts we have

−
∫

Ω

∑

i

Ai(x, u,Du)
∂ϕ

∂xi
dx =

∫

Ω

f(x, u,Du)ϕdx. (4.4)

Conversely, if some u ∈ C2 satisfies this integral identity for all smooth ϕ with support
in Ω , then since these ϕ are dense in C(Ω) one can reverse these steps and deduce that
u is in fact a solution of (4.3). The point, however, is that the integral identity (4.4)
only involves the first derivatives of u ; in many circumstances (4.4) makes sense even for
u ∈ H2,1(Ω) rather than C2(Ω) (as in the model above where A(x, u,Du) = grad u ).
We say that u ∈ H2,1(Ω) is a weak solution of the original equation if the integral identity
(4.4) holds for all ϕ ∈ H2,1 with support in Ω . Caution: there are several other useful,
but inequivalent, definitions of “weak solution”.

The main application of these notions is in the calculus of variations, where one seeks
a critical point of a functional

J(u) =

∫

M

F (x, u,Du) dxg.

Then the Euler-Lagrange equation is automatically in divergence form so one may think
of (4.4) as a “weak form” of the Euler-Lagrange equation. We already have seen a special
case of this in our discussion of the eigenvalues of the Laplacian in Chapter 3.3.

The virtue of enlarging the class of admissible solutions to allow weak solutions is that
this may make it much easier to prove the existence of a solution of the equation. On the
other hand, one is then faced with the often difficult regularity problem of determining to
what extent this weak solution is actually smooth.

4.3 Ellipticity

For a nonlinear differential operator F (x, ∂ku) , its linearization or first variation at u is
the linear operator

Lv =
d

dt
F (x, ∂k(u + tv))|t=0. (4.5)

Thus, the quasilinear operator

F (x, ∂ku) =
∑

|α|=k

aα(x, ∂ℓu)∂αu + f(x, ∂ℓu), (4.6)

(recall ℓ ≤ k − 1 ) has as its linearization at u the k -th order linear operator

Lv =
∑

|α|=k

aα(x, ∂ℓu)∂αv + lower order terms, (4.7)

while the linearization of the Gauss curvature formula (4.2) at u is

Lv = uyyvxx − 2uxyvxy + uxxvyy + lower order terms. (4.8)

The nonlinear equation F (x, ∂ku) = 0 is said to be elliptic at (x, u) (that is, it is
elliptic at x for the function u ), if its linearization at u is elliptic at the point x . As in
Section 2.2 there is an obvious definition for underdetermined and overdetermined elliptic.
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example 4.1 The linearization of yuxx + uuyy = 0 at u is

Lv = yvxx + uvyy + lower order terms.

This is elliptic at the points where both y and u(x, y) have the same sign.

example 4.2 The following formula gives the mean curvature H of a graph w = u(x)
in R

n+1

∇ ·
(

∇u
√

1 + |∇u|2

)

= H, (4.9)

When viewed as a differential equation for u . It is straightforward to verify this is elliptic
for all functions u at all points. Minimal surfaces are the special case H = 0 .

example 4.3 In studying two dimensional irrotational steady fluid flow one is led to

(c2 − ϕ2
x)ϕxx − 2ϕxϕyϕxy + (c2 − ϕ2

y)ϕyy = 0.

Here V = gradϕ = (ϕx, ϕy) is the velocity vector of the fluid and c is the speed of sound
in the fluid. This equation is elliptic at a point if |grad ϕ| < c there, that is the speed of
the flow |V | is less than the speed of sound. If |V | > c the flow is supersonic and the
equation is hyperbolic. One can then have shock waves which are quite different than the
smoothness associated with solutions in the subsonic case in which the equation is elliptic.

example 4.4 The Monge-Ampère equation

uxxuyy − u2
xy = f(x, y) (4.10)

is elliptic at a solution u(x, y) precisely at the points where f(x, y) > 0 . Similarly, from
(4.8) it is clear that the Gauss curvature equation (4.2) is elliptic precisely at those points
where K > 0 .

4.4 Nonlinear Elliptic Equations: Regularity

Fully nonlinear elliptic equations and systems

F (x, ∂ku) = 0. (4.11)

enjoy many of the same local regularity results as do linear systems. Notice that if we
take the partial derivative ∂/∂xi of (4.11) then ∂u/∂xi satisfies a quasilinear equation
so the results in Section 2.4 apply.

Theorem 4.1 elliptic regularity Assume that for some integer ℓ ≥ 1 , 0 < σ < 1

F (x, s) is in C1 or Cℓ, σ or C∞ or Cω

as a function of all its variables for x in an open set Ω ⊂ Rn and all s , and that
u ∈ Ck(Ω) is an elliptic solution of equation (4.11). Then for any 0 < λ < 1

u(x) is in Ck, λ or Ck+ℓ, σ or C∞ or Cω

respectively, in Ω .

See [ADN-2, Theorem 12.1] and [Mo, Theorems 6.7.6 and 6.8.1] for a proof. The key
ingredient is Theorem 2.3 above. Regularity for overdetermined elliptic systems near the
point x0 is obtained by considering the elliptic system L∗

0F (x, ∂ℓu) = 0 , where L0 is the
linearization of F at (x0, jku) with jku = k -jet of u at x0 . There are also important
recent results. See [C-1] and [C-2] for additional information and references.
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example 4.5 An immediate but striking example is that any C2 surface with constant
mean curvature H must be real analytic, since it satisfies the elliptic equation (4.9) which
has analytic coefficients. In particular, this is true for the special case H = 0 of minimal
surfaces. By working harder, one can weaken the initial assumption that the surface is
C2 .

Similarly, a piece of a surface with constant positive Gauss curvature must be real
analytic because the equation (4.2) is analytic, and is elliptic if the curvature is positive.
¤

4.5 Nonlinear Elliptic Equations: Existence

There is no general existence theory for nonlinear equations; indeed, we know little in
general about solving simultaneous nonlinear equations in finite dimensional Euclidean
space. For nonlinear partial differential equations the subject essentially consists of some
significant examples and several techniques that have been useful. All the techniques are
direct generalizations of those used in finite dimensional case. In this section we will limit
ourselves to stating two results, both of which are consequences of the implicit function
theorem, and then giving a list of some other methods. The remaining chapters of this
volume is a collection of examples of these methods.

The first result (from [ADN-2, §12]) considers the question of solving a nonlinear
equation (or system) of order k

F (x, ∂ku; t) = 0, (4.12)

where t is a real parameter. Say one has a solution at t = t0 . Can one always find a
solution for t near t0 ? It is reasonable that the implicit function theorem (in Banach
spaces) is the key to this. Recall that we are on a compact manifold M without boundary
so the question of boundary conditions does not enter.

Theorem 4.2 [Perturbation] In (4.12), let F be a C∞ function of all of its argu-
ments. Assume that

(i) u0 ∈ Ck is a solution of (4.12) for t = t0 ,

(ii) the linearization, L , at u0 is elliptic, and

(iii) the linearized equation Lv = f has a unique solution for any f ∈ Cσ (for
some 0 < σ < 1 ).

Then there is a solution u ∈ Ck, α of (4.12) if |t − t0| is sufficiently small.

Proof. By Theorem (4.1), we know that u0 ∈ Ck, α(M) , indeed u0 ∈ C∞(M) . Let
T (u, t) = F (x, ∂ku, t) , so T : Ck, α(M) × R → Cα(M) is a smooth map. Note that
T (u0, t0) = 0 , while Tu(u0, t0) = L : Ck, α(M) → Cα(M) is bijective. The desired
conclusion now follows from the standard implicit function theorem in Banach Spaces.
Because we assumed F ∈ C∞ , then we also know that u ∈ C∞ , but it is obvious that
this proof requires only very mild smoothness of F if we only want to obtain a solution
u ∈ Ck, α . ¤

This theorem is often used in the “continuity method” (see below and Chapter 5) as
well as in a variety of perturbation situations. If the linearization, L , is elliptic but not
invertible, one can investigate the higher order terms in the Taylor series of T (u, t) near
(u0, t0) and (attempt to) determine when the nonlinear equation T (u, t) = 0 is solvable.
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This is called “bifurcation theory” (see Chapter 6.7 for a brief discussion and [N-3] for a
more thorough treatment).

Several straightforward modifications of this perturbation Theorem 4.2 are often re-
quired in practice.

(1) In the frequently occurring case when (4.12) is quasilinear, one can use Sobolev
spaces instead of Hölder spaces. One uses L : Hp,k → Lp where p > dim M , since
then by the Sobolev embedding theorem the coefficients in (4.6) with ℓ ≤ k−1 are
continuous. An example is [KW-2, 3] and Chapter 6.4 below.

(2) Underdetermined elliptic systems can often be treated by combining the perturba-
tion theorem with the device in the proof of part a) in Corollary 2.5 (see Chapter 6.3
and 6.4).

(3) There is a simple situation where the perturbation theorem can be used with L
not invertible. This is when L is invertible on a subspace and this subspace is
“invariant” under F . For example, if A = {f ∈ C0(M) :

∫

M
f dxg = 0} , and if

F : Ck, α ∩A → Cα ∩A with L : Ck, α ∩A → Cα ∩A invertible (which is the case
if L = ∆ ), then the Perturbation Theorem applies to yield a solution u ∈ Ck, α∩A
(presuming u0 ∈ A too). See [Au-1], [Y-2], and Chapter 9.3.b) where this occurs
in obtaining a Kähler-Einstein metric.

One rather simple-sounding question is if one can find some solution of a nonlinear
equation (or system) of order k ,

F (x, ∂ju) = 0, |j| ≤ k

in a neighborhood of a point x ∈ R
n . The question is quite modest, since we seek a

solution only in some neighborhood of a point x0 , not on a compact manifold and do
not impose any boundary conditions. To have some perspective, we point out that the
deceptively simple-looking linear equation in R

2

ux + ixuy = f(x, y) (4.13)

has no solution in any neighborhood of x = 0 for most f ∈ C∞ . This celebrated
surprising fact was first found by H. Lewy in 1956 (he gave a slightly different example).
If f is analytic, of course one always can use power series to find a solution. If one prefers
equations with real coefficients, one can take the real and imaginary parts of (4.13) to get
a pair of real equations.

However for F (x, s) smooth, if one assumes ellipticity there is no difficulty locally
solving

F (x, ∂ju) = 0, |j| ≤ k (4.14)

as long as the equation is solvable at one point (to avoid silly unsolvable examples such
as finding a real solution of (∆u)2 = −1 ).

Theorem 4.3 [Local solvability] Assume F (x, s) , is a C∞ function of all of its
arguments and that the function u0(x) ∈ Ck is an elliptic solution at x = x0 . Then
in some neighborhood of x0 there is a solution u ∈ Ck (and hence C∞ ) of (4.14).
Moreover, u is near u0 and one can also specify that ∂αu = ∂αu0 for |α| ≤ k − 1 at
x0 .

The proof of this uses the standard implicit function theorem in Banach spaces. By
a preliminary change of variables, one may assume that x0 = 0 and u0 ≡ 0 , so the
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solvability at x0 = 0 means F (0, 0) = 0 . Make the change of scale x = λy , u = λkv .
Then (4.14) for v(y) becomes (with ∂y = ∂/∂y )

T (v;λ) := F (λy, λk−|j| ∂j
yv) = 0, |j| ≤ k.

It is enough to find some λ > 0 so that we can solve this in the ball |y| < 1 . Clearly
T (0; 0) = 0 . To apply the implicit function theorem we need that the linearization Tv(0; 0)
is invertible as a map between appropriate Banach spaces. Standard machinery for lin-
ear elliptic equations with constant coefficient allows one to complete the proof. [It is
instructive first to carry out the details for the ordinary differential equation u′ = f(x, u)
with u(0) = 0 . Here T : C1 × R → C0 (instead of C1 , it is more convenient to use
the subspace of u ∈ C1 with u(0) = 0 .] See [Ma, Section 9], and [N-2, pp. 15-16], for a
detailed proof. ¤

One can call u0 an “infinitesimal solution” in which case the theorem states that if
F (x, ∂ku) is elliptic at u0 , then infinitesimal solvability implies local solvability. Again,
using the device of part a) in the proof of Corollary 2.5(b) one can prove the local
solvability of underdetermined elliptic equations; one application is in Chapter 6.5, another
is Malgrange’s proof of the Newlander-Nirenberg theorem (see Section 6.3 below or [Ma]
or [N-2]).

A different local solvability theorem is true if the linearization of F at (x0, u0) is
strongly elliptic; then one can solve the Dirichlet problem in a small disc, instead of asking
that ∂αu = ∂αu0 , |α| ≤ k − 1 , at the origin.

example 4.6 monge-ampère, locally An immediate application is the local solv-
ability of uxxuyy − u2

xy = f near the origin if f(0, 0) = c2 > 0 , since u0 = c(x2 + y2)/4
is an elliptic solution at the origin.

It is also locally solvable if f(0, 0) < 0 by using techniques from the theory of hyper-
bolic equations. However, if f(0, 0) = 0 , then—even for f ∈ C∞ —we do not yet know if
one can always locally find a solution u ∈ C2 of this equation. If f is real analytic, then
it is locally solvable since one can find a power series solution (Cauchy-Kowalewskaya the-
orem). If either f(x, y) ≥ 0 near the origin, or ∇f(0, 0) 6= 0 then the locally solvability
was proved by C-S Lin [Lin-1], [Lin-2]. ¤

4.6 A Comparison Theorem

This section has elementary comparison results for a second order scalar operator F (x, u,Du,D2u) ,
where, in local coordinates, F (x, s, pi, rij) is a C1 function of its variables with the ma-
trix (∂F/∂rij) positive definite. The operator F is then elliptic for all u and for all x
in a domain Ω , which could be a manifold with or without boundary.

We begin with a routine procedure for applying theorems for linear problems to a
nonlinear problem. Say u(x), v(x) ∈ C2(Ω) . Let w = u−v and z(x; t) = v(x)+ t[u(x)−
v(x)] . Then

F (x, u, Du, D2u) − F (x, v, Dv, D2v)

=

∫ 1

0

∂

∂t
F (x, z(x; t), Dz(x; t), D2z(x; t)) dt (4.15)

=
∑

i,j

aij(x)
∂2w

∂xi∂xj
+

∑

i

bi(x)
∂w

∂xi
+ c(x)w, (4.16)
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where the matrix

aij(x) =

∫ 1

0

∂F

∂rij
(x, z(x; t), Dz(x; t), D2z(x; t)) dt

is positive definite, and bi(x), c(x) are given by similar formulas. The operator on w(x)
in equation (4.16) is linear elliptic. Observe that if ∂F/∂s ≤ 0 then c(x) ≤ 0 so one can
apply the strong maximum principle. For nonlinear systems of equations many of these
same ideas still apply.

It is occasionally useful to note that z(x; t) could have been any path of functions
from v(x) = z(x; 0) to u(x) = z(x; 1) and that the conditions, such as ellipticity, need
hold only for these function z(x; t) .

With F (x, s, p, r) as above, the strong maximum principle of Section 2.6 now imme-
diately implies the following comparison theorem and its corollary.

Theorem 4.4 [Comparison Theorem] Let Ω be either a bounded domain with bound-
ary or a compact manifold without boundary. Assume that u, v ∈ C2(Ω) ∩ C(Ω) satisfy

F (x, u, Du, D2u) ≥ F (x, v, Dv, D2v) (4.17)

in Ω and that the matrix (∂F/∂rij) and also ∂F/∂s ≤ 0 .

a) If Ω has a boundary and u ≤ v on the boundary, then u ≤ v thoughout Ω . If
u(x) = v(x) at some interior point, then u ≡ v .

b) If Ω is a compact manifold without boundary, then u and v differ at most by a
constant, while if ∂F/∂s < 0 then u ≡ v .

Corollary 4.5 [Uniqueness] If in part a) above we assume both

F (x, u, Du, D2u) = F (x, v, Dv, D2v) in Ω

and u = v on the boundary, then u ≡ v throughout Ω .

A simple geometric example illustrates these ideas.

example 4.7 [Mean Curvature] Let u(x) and v(x) be graphs of hypersurfaces
having constant mean curvature H for x in a connected open set Ω ⊂ R

n . If u(x) ≤ v(x)
then we claim that either u(x) < v(x) or else the surfaces are identical. In otherwords, if
they are tangent at one point then they coincide. The proof is an immediate application
of the above comparison theorem to the mean curvature equation (4.9).

Identical reasoning verifies some geometric intuition arising from the special case of
tangent hemispheres of different radii: if they are oriented so they are both concave (or
both convex), then the hemisphere with the larger curvature must be inside the other
hemisphere. More generally, if the surfaces u(x) ≤ v(x) have different constant non-
negative mean curvatures H1 and H2 , respectively, and if these surfaces are tangent at
one point, then the only way they can be distinct is if H2 < H1 , the surface with the
larger mean curvature being “inside” the one with the smaller curvature.
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4.7 Nonlinear Parabolic Equations

Just as in the linear case, many of the circle of ideas for nonlinear elliptic equations also
apply to nonlinear parabolic equations. We will only need second order equations of the
form

∂u

∂t
= F (x, t, ∂j

xu), where |j| ≤ 2. (4.18)

We assume that F is a smooth function of its variables. As one might anticipate, this
nonlinear system is called parabolic at a function u if its linearization at u is parabolic
in the sense that it has the form (2.27).

The only significant result we need is an existence theorem for the initial value problem
for some nonlinear parabolic equations. From the example du/dt = u2 , u(0) = a , whose
solution is u(t) = 1/(c− t)2 , the most we can hope for is existence for some short interval
of time, 0 ≤ t ≤ ǫ . We consider the initial value problem of solving equation (4.18) in
M × [0, ǫ] , with u(x, 0) = ϕ(x) , where, say, ϕ ∈ C∞(M) .

Theorem 4.6 [Short time existence]. Under the above assumptions, there is an
ǫ > 0 so that the problem (4.18) has a unique solution u(x, t) for x ∈ M , 0 ≤ t ≤ ǫ .
Moreover, u ∈ C∞(M × [0, ǫ]) .

One can either prove this directly from Theorem 2.15, using iterations, or else use
the Implicit Function Theorem (see [H-1, p. 122-123] for an example). As an alternate,
at least for quasilinear equations, one can use the Schauder Fixed Point Theorem (see
[F, p. 177-181] or [LSU, p. 596]).

A glance at the proof of the Comparison Theorem 4.4 above shows that it has a
straightforward extension to the initial value problem for a nonlinear scalar parabolic
equation (4.18).

4.8 A List of Techniques

Finally, we list various methods that have been used to prove existence for nonlinear
elliptic problems. Many of these methods will be discussed in greater detail in subsequent
chapters, particularly Chapter 5 which contains short illustrative examples. See also the
survey article [N-4].

Continuity Method. To solve the second order equation F (x, ∂2u) = 0 , you consider a
family of problems

F (x, ∂2u; t) = 0, for 0 ≤ t ≤ 1,

where F (x, ∂2u; 1) = F (x, ∂2u) is the problem you wish to solve, while F (x, ∂2u; 0) = 0
is a simpler problem that you know how to solve. Let A be the set of t ∈ [0, 1] such
that the problem is solvable. By construction t = 0 ∈ A . One shows that A is open,
usually by the Perturbation Theorem 4.2. The final step is to show A is closed, since
then A = [0, 1] . Say A ∋ tj → τ . Then there are uj satisfying F (x, ∂2uj ; tj) = 0 .
To prove that τ ∈ A (that is, A is closed) one tries to find a subsequence of the {uj}
that converges in C2 . The standard approach is to show that the sequence uj is in
a bounded set in C2, σ for some 0 < σ < 1 and then apply the Arzela-Ascoli theorem.
Thus, one has the (possibly difficult) task of finding an a priori estimate: if u is a solution
F (x, ∂2u; t) = 0 for some 0 ≤ t ≤ 1 , then ‖u‖2+α ≤ constant , where the constant is
independent of t . Two applications of this method are in [N-1], and [Au-1], [Y] (see also
[SP] and Chapters 3.2 and 6.3 below).
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Calculus of Variations. One proves that an equation has a solution by showing that it is
the Euler-Lagrange equation of a variational problem (and hence quasilinear), and then
proving that this variational problem has a critical point. See [C], [KW-1], [L], [SU], and
Chapter 5 below.

Schauder Fixed Point Theorem. One proves that F (x, ∂2u) = 0 has a solution by showing
that a related equation involving a compact operator has a fixed point (this is an extension
of the Brouwer Fixed Point Theorem). For example, to prove the existence of a solution
of a second order quasilinear equation one might proceed as follows. Given a function v ,
let u = T (v) be the solution of the linear problem (so we are assuming linear solvability)

∑

|α|≤2

aα(x, ∂ℓv)∂αu = f(x, ∂ℓv), where ℓ ≤ 1. (4.19)

A fixed point u = T (u) is then a solution of the corresponding quasilinear equation. Note
that T : C1, σ → C2, σ →֒ C1, σ is a compact operator since the inclusion C2, σ →֒ C1, σ

is compact. To apply the method, one approach is to find a ball B = {u : ‖u‖ ≤ c}
in C1, σ and show that T : B → B ; thus, one wants to show that if ‖v‖ ≤ c then
‖u‖ = ‖T (v)‖ ≤ c , i.e., find an a priori bound on solutions of T (v) = u . Observe that
in (4.19) one can put some of the terms involving only first derivatives on either side of
the equation. This flexibility is frequently exploited. For examples and some modified
versions, see Chapter 5.4 below, as well as [CH], [GT, Chapter 10], and [N-3].

Leray-Schauder Degree. This is similar to (but more complicated than) the fixed point
approach. It is an extension of the Brouwer degree to Banach spaces. See Chapter 5.4
and [N-3].

Sub and Supersolutions. While only applying to second order scalar equations, this method
is often quite simple—when it works. A function u− is called a subsolution of −∆u =
f(x, u) if −∆u− ≤ f(x, u−) , with the inequality reversed for a supersolution u+ . If there
are u± with u− ≤ u+ , then there is a solution u with u− ≤ u ≤ u+ . As an easy simple
illustration, one can use constants for u± in the equation ∆u = −1 + f(x)eu , assuming
that f > 0 , thus proving the existence of a solution (which is unique, since if w = u− v ,
where u and v are solutions, then ∆w = −c(x)w for some function c > 0 ; hence w = 0
by our discussion of (2.13). More complicated cases are discussed in Chapter 5.5 and
Chapter 7.

Monotonicity. This method applies to some quasilinear equations that do not quite fit in
the calculus of variations approach. See [Mo, § 5.12].

Heat Equation. One solves the “heat equation” ∂u/∂t = F (x, ∂ku) and shows that as
t → ∞ the solution approaches “equilibrium.” Then ∂u/∂t → 0 , and in the limit one
obtains a solution of F (x, ∂ku) = 0 . A notable application [ES] is to prove the existence
of harmonic maps (see also [EL]). Another application is the recent result [H-2], which
is also discussed in Chapter 9.2. A simple illustrative example of the method is given in
Chapter 5.6.

Alexandrov’s Method. This applies only to second order scalar equations F (x, ∂αu) = 0 ,
|α| ≤ 2 , where u is a convex function. Use the convexity to obtain approximate polyhedral
solutions, and then pass to the limit. A significant application was to give one of the
existence proofs for the Minkowski Problem. See [P-1, 2] and [CY].

Steepest Descent. This is an alternate to the calculus of variations. To minimize a func-
tional—and hence obtain a solution of the corresponding problem in the calculus of vari-
ations—one follows the gradient lines. There is a close resemblance to the heat equation
procedure, see [I] for an example.
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Chapter 5

Examples of Techniques

5.1 Introduction

In many ways, partial differential equations is a subject whose essence is more a body
of techniques rather than a body of theorems. One of the easiest way to learn these
techniques is to see how they can be applied to simple examples. For simplicity, assume
a, h ∈ C∞(M) . Throughout this chapter we will assume there is some Riemannian metric
g prescribed on an n-dimensional compact manifold M without boundary, that ∇ is the
gradient and ∆ the associated Laplacian.

We shall use a variety of techniques to give many proofs that if a(x) > 0 and h(x) > 0
are given functions and α > 1 is a constant, then the equations

∆u + a − heu = 0 (5.1)

and
∆v + av − hvα = 0, v > 0 (5.2)

have unique solutions (unique positive solution in the case of (5.2)).
First, with no sign assumption on a(x) one can always reduce (5.1) to the case

where a is a constant by letting ∆z = a − a , with a = (Vol(M)−1
∫

M
a dxg (since

∫

M
(a − a)dxg = 0 , there is a solution z , and it is unique up to a constant). Write

u = v + z . Then (5.1) reduces to solving

∆v + a − Hev = 0, (5.3)

with H(x) = h(x)ez(x) a known function. Upon integrating (5.1) over M we obtain
∫

M
heu dxg = a Vol(M) , so that a necessary condition to be able to solve (5.1) is that

in some open set h(x) has the same sign as a (if a = 0 , then this condition is that h
changes sign, unless h ≡ 0 ). Below, we shall observe that in a geometry problem, this
necessary sign condition is related to the Gauss-Bonnet theorem. Section 5.7 contains a
summary for (5.1), including information on cases we have not treated.

These equations arise in geometry in the following way. Let g be a given Riemannian
metric on Mn and let g1 be a metric pointwise conformal to g , so we may write

g1 = e2ug.

If S and S1 are the scalar curvatures of g and g1 , respectively, then from (A.38)

2(n − 1)∆u + (n − 1)(n − 2)|∇u|2 = S − S1e
2u. (5.4)
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For n = 2 it is customary to use the Gauss curvature K = 1
2S and rewrite (5.4) as

∆u = K − K1e
2u (5.5)

If we integrate (5.5) over the surface M (writing dA for the element of area) by Gauss-
Bonnet we get

∫

M

K1e
2u dA =

∫

M

K dA = 2πχ(M),

which is hardly a surprise since dA1 = e2udA . Comparing (5.5) with (5.1) we observe
that a = −2K , h = −2K1 , and u is replaced by 2u . Thus, in view of the reduction
above, the case we are considering in this chapter is when K < 0 , that is, when the Euler
characteristic is negative. Existence of a solution of this equation in the particular instance
when K1 = −1 implies that there is a conformal metric with constant negative Gauss
curvature, a fact usually associated with the uniformization theorem.

For n 6= 2 , one can make a change of variable to eliminate the terms involving |∇v|2 :
try the general substitution v = F (u) in (5.4), and then chooses F (u) to eliminate the
|∇v|2 terms. This leads to the change of variable v = ebu > 0 , where b = (n− 2)/2 ; and
results in the simpler appearing equation

−4(n − 1)

n − 2
∆v + Sv = S1v

(n+2)/(n−2) , (5.6)

that we used in (5.2). In terms of v , we have

g1 = v4/(n−2)g.

Part b) of the Comparison Theorem 4.4 shows there is at most one solution of (5.1) if
h > 0 , as well as (5.4) if S1 < 0 . Motivated by (5.4)-(5.6), if one first makes the change
of variable v = ew > 0 then uniqueness of the positive solution of (5.2) follows from the
observation that the corresponding equation for w has a unique solution if h > 0 .

In what follows, all of the results can be generalized; however here our goal is simplicity,
not generality. We repeat that that in geometric applications, a > 0 and h > 0 in (5.1)-
(5.2) are the negative curvature cases. To get some feeling for differential equations such
as (5.1) and (5.2), it is often very helpful to consider first the case when M is a compact
one dimensional manifold, namely S1 ; then, for instance (5.1) becomes the ordinary
differential equation u′′ + a = heu , that presents fewer technical — and psychological —
difficulties, yet is still not trivial.

We first reduce (5.1) and (5.2) to an equation with bounded nonlinearity by the
following device. Let g(x, s) : M × R → R be a continuous function with the property
that there exist numbers s− < s+ so that

if s > s+ then g(x, s) > 0; if s < s− then g(x, s) < 0 (5.7)

and consider the equation
∆u = g(x, u). (5.8)

Note that both (5.1) and (5.2) have the form (5.8), with the condition (5.7) holding. In
addition, for (5.2) we can choose s− > 0 , which will be important to insure that the
solution obtained by applying this procedure is positive.

Observe that at a maximum of u one has g(x, u) = ∆u ≤ 0 so u ≤ s+ . Similarly
u ≥ s− at a minimum of u . Thus any solution of (5.8) satisfies the a priori inequality
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s− ≤ u ≤ s+ . To obtain an equation with a bounded nonlinearity we will modify g(x, s)
for s < s− and s > s+ .

Let η(s) ∈ C∞(R) satisfy

η(s) =







η(s− − 1), s ≤ s− − 1
s, s− ≤ s ≤ s+

η(s+ + 1), s ≥ s+ + 1

as well as 0 ≤ η′(s) ≤ 1 , and let f(x, s) be the bounded function

f(x, s) = g(x, η(s)) − η(s). (5.9)

Consider the equation
∆u − u = f(x, u). (5.10)

If u is a solution of (5.8), then we just proved that s− ≤ u ≤ s+ so u is also a solution
of (5.10). The converse is also true.

Lemma 5.1 Assume g satisfies (5.7) and define f by (5.9)). Then a solution u of
(5.8) or (5.10) has the property s− ≤ u ≤ s+ . Consequently u satisfies (5.8) if and only
if it satisfies (5.10).

Proof. All that remains to be proved is that if u satisfies (5.10) then s− ≤ u ≤ s+ .
Consider the point xmax where u has its maximum. If max u < s− then clearly u ≤ s+

so consider the case where max u ≥ s− . Then at xmax we know u ≥ η(u) so that

0 ≥ ∆u = u + f(x, u) ≥ η(u) + f(x, u) = g(x, η(u)).

By (5.7) η(u) ≤ s+ and hence u ≤ s+ . Thus max u ≤ s+ . Similarly minu ≥ s− . ¤

As mentioned above, for (5.2) we have s− > 0 that will insure that the solution of
the corresponding equation (5.10)) will be positive.

remark 5.1 Equations of the form ∆u = f(x, u) can have a continuum of solutions. The
obvious case is when f(x, s) ≡ 0 , so any constant is a solution. One can modify this to
find other examples, say with all possible solutions lying in a bounded set. One example is
−∆u + u = f(u) , where f(s) = s for |s| ≤ 1 and |f(s)| ≤ 2 everywhere. Then u(c) = c
is a solution for every constant |c| ≤ 1 , while by the maximum principle all solutions lie
in the bounded set |u(x)| ≤ 2 .

5.2 Calculus of Variations

We will now use the calculus of variations to solve (5.10). The special case of finding the
eigenvalues of the Laplacian, which we treated in Section 3.3 will serve as a useful model.
Let

F (x, s) =

∫ s

0

f(x, t) dt, (5.11)

so Fs(x, s) = f(x, s) , and define the functional J by

J(u) =

∫

M

(|∇u|2 + u2 + 2F (x, u)) dxg. (5.12)
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It is straightforward to verify that ∆u − u = f(x, u) is the Euler-Lagrange equation for
a critical point of J . Let

σ = inf J(ϕ), ϕ ∈ H2,1(M).

The main step is to prove that J has a minimum, and hence a critical point.

Theorem 5.2 There is a function u ∈ H2,1(M) minimizing J . Moreover, if f(x, s) ∈
C∞ then u ∈ C∞ , and u is a solution of ∆u − u = f(x, u) . In view of Lemma 5.1, if
g ∈ C∞ satisfies condition (5.7), then there is a solution u ∈ C∞ of ∆u = g(x, u).

Proof. Step 1 is to show that J is bounded below. Because f is bounded, |f(x, s)| ≤ A
for some constant A . Thus by (5.11), for any constant ǫ > 0

2|F (x, s)| ≤ 2As ≤ ǫs2 +
1

ǫ
A2.

Choosing ǫ = 1/2 we conclude from (5.11) that

J(u) ≥
∫

M

(|∇u|2 + 1
2u2) dxg − 2A2 Vol(M) (5.13)

that implies J is bounded below, so σ > −∞ and there is a sequence of functions
uj ∈ H2,1(M) with J(uj) ↓ σ .

Step 2 is to show that, in some sense, the sequence uj has a convergent subsequence.
From (5.13) and the fact that J(uj) ≤ J(u1) , it is clear that

‖uj‖2
H2,1 ≤ 2

∫

M

(|∇uj |2 + 1
2u2

j ) dxg ≤ constant.

As we used in our discussion of the eigenvalues of the Laplacian, Chapter 3.3, a closed ball
in a Hilbert space, such as H2,1 , is weakly compact, so a subsequence of the uj (which
we relabel uj ) converges weakly to some u ∈ H2,1 .

Although the functional J(uj) is not continuous under weak convergence, it is lower
semicontinuous; this is adequate. In greater detail, first, since norms are lower semicon-
tinuous under weak convergence (see 3.9), we know that ‖u‖ ≤ lim inf‖uj‖ . Further, the
Sobolev Embedding Theorem 1.1 tells us that if p < 2n/(n−2) the embedding H2,1 →֒ Lp

is compact. Because compact linear maps take weakly convergent sequences into (strongly)
convergent ones, we see that uj → u strongly in Lp for any p < 2n/(n − 2) , especially
in L1 and L2 . Thus

∫

M

u2
j dxg →

∫

M

u2 dxg

and, by the mean value theorem

∫

M

|F (x, uj) − F (x, u)| dxg ≤ A

∫

M

|uj − u| dxg → 0.

Consequently

J(u) = ‖u‖2
H2,1 +

∫

M

2F (x, u) dxg ≤ lim inf J(uj) = σ.

But by definition of σ , J(u) ≥ σ . Thus J(u) = σ so u ∈ H2,1 is the desired function
minimizing J .



5.2. Calculus of Variations 59

Step 3 consists of showing that this function u ∈ H2,1 is actually smooth if f is
smooth. Since u minimizes J(u) , then for any z ∈ H2,1 the function Ψ(ǫ) = J(u + ǫz)
has a minimum at ǫ = 0 . Thus Ψ′(0) = 0 , that is, for any z ∈ H2,1(M)

∫

M

[∇u · ∇z + uz + f(x, u)z] dxg = 0, (5.14)

so u ∈ H2,1(M) is a weak solution (see Chapter 4.2) of ∆u− u = f(x, u) . At this point,
we can refer to general results ([GT, Theorem 8.8] and Theorem 2.3 above) to conclude
that u ∈ C∞ —and thus satisfies the equation ∆u−u = f as one can see after integrating
the first term in (5.14) by parts.

There is an alternate procedure to prove that u is smooth, one we also used earlier
(Section 3.3). Let k(x) = f(x, u) . This is in L∞ since f(x, s) is bounded. Thus there
is a unique solution v ∈ Hp,2 of the linear equation ∆v− v = k for all p > 1 . For p ≥ 2
clearly v ∈ H2,2 ⊂ H2,1 and satisfies the linear equation

∫

M

[∇v · ∇z + vz + kz] dxg = 0 (5.15)

for any z ∈ H2,1 . Note that (5.14) states that u is also a solution of (5.15), so w =
u − v ∈ H2,1 satisfies

∫

M

(∇w · ∇z + wz) dxg = 0 (5.16)

for any z ∈ H2,1 . By choosing z = w we see that |∇w|2 + |w|2 = 0 and hence
w = 0 , that is, u = v . But v ∈ Hp,2 for all p so u ∈ Hp,2 for all p . Consequently
k(x) = f(x, u) ∈ C1, α (pick p > n ) and hence u = v ∈ C3, α . Continuing by induction,
u ∈ C∞ . ¤

As another type of application, one that we will need later on, we investigate the
lowest eigenvalue λ1 , and corresponding eigenfunction ϕ1 of

Lu = −∆u + c(x)u, (5.17)

where c(x) ∈ C∞ is a given function. The lowest eigenvalue λ1 , with corresponding
eigenfunction ϕ , satisfies Lϕ = λ1ϕ . We already treated the special case c(x) = 0 in
Section 3.3. As before, multiplying this by ϕ and integrating by parts, we find that λ1

is given by the Rayleigh quotient

λ1 = min

∫

M
(|∇ϕ|2 + c(x)ϕ2) dxg

∫

M
ϕ2 dxg

; (5.18)

Multiplying ϕ by a constant, we can assume that ‖ϕ‖L2 = 1 and hence the lowest
eigenvalue1, value of the functional

J(u) =

∫

(|∇u|2 + cu2) dxg on ‖u‖L2 = 1.

The approach used in Section 3.3 for the higher eigenvalues proves the existence of
an eigenfunction ϕ , minimizing J on ‖ϕ‖L2 = 1 . In this case, the eigenfunction ϕ1

1Caution: if c = 0 , then clearly ϕ = constant minimizes J and λ1 = 0 . In this
special case, as we did in Section 3.3, one usually relabels the λj and writes λ0 = 0 and
then calls λ1 > 0 the “lowest non-trivial eigenvalue”. Mathematicians are inconsistent in
this numbering. It can be confusing.
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corresponding to the lowest eigenvalue is not a constant (unless c(x) ≡ const. However,
we will show that ϕ1 is never zero, so (multiplying by −1 if necessary) we have ϕ1 > 0 ;
this is analogous to the positivity of the eigenfunction corresponding to the lowest note of
a drum. Since ϕ ∈ H2,1 then ψ ≡ |ϕ| ∈ H2,1 and |∇ϕ| = |∇ψ| almost everywhere ([Au-
4], page 82). Thus ψ ∈ A and J(ψ) = J(ϕ) so ψ also minimizes J on A . Therefore by
the above reasoning ψ ∈ C∞(M) and is also an eigenfunction of L with eigenvalue λ1

−∆ψ + cψ = λ1ψ.

Pick a constant γ > 0 so that λ1 − c + γ > 0 . Then because ψ ≥ 0 we find that

−∆ψ + γψ = (λ1 − c + γ)ψ ≥ 0. (5.19)

The strong maximum principle (see section 2.6) states that under these conditions either
ψ ≡ 0 or else ψ > 0 everywhere. Since

∫

M
ψ2 dxg = 1 , the only possibility is that

ψ > 0 . Because ψ = |ϕ| this also implies that either ϕ > 0 or ϕ < 0 everywhere,
so any eigenfunction with eigenvalue λ1 is either positive or negative. The eigenspace
is then one dimensional, for if the dimension were two or more, then there would be two
orthogonal eigenfunctions ϕ,ψ with eigenvalue λ1 . However the orthogonality condition
∫

M
ϕψ dxg = 0 is impossible because ϕψ never changes sign. The next proposition

collects these facts.

Proposition 5.3 Let Lu = −∆u + cu . Then the eigenspace corresponding to the lowest
eigenvalue, λ1 , is one dimensional and the corresponding eigenfunctions are never zero;
in particular, there is a positive eigenfunction ϕ1 > 0 of Lϕ1 = λ1ϕ1 .

One can also give a very different proof of this result using the Krein-Rutman (see [KR]
and [Kr]) generalization of the Perron-Frobenius theory of positive matrices. In this case,
the maximum principle gives the positive operator. An advantage of this alternate proof
is that it applies to second order elliptic operators that are not necessarily self-adjoint.

Before closing our discussion on the calculus of variations, we should mention that
there are techniques such as the “Mountain Pass Lemma” and generalizations of finite
dimensional Morse Theory for proving the existence of saddle points (i.e. critical points
that are not local minima).

5.3 Continuity Method

The idea here is quite simple. Say one wishes to solve some equation F (u) = 0 . Consider
a family of problems depending continuously on a parameter t

Pt : F (u, t) = 0, 0 ≤ t ≤ 1,

where F (u, 1) = F (u) is the desired problem and F (u, 0) = 0 is some equation that you
know how to solve. Let

A = {t ∈ [0, 1] : one can solve Pt}.

By choice of P0 we know 0 ∈ A so A is not empty.
One shows that A is both open and closed. The proof that A is open customarily

uses the implicit function theorem: if F (u0, t0) = 0 , then solve F (u, t) = 0 for all t near
t0 . Of course, one must verify the assumptions of the implicit function theorem.
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To prove that A is closed, say tj ∈ A and tj → τ ; we must show that τ ∈ A . Now
tj ∈ A means there are solutions uj of f(uj , tj) = 0 . The goal is to find a convergent
subsequence of the uj , say uj → u , since then, by continuity, F (u, τ) = lim F (uj , tj) = 0
so τ ∈ A as desired.

If F (u, t) = 0 is a second order partial differential equation for u , then uniform
convergence of (a subsequence of) the uj → u in C2(M) is enough. To obtain this,
one often uses the Arzela-Ascoli lemma; consequently we would like to prove that any
solution u of problem Pt satisfies ‖u‖C2, α ≤ const., where the constant is independent
of t ∈ [0, 1] . Obtaining this basic a priori estimate on solutions of Pt is usually the
most difficult step in the continuity method. If one uses spaces other than C2, α , then
one replaces the Arzela-Ascoli lemma by an appropriate compactness lemma.

The first step is to define the problems Pt . There are usually many ways. For (5.1)
with a > 0 and h > 0 we consider the family of problems

F (u, t) := ∆u − hu + t[a − h(eu − u)] = 0, 0 ≤ t ≤ 1. (5.20)

(We could also use ∆u + a − [th + (1 − t)a]eu = 0 , which is more natural for geometric
reasons, but we use (5.20) to save work in Section 5.4). At t = 0 , a solution is u = 0 .
Let A be the set

A = {t ∈ [0, 1] : F (u, t) = 0 has a solution u ∈ C2(M)).

To prove A is open we use the implicit function theorem. Say F (u0, t0) = 0 . Then the
linearization of (5.20) at u0, t0 is

Lv = Fu(u0, t0)v = ∆v − h(1 − t0 + t0e
u0)v.

Because h > 0 and (1 − t + teu) > 0 for 0 ≤ t ≤ 1 , by part b) of the Comparison
Theorem 4.4 ker L = ker L∗ = 0 . Thus the Fredholm alternative tells us that L is an
isomorphism from Hp,2 to Lp and also from C2, α to Cα . Since we need the map
F (u, t) to be a C1 map, if we use the space Hp,2 we require that p > n/2 because
then Hp,2(M) →֒ C0(M) . In any case, standard elliptic regularity shows that u ∈ C∞

so openness is proved.

Next we prove that A is closed by proving an a priori inequality. Pick any 0 < α < 1 ;
we want a constant R independent of t ∈ [0, 1] so that any solution u ∈ C2, α(M) of
(5.20) is in the ball

‖u‖C2, α ≤ R. (5.21)

To prove this, we first prove an estimate in C0 using the maximum principle. At a
maximum of u , from (5.20)

0 ≥ ∆u = h[teu + (1 − t)u] − ta.

But es ≥ 1 + s for all real s ( es lies above its tangent line at s = 0 ). Thus

u ≤ t + u ≤ teu + (1 − t)u ≤ max
M

[a(x)/h(x)].

Using a similar estimate for the minimum of u we have an a priori uniform estimate for
any solution of (5.20)

‖u‖C0 ≤ constant independent of t ∈ [0, 1]. (5.22)
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To estimate the higher order derivatives of u we use the basic inequalities (2.9) for
linear elliptic operators to conclude from (5.20) to (5.22) that

‖u‖Hp,2 ≤ c1‖∆u‖Lp + c2‖u‖L1 ≤ c3. (5.23)

Pick p > n . Then Sobolev Inequality (1.26) shows that ‖u‖C1(M) ≤ c4 , and hence, by
(5.20) and the Schauder Estimates (2.8) we have

‖u‖C2, α ≤ c5‖∆u‖Cα + c6‖u‖C0 ≤ c7.

Armed with this estimate, one can apply the Arzela-Ascoli lemma and conclude that the
set A is closed.

You are invited to use the continuity method to solve (5.2).

5.4 Schauder Fixed Point Theorem

example 5.1 Is there a solution (x, y) of the system of the “high school” equations

3x + 2y =
x2 + esin xy

1 + 3x2 + y16

4x − 5y =
7 + sin(x + y3)

1 + ex−y



















?

This is a special case of AX = F (X) , where A is an invertible matrix and F : R
n → R

n

a bounded continuous map, ‖F (x)‖ ≤ c1 . If one rewrites this as X = A−1F (X) , then
the Brouwer fixed point theorem can be used as follows to prove a solution exists. Any
solution X of this must satisfy the a priori inequality

‖X‖ = ‖A−1F (X)‖ ≤ ‖A−1‖c1 = c2,

Pick some R > c2 and let BR = {‖X‖ ≤ R} . Then by the Brouwer theorem the map
G = A−1 ◦ F maps the ball BR to itself and hence has a fixed point. As an exercise
you may find it amusing to get the same conclusion assuming that F grows slower than
linearly, that is, lim‖X‖→∞‖F (X)‖/‖X‖ → 0 instead of assuming F is bounded. ¤

remark 5.2 This result would be difficult to prove by the continuity method as described
in the preceding section. The problem is in using the implicit function theorem to prove
the “openness”, since we have made no assumptions about the derivative of F (X) . One
might, however, prove the openness by some other procedure—which is essentially what
we did by using the fixed point theorem.

As a digression, we will give a short proof of the Brouwer fixed point theorem using
Stokes’ theorem. Our key step is the “no-retract” theorem. Let M be an n-dimensional
smooth connected orientable compact manifold with smooth boundary, ∂M . A map
f : M → ∂M , is called a retraction if f is the identity map on the boundary, ∂M .
We claim that there can not be a smooth retraction (there cannot even be a continuous
retraction).

First some background. Let N be a smooth k -dimensional compact manifold N
without boundary. with a volume form ω , so ω is a k -form. For orientable N one can



5.4. Schauder Fixed Point Theorem 63

obtain ω in many ways, such as by introducing a Riemannian metric on N . For any k -
form on N , we have dω = 0 ; if f : M → N is a smooth map, then d(f∗ω) = f∗(dω) = 0 .

Apply this to the special case when N is ∂M . Then by Stokes’ theorem we have

∫

∂M

f∗ω =

∫

M

d(f∗ω) =

∫

M

f∗(dω) = 0.

If f is a retraction it is the identity on ∂M so ω = f∗ω there. Consequently the integral
above on the left is

∫

∂M
ω = Vol(∂M) , which cannot be zero. This contradiction proves

that the retraction f cannot exist. [To check your understanding, note that there is no
contradiction if f is just a diffeomorphism of M that leaves the boundary fixed. There
is also no contradiction if f maps all of M to one point on its boundary. It is important
that f map all of M to its boundary, keeping the boundary fixed pointwise.]

Using the no-retract theorem we follow a standard proof of the Brouwer theorem that
any continuous map f from a closed ball B in R

n to itself must have at least one fixed
point. First assume f is smooth. If it has no fixed point then for each x ∈ B the vector
V (x) = f(x)−x from x to f(x) is never zero. Consider the straight line γ(t) = x+tV (x)
passing through x and f(x) . Let p be the point on the boundary backward beyond x (so
t ≤ 0 ) where this line meets the boundary (draw a figure). Define the map ϕ : B → ∂B
by the rule ϕ : x 7→ p . Then ϕ is the identity map on the boundary and hence is
a retraction from B to ∂B . But we just proved that such a map cannot exist. Thus
a smooth f must have a fixed point. If f is only continuous, then approximate it by
smooth maps fj(x) whose fixed points xj (or a subsequence) converge to a fixed point
of f . ¤

The Schauder fixed point theorem allows us to apply the procedure of the Example
5.1 and solve some nonlinear elliptic equations. Before attending to that, we present an
example of a continuous map f from the unit ball in Hilbert space into its boundary.
This map will have no fixed point. It shows that any generalization of the Brouwer fixed
point theorem to infinite dimensional spaces will need some extra assumption, either on
the map or on the set S to which the map is applied.

example 5.2 Let H be the Hilbert space ℓ2 of sequences x = (x1, x2, . . .) with |x|2 =
∑|xj |2 < ∞ and let S denote the closed unit ball {|x| ≤ 1} . The continuous map

f : x 7→ (
√

1 − |x|2, x1, x2, . . .) does map S into S , but does not have a fixed point
(since |f(x)| = 1 for all x ∈ S , at a fixed point |x| = 1 which implies the incompatible
assertions x1 =

√

1 − |x|2 = 0 , x2 = x1 = 0 , x3 = x2 = 0 , etc.). ¤

The Schauder theorem makes a compactness assumption that avoids the difficulties
of this example. Let B be a Banach space and S ⊂ B . A continuous map f : S → B
is called compact if the images of bounded subsets of S are precompact (that is, for any
bounded set Q ⊂ S , the closed set f(Q) is compact).

Theorem 5.4 [Schauder Fixed Point Theorem] Let B be a Banach space and
S ⊂ B a convex, closed, bounded subset. If f : S → S is a compact map, then f has a
fixed point.

See [GT] or [N-3] for a short proof. The idea is to find finite dimensional approximations
to which the Brouwer theorem applies. This gives approximate fixed points, xk . The
compactness of f enables one to find a convergent subsequence to an honest fixed point
of f .
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One very useful corollary is the following result. It was first found by Leray-Schauder
using their extension to Banach spaces of the Brouwer degree of a map (see [N-3] a dis-
cussion of the degree). There is now a short direct proof using only the Schauder Fixed
Point Theorem (see [GT]).

Theorem 5.5 [Leray-Schauder]. Let B be a Banach space and F : B× [0, 1] → B
a compact mapping with F (x, 0) = 0 for all x ∈ B . Assume there is a constant c
such that any solution (x, t) ∈ B × [0, 1] of x = F (x, t) satisfies the a prior inequality
‖x‖ ≤ c . Then the map F (x) = F (x, 1) : B → B has a fixed point.

This theorem shows clearly that if one has a good a priori estimate on the solutions
of an equation, then one can prove the existence of a solution.

As our first application of these fixed point theorems we use the Schauder fixed point
theorem 5.4 to prove the existence of a solution of

Lu := ∆u − u = f(x, u,∇u), (5.24)

where f(x, u, p) is a bounded smooth function of all its variables. In view of Lemma
reflemma:TECH.7 this will prove there is a solution of ∆u = g(x, u) assuming g satisfies
the condition (5.7), and hence a solution of (5.1) and (5.2). We simply copy our discussion
of the model equation AX = F (X) in Rn and observe that by the Fredholm alternative
2.4, the linear map Lu := ∆u − u is an isomorphism from Hp,2 → Lp and also from
C2, α → Cα . Thus, we solve

u = L−1f(x, u,∇u).

It is natural to let T (u) = L−1f(x, u,∇u) . Now f : C1, α → Cα and L−1 : Cα → C2, α .
Moreover, the by the Arzela-Ascoli Theorem, the identity map id : C2, α →֒ C1, α is a
compact operator. Thus the map T : C1, α → C1, α defined by the composition

C1, α f→ Cα L−1

→ C2, α id→֒ C1, α (5.25)

is compact. In addition, since f(x, u,∇u) is a bounded function, using the basic estimate
(2.8) there is a constant K such that

‖T (u)‖C1, α(M) ≤ K

for all u ∈ C1, α(M) . Thus let

S = {u ∈ C1, α(M) : ‖u‖C1, α(M) ≤ K}.

The Schauder theorem 5.4 and elliptic regularity prove the following.

Theorem 5.6 Let f(x, s, p) : M × R × TM → R be a bounded smooth function. Then
the equation ∆u − u = f(x, u,∇u) has at least one smooth solution.

In (5.25) we could have also used Sobolev spaces T : Hp,1 → Hp,1 for any p > n .
(We need p > n to insure that T is continuous.) As an exercise, one can also prove this
result by applying the Leray-Schauder theorem 5.5 to the family of equations

∆u − u = tf(x, u,∇u), where 0 ≤ t ≤ 1.

For variety, we will now use the Leray-Schauder Theorem 5.5 to solve (5.1) directly.
We consider the family of equations for 0 ≤ t ≤ 1

Lu := ∆u − hu = t[−a + h(eu − u)] = tf(x, u) (5.26)
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(at t = 1 this is (5.1)). Because L is invertible between the usual spaces, we write this
equation as

u = tL−1f(x, u).

Comparing this equation with Corollary 5.5 it is reasonable to let F (u, t) = tL−1f(x, u) .
By the reasoning we used for (5.24), it is evident that F : C1, α → C1, α is a compact
map. Thus, we need only establish the a priori inequality

‖u‖C1, α(M) ≤ constant (5.27)

for any solution u of u = tL−1f(x, u) , that is, any solution u of (5.24), 0 ≤ t ≤ 1 .
But equation (5.26) is exactly the equation (5.20) we (deliberately) used for the continuity
method and (5.27) is a consequence of (5.21) so the proof is completed.

5.5 Sub and Supersolutions

The simplest version of this method goes as follows. We say that u+ is a supersolution
and u− a subsolution of ∆u = f(x, u) if, respectively,

∆u+ ≤ f(x, u+), and ∆u− ≥ f(x, u−). (5.28)

For the Laplace equation, ∆u = 0 , subsolutions are simply subharmonic functions.

Theorem 5.7 Let f(x, s) ∈ C(M × R) . If there are sub and supersolutions u± ∈
Hp,2(M) , p > n , and if u−(x) ≤ u+(x) , then there is at least one solution u ∈ Hp,2(M)
of ∆u = f(x, u) in the interval u−(x) ≤ u(x) ≤ u+(x) .

The proof is a simple iteration procedure using the maximum principle (see [KW-1]
for a short exposition). A generalization using the Schauder Fixed Point Theorem is in
[CBL]. These proofs use the fact that one can solve certain linear elliptic equations. For
equations with severe nonlinearities, one can often prove a version of Theorem 5.7 (see
[Au-4, Chapter 7, Section 12] and [CNS]) but one must already know some non-trivial
existence result. (Theorem 5.7 is also true for complete, non-compact manifolds, as well
as for boundary value problems—although for boundary value problems one must slightly
modify it.)

example 5.3 This method gives the shortest existence proofs for (5.1) and (5.2). Indeed,
for a subsolution in (5.1) try u−(x) = α , where α is a constant. Then from (5.28) we
need

0 ≥ −a + heα,

which will clearly be satisfied by choosing α to be a sufficiently large negative constant.
Similarly, any sufficiently large positive constant u+(x) = β will be a supersolution of
(5.1). Thus, there is a solution u− ≤ u ≤ u+ . The same easy proof works for (5.2) with
u− = small constant > 0 ; then, since the solution satisfies u(x) ≥ u−(x) we are assured
that u > 0 . ¤

example 5.4 There may be many sub- and supersolution pairs, u− ≤ u+ . For instance,
consider

∆u = f(x, u) + cos u,

where |f(x, s)| ≤ 1 for all x and s . The functions u(x) = 2kπ are all supersolutions,
while u(x) = (2k − 1)π are subsolutions. Hence there is at least one solution in each of
the intervals (2k − 1)π ≤ u(x) ≤ 2kπ . ¤
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Here are two more general applications of the method. For simplicity, assume f(x, s) ∈
C∞(M × R) . The first result extends the linear existence theory (2.14) for ∆u = f(x) .

Theorem 5.8 [KW-4] Assume ∂f(x, s)/∂s ≥ 0 . Then there exists a solution u ∈
C2(M) of

∆u = f(x, u) (5.29)

if and only if there is a function v ∈ C2(M) satisfying
∫

M

f(x, v(x)) dxg = 0. (5.30)

Proof. For the necessity, integrate (5.29) to see that any solution of (5.29) satisfies (5.30).
To prove the sufficiency, given v(x) let ϕ(x) = f(x, v(x)) . Because

∫

M
ϕdxg = 0 there

is a solution z of ∆z = ϕ(x) . Let u+ = z + c+ , where the constant c+ is chosen so
that u+ ≥ v . Then

∆u+ = f(x, v(x)) ≤ f(x, u+(x)).

Similarly, let u− = z + c− . ¤

As an example where the assumptions are satisfied, we consider equation (5.1) with
h ≥ 0(6≡ 0) and conclude that there is a solution if and only if the coefficient a(x) satisfies
∫

M
a(x) dxg > 0 .

The second application mildly generalize some results proved above. Consider the
equation

∆u = f(x, u) + g(x, u), (5.31)

where f and g are smooth functions with g(x, s) bounded and f having the property
that

∂f

∂s
(x, s) ≥ γ(x) for all real s (5.32)

for some smooth function γ(x) ≥ 0(6≡ 0) .

Theorem 5.9 Assume that f(x, s) satisfies (5.32) and g(x, s) is a bounded function.
Then there exists a solution of (5.31).

Proof. Let λ1 be the lowest eigenvalue of Lϕ := −∆ϕ + γϕ . Then γ ≥ 0 (6≡ 0) so the
Rayleigh quotient (5.18) shows that kerL = 0 and λ1 > 0 . Moreover, by Proposition
5.3 there is a positive eigenfunction ϕ of Lϕ = λ1ϕ . Say |g(x, s)| ≤ A and let z be the
unique solution of the linear equation

∆z − γz = f(x, 0) − A

Choose the constant c+ so large that u+ = z + c+ϕ > 0 . Then u+ is a supersolution of
(5.30). Similarly, if v is the solution of ∆v − γv = f(x, 0) + A , then for sufficiently large
negative c− , the function u− = v + c−ϕ < 0 and is a subsolution. ¤

The above idea of using the (positive) lowest eigenfunction of a linear problem to
construct sub or supersolutions of a nonlinear problem is a useful device. In particular for
equation (5.2) it is often useful to consider the lowest eigenvalue λ1 and corresponding
eigenfunction ϕ > 0 (by Proposition 5.3 for the operator Lu = −∆u−au , so Lϕ = λ1ϕ .
Using both sub and supersolutions of the form u± = c±ϕ , where 0 < c− < c+ , one can
quickly prove that if h > 0 then (5.2) has a positive solution if and only if λ1 < 0 . This
is a weaker assumption than our earlier one that a > 0 since the Rayleigh quotient (5.18)
with ψ = 1 shows that a > 0 , and even the weaker condition

∫

M
a(x) dxg > 0 , implies

that λ1 < 0 .
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5.6 The Heat Equation

Another technique that is useful for solving equations such as ∆u = f(x, u) is to solve
the initial value problem for the heat equation

∂u

∂t
= ∆u − f(x, u) for t > 0, x ∈ M, (5.33)

u(x, 0) = u0(x), x ∈ M, (5.34)

where u0 is some prescribed function, and show that as t → ∞ then the u(x, t) converge
to some function v(x) which satisfies ∆v = f(x, v) , that is, v(x) is an “equilibrium solu-
tion” of the heat equation (5.33). (Actually, it is enough to show that some subsequence,
u(x, tj) converges as tj → ∞ .)

There are three steps when using this method.

Step 1. Show that a solution of (5.33)–(5.34) exists for short times 0 ≤ t ≤ ǫ . In this
regard, one should note that the backward heat equation, −ut = ∆u , u(x, 0) = u0(x)
does not necessarily have a solution for short time.

Step 2. Show that a solution of (5.33)-(5.34) exists for all time, 0 ≤ t < ∞ . The simple
ordinary differential equation ut = u2 with initial condition u(0) = c , has the unique
solution u(t) = c/(1− tc) ; this shows that a solution of an innocent-looking equation may
not exist for all time. Moreover, it shows that—for nonlinear equations—the maximal
interval for which a solutions exists may depend upon the initial conditions.

Step 3. Prove that as t → ∞ , then u(x, t) (or u(x, tj) ) converges to a solution v(x) of
∆v = f(x, v) . The following example shows that some hypotheses will be needed. One
just observes that u(x, t) = e3t cos x satisfies the heat equation ut = uxx + u on S1 but
u has no limit as t → ∞ . Another example is the bounded function w(x, t) = cos(x + t)
which, also on the circle S1 , satisfies the heat equation wt = wxx + wx + w . Neither
u(x, t) nor w(x, t) converge to anything for large t .

We will carry out these steps for

∂u

∂t
= ∆u + a(x) − h(x)eu (5.35)

with the initial condition
u(x, 0) = ϕ(x). (5.36)

As usual, the same ideas prove a more general result whose formulation and proof we leave
as an exercise; one version is suggested at the end of this section.

Theorem 5.10 Assume that a > 0 , h > 0 , and ϕ are any smooth functions. Then
there exists a unique solution u(x, t) of (5.35)–(5.36) for all t > 0 . Moreover, there is a
function v ∈ C∞(M) so that

lim
t→∞

u(x, t) = v(x), (5.37)

and v satisfies the “equilibrium” equation ∆v + a − hev = 0 .

Proof. Step 1. The existence of a unique solution for a small time interval, 0 ≤ t < ǫ , is
a consequence of Theorem 4.6.

Step 2. To prove that the solution exists for all time 0 ≤ t < ∞ , we need to estimate
the solution. Let 0 ≤ t < T be a maximal interval on which a solution exists and pick



68 Chapter 5. Examples of Techniques

any 0 < T0 < T . Consider the maximum value of u(x, t) on the compact set M × [0, T0]
and say the maximum is at some point p = (x0, t0) . If t0 = 0 , then u(x, t) ≤ u(x, 0) ≤
const., while if t0 > 0 then ut(p) ≤ 0 (in fact, ut(p) = 0 if 0 < t0 < T0 ), ∇u(p) = 0 ,
and ∆u(p) ≤ 0 . Thus from (5.35), h(p)eu(p) ≤ a(p) so u ≤ maxM [log(a(x)/h(x))] .
Looking at the point where u has its minimum we get a similar lower bound for u . Since
these estimates are independent of T0 ,

|u(x, t)| ≤ m, (5.38)

where the constant m does not depend on T .
Next we would like to estimate the derivatives of u . One approach uses the Sobolev

space analog of (2.33) combined with the Sobolev inequality (just as we used (5.23) to
estimate the ‖u‖C1 in Section 5.3). Another way is to proceed directly, rewriting (5.35)
as ut = ∆u + f(x, t) where, using (5.38), f = a − heu is now known to be a bounded
continuous function, so one can apply simpler local estimates for the heat equation itself
to conclude that

‖u‖C1(M×[0, T ]) ≤ m1,

with m1 independent of T . Repeatedly applying the estimate (2.33) we find that for all
x ∈ M and 0 ≤ t < T

|∂r
t ∂s

xu(x, t)| ≤ mr,s, (5.39)

where the constants mr,s are independent of T .
If T < ∞ , we will show that as t → T , then u(x, t) and all of its derivatives converge

uniformly to some function, which we call u(x, T ) . But then we can apply Theorem 4.6
to solve (5.30) on some interval T ≤ t ≤ T + ǫ using u(x, T ) as the initial value. This
will define a smooth solution u(x, t) , for the larger interval 0 ≤ t ≤ T + ǫ , of (5.30) and
contradicts the maximality of T .

To prove the convergence of u(x, t) , we use the mean value theorem (in a local coor-
dinate chart) to estimate

|u(x, t) − u(y, t′)| ≤ |u(x, t) − u(x, t′)| + |u(x, t′) − u(y, t′)|
≤ ‖∂tu‖∞|t − t′| + ‖∂xu‖∞|x − y|.

Therefore, in view of the estimates (5.39), the function u(x, t) is uniformly continuous on
M × [0, T ) and hence has a unique continuous extension to M × [0, T ] . Replacing u by
∂r

t ∂s
xu in the above, we find that we can extend u and all of its derivatives continuously

to M × [0, T ] .

Step 3. Now we know the solution u(x, t) exists for all t ≥ 0 and must show it converges
as t → ∞ . First we show that

|ut(x, t)| ≤ ke−γt (5.40)

for some positive constants k and γ . To see this, differentiate (5.35) to find that w = ut

satisfies
wt = ∆w − bw,

where b = heu > γ > 0 for some constant γ (again we used (5.38)). Then the function
z(x, t) = w(x, t)eγt satisfies

zt = ∆z − cz,

with c = b− γ > 0 . But for this equation, a direct argument as in Step 2 above (looking
at a positive minimum of z ), or else the maximum principle, Theorem 2.13, shows that

|z(x, t)| ≤ max
M

|z(x, 0)| = max
M

|w(x, 0)|

= max
M

|∆u + a − heu|
∣

∣

∣

t=0
≤ k
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For some constant k . Since ut = ze−γt , this gives the estimate (5.40).
Let T be a constant to be determined and say T ≤ t′ ≤ t . Then from (5.40) we have

|u(x, t) − u(x, t′)| = |
∫ t

t′
ut(x, s) ds| ≤ k

γ
e−γT . (5.41)

Write ϕ(x, t) = −a + heu + ut , so the equation (5.30) is

∆u = ϕ. (5.42)

From the estimate (5.40) and (5.41), we see that ϕ(x, t) , viewed as a sequence of functions
with t as a parameter, is uniformly Cauchy as t → ∞ . Hence by the Hp,2 estimates
(2.9) for the elliptic operator ∆ , given any ǫ > 0 we have

‖u(·, t) − u(·, t′)‖Hp,2(M) ≤ const.‖ϕ(·, t) − ϕ(·, t′)‖Lp(M)

+const.‖u(·, t) − u(·, t′)‖Lp(M).
(5.43)

This can be made as small as we wish by picking T ≤ t′ ≤ t with T sufficiently large.
Choosing p > n and combining (5.43) with the Sobolev inequality we conclude that
u(x, t) is Cauchy in C1(M) as t → ∞ . The estimate (5.43), only now using the Hölder
norms (2.8), shows that u is Cauchy in C2, α(M) as t → ∞ . Repeatedly using (2.8) we
find that u is Cauchy in Ck(M) , for all k , to some function v(x) ∈ C∞(M) . Passing
to the limit t → ∞ in (5.30) we complete the proof. ¤

As an exercise, one may find it useful to generalize this proof to ut = ∆u − f(x, u) ,
assuming that fs(x, s) > 0 , f(x,∞) > 0 , and f(x,−∞) < 0 .

5.7 Summary for ∆u = f(x) − k(x)eu

Since we have spent this whole chapter discussing ∆u = −a + heu , assuming a > 0 and
h > 0 , we should briefly summarize what is known in the general case for

∆z = f(x) − k(x)ez (5.44)

on ( Mn, g ). We will study equation (5.2) further in Chapter 7.
To repeat remarks made at the beginning of this Chapter, one can reduce to the case

∆u = c − heu, (5.45)

where c is a constant whose value is f . Also, a necessary condition to be able to solve
(5.45) is that in some open set h(x) has the same sign as c (if c = 0 , then this condition
is that h changes sign, unless h ≡ 0 ). This equation is (5.1), except that there c and h
had the opposite sign.

Multiplying (5.45) by e−u and integrating over M (and integrating by parts) one
finds that

∫

M

h dxg = c

∫

M

e−u dxg −
∫

M

e−u|∇u|2 dxg. (5.46)

Thus, if c ≤ 0 then a second necessary condition is that
∫

M
h dxg < 0 (unless c = h ≡ 0 ).

If c = 0 and n = 2 , then, using the calculus of variations, one can show that these
two conditions are necessary and sufficient to solve (5.45) [KW-1], but for n ≥ 3 , nothing
more is known for this case c = 0 .
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If c < 0 , then these two necessary conditions are not sufficient for a (5.45) to have
a solution, even if n = 1 and M = S1 . We have seen that a sufficient condition is
h ≤ 0 (6≡ 0) ; one can use sub and supersolution to prove [KW-1] that given any function
h0 , if h = h0 +α , then there is a finite constant α0 so that one can solve (5.45) if α < α0

but not if α > α0 .

For c > 0 we have information only if n = 2 . If c > 0 is sufficiently small, then
using the calculus of variations one can solve (5.45) assuming only that h is positive
somewhere on M . In the particular case of the sphere (S2, g0) with the standard metric,
Moser [MJ-2] proved that if c < 2 then one can solve (5.45) if (and only if) h is positive
somewhere. But if c ≥ 2 then Kazdan-Warner [KW-1] found an obstruction to solvability.
They proved that every solution must satisfy the identity

∫

S2

(∇h · ∇ϕ)eu dxg + (c − 2)

∫

S2

hϕeu dxg = 0, (5.47)

where ϕ is any first order spherical harmonic (that is, ϕ is any solution of −∆ϕ = 2ϕ ,
so ϕ is any linear function ax + by + cz or R

3 restricted to S2 ). In particular, if c = 2
then h = ϕ+ constant > 0 does not satisfy (5.47) so there is no solution of (5.45) in this
case.

There has been further work on this (see [BE], [Au-4], [CGY] for references) but the
situation is not at all clear. For n ≥ 3 and c > 0 there is no information on any
(M, g) . In particular there is no known analog of the obstruction (5.47) to solving (5.44)
for manifolds of dimension higher than two. Although in higher dimension (5.44) has no
geometric significance, it is still surprising that we know nothing about it for the cases
when f(x) > 0 that cause so much difficulty in dimension two. Note, however, there is a
generalization of (5.45) to a complex Monge-Ampère equation on Kähler manifolds. We
discuss this in Chapter 9.3 below.



Chapter 6

Implicit Function Theorem: Geometric

Applications

6.1 Introduction

One basic procedure in attacking a problem is that if one can solve some special case—say
by using symmetry—then one can often solve some cases that are near the special case.
In physics this is called perturbation theory, while in mathematics one frequently calls it
the implicit function theorem, and the related bifurcation theory. The implicit function
theorem assumes some linearized map is invertible. Bifurcation theory (= the theory of
singularities of maps) is used if this linearized map is not invertible.

Instead of discussing generalities, we will treat some specific applications. They can
be read independently of each other.

6.2 Isothermal Coordinates

Let
g = ds2 = E(x, y) dx2 + 2F (x, y) dx dy + G(x, y) dy2 (6.1)

be a Riemannian metric on an open set in R
2 . If we make a change of coordinates

u = u(x, y) v = v(x, y) then it is plausible that by a clever choice of the two functions
u and v we can impose two conditions on g to simplify it. One standard choice is to
arrange that in the new coordinates E = G and F = 0 , so

g = λ(u, v)(du2 + dv2) (6.2)

for some positive function λ ; these are called isothermal coordinates. We shall give two
proofs that, locally, one can always introduce isothermal coordinates.

Proof 1. Use the Hodge ⋆ operator. On R
2 , at every point this is an isometry ⋆ :

Λ1 → Λ1 sending a 1 -form α into an orthogonal 1 -form. In terms of the pointwise inner
product of 1 -forms ϕ and ψ , the defining property of ⋆ is: ϕ ∧ ⋆ψ = (ϕ,ψ) dxg . This
implies that ⋆ is a pointwise isometry. The new coordinates are to have the properties
|du| = |dv| and du ⊥ dv . Thus, one seeks v as dv = ⋆du . This is an elliptic system
to which the Local Solvability Theorem 4.3 applies. There are several ways of completing
the details. One procedure, left as an exercise, is to use local coordinates as follows:
beginning from (6.1), compute the Hodge ⋆ on 1-forms and use it to write out dv = ⋆du
as a first-order elliptic system for u and v . One refers to the equations dv = ⋆du as the
Cauchy-Riemann equations for the metric g .

71
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As a slight alternate, if there is a solution of dv = ⋆du , then d2v = 0 implies that
d ⋆ du = 0 , that is, ∆gu = 0 , where ∆g is the Laplacian in the given metric g . Once
one has u , then v is found from dv = ⋆du (note also ∆gv = ⋆d ⋆ dv = 0 ). In addition
to u satisfying ∆gu = 0 , we also need the Jacobian of the map (x, y) 7→ (u, v) to be
non-zero. Because |du| = |dv| , it is enough that du 6= 0 . Thus, we seek a solution u
of ∆gu = 0 with du 6= 0 . By an easy explicit computation in local coordinates one can
find constants a, b so that u0 = ax + by satisfies ∆gu0 = 0 at the origin while du0 6= 0
there. Thus the local solvability Theorem 4.3 gives us the solvability of ∆gu = 0 , du 6= 0
in some neighborhood of the origin. This completes the first proof.

Proof 2. For this proof, we use the fact that if a Riemannian metric g1 is flat (in dimension
two, this means the Gauss curvature is zero), then it is locally diffeomorphic to Euclidean
space with its standard metric; the exponential map gives the diffeomorphism explicitly.1

We will seek a function ϕ so that the pointwise conformal metric g1 = e2ϕg is flat, since
then, as stated just above, for some diffeomorphism f we have f∗(g1) = du2 +dv2 . Thus
f∗(g) = e−2f∗(ϕ)(du2 + dv2) and f is the desired change of coordinates. All we must do
is to find ϕ . Using the standard formula (A.39) for the Gauss curvature K1 of g1 we
see that ϕ should satisfy

∆gϕ = K − K1e
2ϕ = K, (6.3)

where K is the Gauss curvature of g — and we used that K1 = 0 . As before, using
explicit local coordinates, it is easy to find a quadratic polynomial

ϕ0(x, y) = ax2 + bxy + cy2 (6.4)

satisfying (6.3) at the origin; hence by the Local Solvability Theorem 4.3 there is a solution
of (6.3) in some neighborhood of the origin.

In dimensions higher greater that two it is unclear what one should choose as the
optimal local form for a Riemannian metric. DeTurck and Yang [DY] have shown that
on a smooth 3 -manifold, one can always introduce local coordinates so that the metric is
diagonalized. This problem is not elliptic.

6.3 Complex Structures

a) Complex Structures on R
2

A complex structure is just a way to decide which functions are analytic. One customarily
says f ∈ C1 is analytic if ∂f/∂z̄ = 0 , that is,

(

∂

∂x
+ i

∂

∂y

)

f = 0. (6.5)

How can we recognize these Cauchy-Riemann equations in other coordinates? In other
words, say one is given two real vector fields

Qj = aj(x, y)
∂

∂x
+ bj(x, y)

∂

∂y
, j = 1, 2,

and let
Pf = (Q1 + iQ2) f.

1Riemann originally presented his curvature tensor precisely as the obstruction to find-
ing a local change of coordinates to the standard Euclidean metric.
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Can we find new coordinates u = u(x, y) , v = v(x, y) so that in these new coordinates
Pf = 0 is equivalent to (∂/∂u + i∂/∂v)f = 0 ?

A necessary condition is clearly that Q1 and Q2 be linearly independent. The Lewy
example (4.13), which is not locally solvable, shows what can happen if Q1 and Q2 are
dependent.

We claim this is also sufficient. Observe that if we have a solution w = u + iv
of Pw = 0 with ∇u and ∇v linearly independent, and if we use u and v as new
coordinates, then by the chain rule, in these coordinates

P = α(u, v)
∂

∂u
+ β(u, v)

∂

∂v

for some complex-valued functions α and β . But by substitution

0 = P (u + iv) = α(u, v) + iβ(u, v).

Thus α = −iβ and P = −iβ(∂/∂u + i∂/∂v) . This proves that Pf = 0 if and only if
(∂/∂u + i∂/∂v)f = 0 . The only gap is that we must locally solve Pw = 0 . Since Q1

and Q2 are linearly independent, one can easily verify that Pw = 0 is elliptic so one
obtains the local solvability with ∇u and ∇v independent by using the Local Solvability
Theorem 4.3.

After some thought about complex structures, one can see that the results in this
section are equivalent to our earlier discussion of isothermal coordinates.

b) Complex Structures on R
2n

For several complex variables z1, . . . , zn one can similarly ask how one can recognize the
Cauchy-Riemann equations

∂f/∂z̄1 = ∂f/∂z̄2 = · · · = ∂f/∂z̄n = 0

in other coordinates. Now we are given n complex vector fields

Pj :=

2n
∑

k=1

akj
∂

∂xk
=

n
∑

k=1

ckj
∂

∂zk
+ dkj

∂

∂z̄k
, j = 1, . . . , n (6.6)

with P1, . . . , Pn , P̄1, . . . , P̄n linearly independent and seek a change of coordinates
ζ = φ(z, z̄) so that f satisfies Pjf = 0 , j = 1, . . . ., n if and only if ∂f/∂ζ̄k = 0, k =
1, . . . , n . If we can find these new coordinates, then the Pj will be linear combinations
of the ∂/∂ζ̄k . Consequently, a necessary condition is that

[Pj , Pk] = linear combination of {P1, . . . , Pn}. (6.7)

Newlander and Nirenberg (1957) proved that the linear independence and the inte-
grability condition (6.7) are also sufficient that there are coordinates ζ1, . . . , ζn so that
Pjf = 0 are equivalent to the Cauchy-Riemann equations.

Just as in the simpler case of complex structures on R
2 , we will find solutions

ζ1, . . . , ζn of Pjζ
k = 0, j, k = 1, . . . , n , with the gradients of the ζk ’s linearly in-

dependent. These will be the new coordinates.
We will sketch Malgrange’s proof [Ma] of this result, following the exposition in [N-

2]. Malgrange begins with the classical observation that the problem is solvable if the
coefficients ajk in (6.6) are real analytic since then one can obtain power series solutions
(see [KN, Vol. 2, Appendix 1]); the integrability conditions (6.7) are formally just those
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of the Frobenius theorem. He solves the general case by showing there is a change of
coordinates so that the equations are real analytic in the new coordinates. Then one can
appeal to the real analytic case to complete the proof.

First a preliminary change of coordinates. If we freeze the coefficients in (6.6) at one
point, say the origin, then for this constant coefficient system one can find a linear change
of coordinates and solve the problem, that is, in these new coordinates cjk = δjk and
djk = 0 . If me make this same linear change of coordinates in our variable coefficient
case, then we obtain a system of the form (6.6) with cjk(0) = δjk and djk(0) = 0 . Since
cjk is now invertible near the origin, we can multiply by its inverse to rewrite (6.6) in the
equivalent simpler form

Pjζ :=
∂ζ

∂z̄j
−

∑

k

akj
∂ζ

∂zk
= 0, j = 1, . . . , n, (6.8)

with new coefficients akj and where we are thinking of ζ = (ζ1, . . . , ζn) as a complex
vector. For short we write this as the matrix system

∂ζ

∂z̄
=

∂ζ

∂z
A, that is, ζz̄ = ζz A. (6.9)

Because of the special form of (6.8), the commutators [Pj , Pk] do not involve ∂/∂z̄ . Thus
the integrability conditions become simply

[Pj , Pk] = 0. (6.10)

The key idea is to introduce new coordinates wj = wj(z, z̄) in a clever way to be specified
shortly, with wz(0) = I , and wz̄(0) = 0 . In these new coordinates (6.9) takes the form

ζw̄ = ζwB (6.11)

where
B = (wzA − wz̄)(w̄z̄ − w̄zA)−1 (6.12)

(note the condition on w at the origin ensures that w̄z̄ − w̄zA is invertible near the
origin). In these new coordinates the integrability conditions (6.10) for (6.11) take the
form

∂bik

∂w̄j
− ∂bij

∂w̄k
=

∑

r

(

brj
∂bik

∂wr
− brk

∂bij

∂wr

)

(6.13)

where we have written B = (bij) .
For any choice of coordinates w = w(z, z̄) , the system (6.9)-(6.10) is entirely equiv-

alent to (6.11), (6.13). Now we pick clever coordinates, requiring that they satisfy the
additional conditions

∑

k

∂bjk

∂wk
= 0, j = 1, . . . , n. (6.14)

It is not difficult to verify that these equations (6.13)-(6.14) for the coefficients bij as func-
tions of the wk are an overdetermined elliptic system with analytic coefficients. Therefore
the functions bij are analytic functions of the w and w̄ . Consequently, we have reduced
to the analytic case and conclude that the equations (6.11), (6.13) can be solved to give a
solution with ζw(0) = I , ζw̄(0) = 0 .

It remains to be shown that the functions wk can be found to satisfy (6.14). Using
(6.12) and the chain rule (to express ∂/∂w in terms of ∂/∂z and ∂/∂z̄ ), the equations
(6.14) become differential equations for wk as functions of z and z̄ . Because A is zero
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to second order at the origin, this system is elliptic at the origin for the function w ≡ z ;
indeed, the linearized system is

−
∑

k

∂2wj

∂zk∂z̄k
+ lower order terms.

Since 4∂2/∂zk∂z̄k is just the Laplacian, the ellipticity is obvious. The local solvability of
(6.14) for w = w(z, z̄) with w(0) = 0 , wz(0) = I , wz̄(0) = 0 is now a consequence of
the Local Solvability Theorem 4.3

6.4 Prescribing Gauss and Scalar Curvature

Let M be a compact n-dimensional manifold. Given a function S , is there a Riemannian
metric g so that S is the scalar curvature of g ?

If n = 2 , then S = 2K , where K is the Gauss curvature. The Gauss-Bonnet
theorem

∫

M

K dA = 2πχ(M), (6.15)

where dA is the element of area and χ(M) is the Euler characteristic, gives an obvious
necessary condition on K , namely, if χ(M) > 0 then K must be positive somewhere,
if χ(M) < 0 then K must be negative somewhere, while if χ(M) = 0 then K must
change sign—unless it is identically zero.

For n ≥ 3 there are other, more complex, topological restrictions that are not yet fully
understood. There are topological obstructions to positive and to zero scalar curvature
—for example, the torus Tn has a scalar curvature Sg ≥ 0 if and only if g is flat,
i.e. its sectional curvature is zero, while a K-3 surface has no metric with Sg > 0 (see
Chapter 7.2 some further remarks on this).

As a contrast, every compact M (dim M = n ≥ 3) has a metric of negative scalar
curvature (see Chapter 7.2) so there are no topological restrictions to negative scalar
curvature. There are stronger results in two directions. First, in Corollary 7.3 using the
theorem we will shortly prove, we will prove that for every compact manifold, any function
that is negative somewhere is the scalar curvature of some metric. The second is the recent
proof by Lohkamp [Lo] that every compact manifold of dimension at least three admits a
smooth metric with negative Ricci curvature.

Let S(g) denote the scalar curvature of g . It is computed using a complicated
formula involving the derivatives of g up to order two (see (A.27)–(A.29)). Thus given
our candidate, S , for the scalar curvature, we wish to solve the second order partial
differential equation

S(g) = S. (6.16)

This is one equation for the metric g , i.e. 1 equation for 1
2n(n + 1) unknowns. We will

show how to solve this equation under certain conditions. One key step is to observe that
it is underdetermined elliptic.

Beginning with an arbitrary metric g0 , let S0 = S(g0) . The strategy in Step 1 is to
use the implicit function theorem to solve S(g) = S for all S near S0 , say ‖S −S0‖ < ǫ
in some appropriate norm (actually, to avoid degeneracies first one may have to perturb
g0 slightly). In Step 2 we seek a diffeomorphism ϕ such that ‖ϕ∗(S) − S0‖ < ǫ . If ϕ
can be found, then, by Step 1 there is a metric g1 such that S(g1) = ϕ∗(S) . But for any
metric ϕ∗S(g) = S(ϕ∗g) , because locally ϕ∗ is just a change of coordinates. Therefore
the metric g = (ϕ−1)∗(g1) satisfies S(g) = S . One additional flexibility we will use below
is the scaling S(cg) = c−1S(g) , where c > 0 is any constant.
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Theorem 6.1 [Kazdan-Warner [KW, 4]] Let (M, g0) be a compact Riemannian
manifold, dim M ≥ 2 , with S(g0) = S0 a constant. If S0 6≡ 0 , then any function S
having the same sign as S0 somewhere is the scalar curvature of some metric, while if
S0 ≡ 0 , then any function S that changes sign is the scalar curvature of some metric.

Proof. To avoid some mild technical complications, we will only carry out the details
when S0 = −1 (any negative constant would do as well). In Theorem 7.2 we will show
that any compact M , dimM ≥ 3 , has a metric with scalar curvature S0 ≡ −1 .

Step 1. Since S(g0) = S0 , to use the implicit function theorem we need the linearization
(or differential) of S at g0 . This follows from the explicit formula (A.28) for the curvature.
As in (A.32)–(A.34), here is the result in classical tensor notation:

Ah := S′(g0)h = −∆0h
i
i + hij

;ij − hij(R0)ij , (6.17)

where ∆0 is the Laplacian and R0 = Ric(g0) the Ricci tensor, respectively, of g0 , and
h is a symmetric tensor. The covariant derivatives in (6.17) are in the g0 metric. We
compute the L2 formal adjoint A∗ in detail: for any smooth function u , the definition
of A∗ and integration by parts (twice) gives

〈A∗u, h〉 = 〈u, Ah〉 =

∫

[−u∆0h
i
i + uhij

;ij − uhij(R0)ij ] dx0

=

∫

[−(∆0u)hi
i + u;ijh

ij − u(R0)ijh
ij ] dx0

=

∫

[−(∆0u)(g0)ij + u;ij − u(R0)ij ]h
ij ] dx0,

where dx0 is the element of volume in the g0 metric. Thus in coordinate-free notation

A∗u = −(∆0u)g0 + Hess 0(u) − u Ric(g0). (6.18)

The principal symbol of A∗ is (see Chapter 1.6)

[σξ(A
∗)z]ij = (−|ξ|2(g0)ij + ξiξj)z. (6.19)

This is injective for ξ 6= 0 . (To see this, say z is in the kernel of the symbol. Take the
trace of (6.19) and obtain 0 = (−n + 1)|ξ|2z ; but ξ 6= 0 , so z = 0 .) Consequently the
operator A∗ is overdetermined elliptic. This implies that A is underdetermined elliptic,
so A is underdetermined elliptic and AA∗ is elliptic. We are thus led to seek our metric
g in the special form g = g0 + A∗u , that is, we solve the fourth order nonlinear elliptic
equation F (u) = S , where

F (u) := S(g0 + A∗u). (6.20)

Note that this is one scalar equation for one unknown u . It is elliptic at u = 0 since
F ′(0)v = S′(g0)A

∗v = AA∗v , and we know AA∗ is elliptic. Now F (0) = S0 . To apply
the Perturbation Theorem 4.2 we need only check that for any f the linear equation
AA∗v = f has a unique solution u . By the Fredholm alternative (Theorem 2.4) the
unique solvability of AA∗v = f in various spaces is assured if kerAA∗ = 0 . Thus, say
AA∗z = 0 . Then A∗z = 0 because in L2 , 0 = 〈z, AA∗z〉 = ‖A∗z‖2 . Taking the trace
of (6.18) we obtain

−(n − 1)∆z − S0z = 0. (6.21)

Since S0 = −1 < 0 , either method of Example 2.9, or a direct application of the maximum
principle shows that z = 0 . Thus ker AA∗ = 0 . For use in Step 2 , we will need Lp spaces,
so we use the fact that AA∗ : Hp,4 → Lp is an isomorphism for any 1 < p < ∞ .
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In addition we need the map F of (6.20) to be C1 from Hp,4 to Lp . From the
explicit formula for scalar curvature we see that F is quasilinear, that is, it has the form

F (u) =
∑

|α|=4

aα(x, ∂ℓu)∂αu + b(x, ∂ℓu), (6.22)

where ℓ ≤ 3 . If we pick p > n = dimM , then by the Sobolev Embedding Theorem 1.1, if
uj → u in Hp,4 then uj → u uniformly in C3 ; using this it is easy to see that if p > n
then F is a C1 map from Hp,4 to Lp . By the implicit function theorem, F maps a
neighborhood of zero in Hp,4 onto an Lp neighborhood of S0 . Thus, there is an ǫ > 0
so that if

‖S − S0‖Lp < ǫ, (6.23)

then there is a solution g = g0 + A∗u of S(g) = S and g will be sufficiently near
g0 to also be positive definite. Using elliptic regularity and a bootstrap argument as in
Example 2.6 one can see that if S ∈ C∞ then u ∈ C∞ —just observe u ∈ Hp,4 for
p > n implies u ∈ C3, σ for some σ > 0 so the coefficients aα and bα in (6.22) are in
C3, σ , etc..

Step 2 . We first observe the following obvious approximation lemma. Say f : M → R

is a continuous function and for some x0 ∈ M we have f(x0) = γ . Then given any
1 < p < ∞ , there is a diffeomorphism ϕ : M → M so that ϕ∗f is arbitrarily close to
γ in Lp ; in fact, pick ϕ so that a small neighborhood, U , of x0 is spread over most of
M , and note that in U the function f(x) is near f(x0) = γ (this type of approximation
fails if we use the uniform norm).

Using this approximation lemma we now can complete the proof of the special case
S0 = −1 . Since S is assumed negative somewhere, there is a point x0 and a constant
c > 0 so that cS(x0) = S0 = −1 . With ǫ > 0 from (6.23), pick a diffeomorphism ϕ so
that ‖cϕ∗(S)− S0‖Lp < ǫ . Then by Step 1 there is a solution g1 of S(g1) = cϕ∗(S) , so
the metric g = (ϕ−1)∗(cg1) is the desired solution of S(g) = S . ¤

We have been fairly detailed in this proof so that one can see how the various parts
of the theory are used. In the future we will usually delete the more routine steps. Note
that in Step 1 above we used that S0 < 0 only to make it easy to conclude that the
linearization (6.21) is invertible. If S0 ≥ 0 this is not necessarily true (as on the standard
round sphere S2 , or the flat torus); one then perturbs g0 to make (6.21) invertible. Alas,
this new S0 is likely not a constant so one is forced to use a slightly more complicated
version of the approximation lemma in Step 2 — since the version above assumes that
S0 = γ is a constant.

Because every compact 2 -manifold has a metric with constant Gauss curvature, one
consequence of Theorem 6.1 is that a function K ∈ C∞(M) is the Gauss curvature of
a metric if and only if K satisfies the obvious Gauss-Bonnet sign condition (see after
(6.15)). The original proof of this [KW-2] used conformal deformation of the metric via
equation (6.25) below.

In the 2-dimensional case it is elementary to solve an interesting related problem.
For a 2-dimensional Riemannian manifold (M, g0) with Gauss curvature K0 and area
element dA0 , the curvature 2-form Ω is

Ω0 = K0dA0, (6.24)

By Gauss-Bonnet (6.15),
∫

M
Ω0 = 2πχ(M) . Conversely, given any 2-form Ω that satisfies

this Gauss-Bonnet condition, is there a metric g so that Ω is the curvature 2-form for
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g ? Wallach-Warner [WW] proved that the answer is “yes”. Here is their proof. First fix
some metric g0 and seek a new metric pointwise conformal to g0 , that is, g = e2wg0

for some as yet unknown function w . Now for pointwise conformal metrics one has the
formulas (see (A.35))

dAg = e2wdA0 and Kg = (−∆0w + K0)e
−2w, (6.25)

where ∆0 and K0 are the Laplacian and Gauss curvature, respectively, of g0 . Thus

Ω = (−∆0w + K0)dA0 = −∆0w dA0 + Ω0

To realize a given Ω as Ωg for some g we thus will seek a function w such that

−∆0w dA0 = Ω − Ω0 (6.26)

Since
∫

M
Ω = 0 , by assumption, and

∫

M
Ω0 = 0 , by Gauss-Bonnet, we can write Ω−Ω0 =

fdA0 for some function f satisfying
∫

M
f dA0 = 0 . Thus, despite nonlinear expectations,

(6.26) reduces to a simple linear equation

∆0w = f,

As we observed in Example 2.9, since
∫

M
f dA0 = 0 this equation has a solution, which

is unique except that we can always add any constant to w .

6.5 Prescribing the Ricci Tensor Locally

Next we investigate which tensors Rij are locally Ricci tensors. Given a metric g , its Ricci
curvature can be computed by a formula (A.27)–(A.28) involving the first two derivatives
of g . We write this as Ric(g) , and want to solve the partial differential equation

Ric(g)ij = Rij . (6.27)

Since g and R are both symmetric tensors, there are the same number of equations
as unknowns; this makes us optimistic. However, Ric is invariant under the group of
diffeomorphisms: for any diffeomorphism ϕ

ϕ∗ Ric(g) = Ric(ϕ∗g). (6.28)

Let ϕt be a family of diffeomorphisms with ϕ0 =identity. Then, using (A.33) and the
algebraic symmetries of the curvature tensor, the derivative of (6.28) with respect to t at
t = 0 (see (A.33) yields the second Bianchi identity

0 = 2Ri
k;i − Ri

i;k = gij

[(

2
∂Rik

∂xj
− ∂Rij

∂xk

)

− Rℓ
k

(

2∂giℓ

∂xj
− ∂gij

∂xℓ

)]

, (6.29)

where k = 1, . . . , n . Details of this approach to the Bianchi identity are in [K-1]2. These
Bianchi identities are n additional conditions which g and R must satisfy so our initial
optimism is gone. DeTurck [D-1] observed that the Bianchi identity is indeed an obstruc-
tion to solving (6.27) locally. One example where the Ricci equation (6.27) cannot be
solved locally in R

n , n ≥ 3 is the following. Let

R =







x1 0 · · · 0
... Q
0






, (6.30)

2The proof of the first Bianchi identity in that paper is artificial, and should be ignored.
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where Q(x2, . . . , xn) is any (n − 1) × (n − 1) symmetric matrix whose elements do not
depend on x1 ( Q = 0 or Q = I are fine). Then there is no Riemannian metric satisfying
the Bianchi identity (6.29) and hence no metric with Ricci curvature R in any neighbor-
hood of the origin. To see this, simply look at the case k = 1 in the Bianchi identity
(6.29) on the hyperplane x1 = 0 to conclude that g11 = 0 there; this is impossible for a
positive definite metric.

DeTurck also proved the next result, that one can solve Ric(g) = R locally if R is
invertible. (It is natural to guess that if, given R , there is a metric satisfying the Bianchi
identity (6.29) then (6.27) is locally solvable. This is an open question.)

Theorem 6.2 [DeTurck [D-2]]. Let R be an invertible symmetric tensor in a neigh-
borhood of the origin in R

n , n ≥ 3 . Then R is the Ricci tensor of some Riemannian
metric in some neighborhood of the origin.

Proof. If the equation (6.27) were elliptic, then one could try to apply the Local Solvability
Theorem 4.3 (of course, this is doomed to fail by the non-existence example above). First
of all, it is straightforward to see that (6.27) is solvable at the origin itself. For instance,
one may find g0 in the simple form gij = [1 + p(x)]δij conformal to the standard metric
on R

n , choosing p(x) to be a homogeneous quadratic polynomial.
Let Ric′(g0) be the linearization of the operator Ric(g) at the metric g0 at the

origin. From the explicit formula (A.33) for Ric′(g) one observes that in an orthonormal
frame the principal symbol is

[σξ(Ric′(g0))h]ij = − 1
2 [hij |ξ|2 +

∑

s

(hss ξi ξj − his ξsξj − hjs ξs ξi)]. (6.31)

Now σξ maps symmetric matrices to symmetric matrices. It is routine to verify that
the kernel consists precisely of the matrices of the form hij = vi ξj + vj ξi for any
covector v , that is, h = ξ ⊗ v + v ⊗ ξ . Thus σξ is not an isomorphism so the equation
(6.27) is not elliptic. Using (3.16) we see that these matrices h in kerσξ are exactly
those tangent to the orbit of the metric g0 under the group of diffeomorphisms, i.e.
h = d(ϕ∗

t (g0))/dt|t=0 where ϕt is a family of diffeomorphisms with ϕ0 = identity. This
shows that the invariance (6.28) under the group of diffeomorphism is related to the non-
ellipticity of the curvature equation (6.27).

Building on these observations, DeTurck found the following rather simple proof [D-5]
of this theorem. To cope with the group of diffeomorphisms, he solves

Ric(g) = ϕ∗(R), (6.32)

where the unknowns are both g and the diffeomorphism ϕ (this idea was also used in the
proof of Theorem 6.1). If one can solve (6.32), it is obvious that g1 = (ϕ−1)∗g satisfies
Ric(g1) = R , as desired.

Equation (6.32) has more unknowns than equations, so it is underdetermined. The
n additional unknowns supplied by ϕ compensate for the n conditions imposed by the
Bianchi identity. We shall shortly verify that (6.32) is elliptic if R is invertible. Since
it is solvable at the origin—just use ϕ0 = id. and g0 from above—the local solvability
will then follow from Theorem 4.3 along with the device from the proof of Corollary 2.5a
—or from Section 6.4 above (see equation (6.20))—to pass from an underdetermined to a
determined elliptic system.

One slight technical problem is that this equation involves second derivatives of g ,
but only first derivatives of ϕ . There are several ways to circumvent this. Following
DeTurck (see [Be-2] for another variant of this) we seek the diffeomorphism, which we can
locally write as ϕ = (ϕ1, . . . , ϕn) , in the special form ϕi =

∑

j ∂sij/∂xj for some (not
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necessarily symmetric) tensor sij . Then (6.32) becomes an equation for the symmetric
tensor g and the tensor s . It involves the second derivatives of both. We compute the
symbol of the right side of (6.32). First

T (s) := ϕ∗(R) =
∑

i,j,k,ℓ

Rij(ϕ(x))
∂ϕi

∂xk

∂ϕj

∂xℓ
dxk dxℓ

=
∑

Rij(ϕ)
∂2sip

∂xp∂xk

∂2sjq

∂xq∂xℓ
dxk dxℓ.

Because ϕ0 = id. , that is, ϕi
0(x) = xi , then sip

0 = 1
2 (xi)2δip (no summation on the index

i ) so for any symmetric tensor τ the linearization of T at s0 is

T ′(s0) := ϕ∗(R) =
∂

∂λ
T (s0 + λτ)

∣

∣

∣

∣

λ=0

=
∑

(

Riℓ
∂2τ ip

∂xp∂xk
+ Rkj

∂2τ jq

∂xp∂xℓ

)

dxk dxℓ + · · · ,

where · · · represent terms having lower order derivatives of τ . Letting Rτ be matrix
multiplication, we then find the symbol is

[σξ(T
′(S0))τ ]kℓ =

∑

p

[(Rτ)ℓpξpξk + (Rτ)kpξpξℓ]. (6.33)

Consequently, the symbol of the linearization L of the operator Ric(g)−T (σ) at (g0, s0)
is

σξ(L)

(

h
τ

)

:= σξ(Ric′(g0)h) − σξ(T
′(σ0)τ).

This map σξ goes from the pair of matrices, h and τ (with h symmetric) to one
symmetric matrix. Underdetermined ellipticity means that σξ(L) is surjective if ξ 6= 0 ;
thus for any symmetric S one must solve

σξ(L)

(

h
τ

)

= S. (6.34)

The idea is to use the first term, hij |ξ|2 , in (6.31) to solve (6.34), and then pick τ so
that the remaining terms cancel. Thus, let h = −2S/|ξ|2 . Using our assumption that R
is invertible there is a τ so that Rτ = −[2h − trace(h) I]/4 . One can verify easily that
this solves (6.34). Therefore (6.32) with ϕi =

∑

∂sij/∂xj , is underdetermined elliptic
and locally solvable. ¤

6.6 Local Isometric Embedding of M 2 in R3 and R4

.
Let (M2, g) be a two dimensional Riemannian manifold. When can one realize this,

locally, as a small piece of a two dimensional surface in R
3 or R

4 ? We will prove that one
can always locally isometrically embed in R

4 , and that one can embed in R
3 in many

cases—although, as we will discuss below, it is still unknown if one can always locally
embed in R

3 .
Write

g = ds2 = E(u, v) du2 + 2F (u, v) du dv + G(u, v) dv2.
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The strategy to embed in R
3 was first used by Weingarten [We]. He seeks a function

z(u, v) with ∇z(0) = 0 so that the metric

g1 = g − (dz)2 (6.35)

has zero Gauss curvature in some neighborhood of the origin. Then, just as in the second
proof in our discussion of isothermal coordinates in Section 6.2, by using the exponential
map we obtain new coordinates (x, y) so that g1 = dx2 + dy2 . Writing z in these new
coordinates we obtain

g = g1 + (dz)2 = dx2 + dy2 + dz(x, y)2. (6.36)

Thus our metric g is exactly the metric induced on the surface z = z(x, y) by its embed-
ding in R

3 .
To carry out the details, let K and K1 be the Gauss curvatures of g and g1 =

g − (dz)2 , respectively. We must find a function z so that K1 ≡ 0 in a neighborhood
of the origin. We can compute K1 in terms of the derivatives of g1 and hence of z .
Write this operator as K1 = T (z) so we want to solve T (z) = 0 . By a linear change
of variables we may assume that in our coordinates gij = δij at the origin. Then by an
explicit computation (recall we want ∇z(0) = 0 )

T (z)|0= K1(0) = K(0) − (zuuzvv − z2
uv)

∣

∣

∣

0
. (6.37)

If g is real analytic, then using the Cauchy-Kowalevsky theorem it is obvious that one
can find an analytic solution of T (z) = 0 near the origin. This proves the existence of
local isometric embedding in R

3 for analytic metrics (Cartan [C] and Janet [J] extended
this to all dimensions. (see also [Sp])).

One can also prove the local isometric embedding in R
3 if K(0) > 0 (and K ∈ C∞ )

since then z0(u, v) = 1
2 (u2 + v2)

√

K(0) is a solution of T (z0) = 0 at the origin and the
equation is elliptic there (Chapter 2.2); consequently one can apply the Local Solvability
Theorem 4.3 for elliptic equations.

In addition, it turns out that if K(0) < 0 then the equation T (z) = 0 is locally
solvable (and hence one can locally embed in R

3 ) since then the equation T (z) = 0
is hyperbolic, but we have not discussed the machinery here. Thus, the only remaining
unresolved case is when K(0) = 0 when the equation T (z) = 0 is neither elliptic nor
hyperbolic. This case is partially treated in the work of [Lin-1, Lin-2], who obtained
the embedding if either K ≥ 0 near the origin or if K(0) = 0 but ∇K(0) 6= 0 . It is
essentially the Monge-Ampère equation discussed in the Example at the end of Section 4.5,

It is quite easy to prove that one can always locally isometrically embed (M2, g) in
R

4 . There are several proofs of this. Our first—and shortest—proof uses the observation
from (6.37) that if w(u, v) = cuv , then by choosing c large the metric g1 = g − dw2

has positive curvature in a neighborhood of the origin. Thus, as proved above, we can
isometrically embed g1 in R

3 , so

g1 = dx2 + dy2 + dz(x, y)2

for some function z(x, y) . Write w(u, v) in terms of these new coordinates (x, y) to
conclude that

g = g1 + dw2 = dx2 + dy2 + dz(x, y)2 + dw(x, y)2,

which gives the desired embedding in R
4 with coordinates (x, y, z, w). .
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The second proof (due to Poznyak [P]) that one can always locally embed in R
4 is

longer, but it yields more, showing that one can embed (M2, g) on the special three
dimensional surface Σ3 →֒ R

4 defined by

(ǫρ cos
θ

ǫ
, ǫρ sin

θ

ǫ
, ǫρ cos

ϕ

ǫ
, ǫρ sin

ϕ

ǫ
),

where ǫ > 0 is a parameter. The metric on Σ3 is

g0 = ρ2(dθ2 + dϕ2) + 2ǫ2dρ2. (6.38)

Write the given metric g in isothermal coordinates (see Section 6.2)

g = λ2(u, v)(du2 + dv2). (6.39)

We seek functions ρ = ew(u,v) , θ = θ(u, v) , ϕ = ϕ(u, v) so that g = g0 ; then equations
(6.38)–(6.39) give

γ := λ2e−2w(du2 + dv2) − 2ǫ2dw2 = dθ2 + dϕ2.

If we regard γ as a metric, then, just as before, it is enough to show that for some function
w(u, v) the metric γ is flat, that is, the Gauss curvature Kγ of γ zero. Now from (A.39)
the Gauss curvature K1 of g1 := λ2e−2w(du2 + dv2) is

K1 = [∆w − ∆(log λ)]λ−2e2w,

where ∆w = wuu + wvv . Since γ = g1 − 2ǫ2dw2 , from (6.37) at the origin we have

Kγ = [∆w − ∆(log λ)]λ−2e2w − 2ǫ2(wuuwvv − w2
uv).

We want to solve the equation Kγ = 0 for w in some neighborhood of the origin for
some ǫ > 0 . One can clearly solve this equation if ǫ = 0 : a solution is w(u, v) =
au + bv + log λ(u, v) , where a and b are constants chosen so ∇w(0, 0) = 0 . By the
implicit function theorem it is straightforward to conclude that one can solve this elliptic
equation Kγ = 0 for w as long as ǫ is sufficiently small.

6.7 Bifurcation Theory

Even if the implicit/inverse function theorem is not applicable, one can often get some
valuable information. Say one wants to solve the scalar equation T (x) = y . Assume that
T (x0) = y0 and seek a solution y near y0 . Formally, one can use a Taylor series

T (x) = T (x0) + T ′(x0)(x − x0) + 1
2T ′′(x0)(x − x0)

2 + · · · .

If T ′(x0) is not invertible, then one can not apply the inverse function theorem, and
a deeper analysis is needed—using T ′′(x0) and possibly higher order derivatives. The
simplest example is the map f(x) = x3 , which is bijective, even though f ′(0) = 0 . For
the higher dimensional case where x = (x1, . . . , xn) , the Morse lemma, which describes
a smooth real-valued function f : R

n → R near a non-degenerate critical point, gives a
simple criterion for solving the scalar equation T (x) = y . The Morse lemma states there
are new coordinates so that near the critical point

f(x) = f(0) + (x2
1 + · · · + x2

k) − (x2
k+1 + · · · + x2

n).
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From this it is evident that one can solve f(x) = y for all y near y0 = f(0) if and only if
k 6= 0 or n , since then f(x) − f(0) changes sign for small x . The study of singularities
of maps between finite dimensional manifolds is especially useful for elliptic differential
equations T (u) = f since ellipticity allows one to reduce to the finite dimensional case.
There is a good introductory exposition in [N-3, Chapter 2.7 and Chapter 3]. All we will
do here is give two specific examples which may be useful to keep in mind while reading
the general theory.

example 6.1 The first example is solving

F (u, h) := −∆u + c − heu = 0 (6.40)

on a compact manifold M2 , where c is a given function. Given h(x) we want a solution
u . Clearly F (0, c) = 0 and we seek a solution for h near c . The linearization at u = 0 ,
h = c , is

Lv = Fu(0, c)v = −∆v − cv.

Since L is self-adjoint, if kerL = 0 then by the Fredholm alternative (Theorem 2.4) L
is a bijection from C2, α(M) → Cα(M) and also, from Hp,2(Mn) → Lp(Mn) . For F to
be a C1 map we need p > n/2 (since then Hp,2 →֒ C0 ). Thus, if kerL = 0 then given
any h near c we can solve F (u, h) = 0 . However there is trouble if kerL = 0 because
then L is not a bijection so the implicit function theorem can not be applied. It is an
instructive exercise to work out a local (near u = 0 ) description of when one can solve
(6.40) in the case c = 0 , so ker L = coker L are one dimensional and are spanned by
the constant function, and also the case c = 2 on (S2, g0) — where g0 is the standard
metric—so ker L = coker L are both three dimensional and are spanned by the first order
spherical harmonics. ¤

example 6.2 A second instructive example is, on compact M , finding nontrivial solutions
(u 6≡ 0) of

F (u, λ) := ∆u + λ sinh u = 0. (6.41)

The existence of nontrivial solutions will depend on λ . For instance if λ = 0 , then u =
const. is a solution.

By an easy argument [or just use part b) of the Comparison Theorem 4.4], one sees
that if λ < 0 then the only solution of (6.41) is u = 0 . To find other solutions we consider
the linearized equation

Lv = Fu(0, λ)v = ∆v + λv.

If λ is not an eigenvalue of the Laplacian, then by the implicit function theorem the
only solution of F (u, λ) = 0 near u = 0 is the zero solution itself. Thus, to find a
non-trivial solution we let λ = λ0 be an eigenvalue of the Laplacian. If the eigenspace is
one dimensional, one can show that there is a non-trivial solution of (6.41) for all λ near
λ0 (see Theorem (3.22) and page 79 in [N-3]). ¤
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Chapter 7

Scalar Curvature

[not yet revised]

7.1 Introduction

Because the scalar curvature is such a weak invariant of the metric (one averages the
curvature twice to get the scalar curvature), it is not at all clear that there are any
topological obstructions to functions being scalar curvatures, except in dimension two
where we have Gauss-Bonnet. After discussing some obstructions—and techniques for
finding them—we consider the question of prescribing the scalar curvature. The most
naive way of deforming a metric is pointwise conformally: g1 = pg for some positive
function p . In 1960 Yamabe [Ym] asked if one can find a function p so that g1 has
constant scalar curvature; he viewed this as a first step in finding Einstein metrics (see
Chapter 9 below). This would then give a proof of the Poincaré conjecture in dimension
three. Yamabe’s work had a serious error and problem is still unsolved, although we now
have some good information, which we present below. The reader may find the survey
lecture [BB] useful.

7.2 Topological Obstructions

As we mentioned in Chapter 3.6, Lichnerowicz [Li] used the Bochner technique to find
the first topological obstructions to metrics with positive scalar curvature. Hitchin later
extended Lichnerowicz’s argument to show that certain exotic spheres do not have positive
scalar curvature metrics. There has been a striking generalization by Gromov-Lawson (see
the discussion in [LM]). One of their results is that if a compact M has a metric with
non-positive sectional curvature, then there is no metric with positive scalar curvature.
In particular, the torus Tn has no metric with positive scalar curvature. The same
ideas, first noticed by Kazdan-Warner [KW-5] show that some manifolds have topological
obstructions to zero scalar curvature metrics.

Schoen-Yau [SY-1] used a totally different method to find topological obstructions to
positive scalar curvature metrics. They viewed minimal surfaces as the analog of geodesics.
Just as the second variation of arc length leads one to the Jacobi equation, which then
gives important relationships between curvature and geodesics, the second variation of
surface area gives useful information. The most difficult step, by Sachs-Uhlenbeck [SaU-
1, 2] and Schoen-Yau [SY-1], is proving the existence of a minimal submanifold of a given
manifold. This is done under topological assumptions analogous to those used by Synge
in his results for geodesics. Then the second variation formula is utilized.

85
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Schoen-Yau [SY-2] later extended their technique to prove the positive mass conjecture
in general relativity (this problem is very closely related to positive scalar curvature).
Subsequently, Witten [Wi] gave a different proof of the positive mass conjecture using
harmonic spinors and the Dirac operator (for additional references, see the survey lecture
[K-2]).

Since spinors and the Dirac operator are so closely related to positive scalar curvature,
it would be valuable if one could find some way to use them to deform metrics in an
intelligent way, augmenting the simple pointwise conformal deformations.

So far, we have mentioned obstructions to positive and to zero scalar curvature. What
about negative scalar curvature? It turns out there are none, as was first observed by
Aubin [Au-3] extending earlier work of Avez. In fact, as we mentioned in Chapter 6.4
there are no obstructions to negative Ricci curvature (see the discussion in Chapter 9).
The key step in Aubin’s construction is the following.

Lemma 7.1 Let Mn , n ≥ 3 , be a compact manifold. There is a metric g with negative
total scalar curvature, that is,

∫

M
Sg dxg < 0 .

For the proof, one fixes a metric g0 on M and then deforms it only in a very small
set to achieve negative total scalar curvature. The simplest deformation is due to Bérard-
Bergery and can be found in [Be-2]. One uses this for the next result.

Theorem 7.2 Let (Mn, g) be a compact Riemannian manifold with negative total scalar
curvature. Then there is a pointwise conformal metric, g1 = pg with p > 0 , having
constant negative scalar curvature, S1 = −1 .

Proof. For amusement, we first do the classical case n = 2 . Seek g1 as g1 = eug .
Thus we wish to solve (5.4), namely ∆u = S(x) + eu , where

∫

M
S dxg < 0 . This is an

immediate consequence of Theorem 5.8 — or else one can use the procedure used for (5.3)
to reduce the problem to (5.45), and then apply any of the techniques of Chapter 5.

For n ≥ 3 as in Chapter 5.1 we seek g1 as

g1 = u4/(n−2)g, (7.1)

and consequently must solve (5.6):

Lgu := −γ∆gu + Sgu = −uα, (7.2)

where γ = 4(n − 1)/(n − 2) and α = (n + 2)/(n − 2) > 1 . Following [KW-5], let λ1(g)
be the lowest eigenvalue of the linear operator Lg defined by the left side of (7.2) and
let ϕ > 0 by a corresponding eigenfunction (here we used Proposition 5.3). Using ψ ≡ 1
in the Rayleigh quotient (5.18), the assumption on S implies that λ1 < 0 . Now we
solve (7.2) using sub- and supersolutions (Chapter 5.5) of the form u± = c±ϕ , where
0 < c− < c+ are constants. For example we want Lgu+ ≥ −uα

+ , that is, λ1cϕ ≥ −(cϕ)α

so 0 < −λ1 < (cϕ)α−1 which is clearly satisfied for all large c . ¤

As a slight variant of the above proof, we should have proceeded in two steps, first
using the eigenfunction ϕ to define the conformal metric g′ = ϕ4/(n−2)g . From (5.6) this
has everywhere negative scalar curvature.

Sg′ = λ1(g)ϕ1−(n+2)/(n−2). (7.3)

For the second step we seek g1 = u4/(n−2)g′ , and thus solve (7.2) using g′ instead of g
as the metric on the left side. But since Sg′ < 0 , this equation is now in the form used in
Chapter 5, so any of those techniques can be used.

The next Corollary follows immediately from Lemma 7.1, Theorem 7.2, and Theo-
rem 6.1.
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Corollary 7.3 [Kazdan-Warner] On a compact manifold (Mn, g) , any function that
is negative somewhere is the scalar curvature of some metric.

In theorem the prescribed function need not be very smooth, even Lp for some p > n
is adequate and gives a metric in Hp,2 . But the smoother the function,the smoother the
metric.

The formula (7.3) shows how, given any metric, one can use the eigenfunction ϕ > 0
to find a pointwise conformal metric whose curvature has (everywhere) the same sign as
the eigenvalue λ1 . In particular, if Sg ≥ 0(6≡ 0) there is a conformal metric g1 with
S1 > 0 , and similarly if Sg ≤ 0(6≡ 0) .

Kazdan-Warner [KW-5] have shown how to use the functional λ1(g) and eigenfunction
ϕ to obtain a number of results, such as the following which points out that if one has a
positive scalar curvature metric, then there is a zero scalar curvature metric. The torus,
Tn , shows that the converse is not true.

Proposition 7.4 If Mn , n ≥ 3 , has a metric of positive scalar curvature, then it has
one with zero scalar curvature.

Proof. Let g0 be the given metric with Sg0
≥ 0 and let g1 be the metric of Theorem

7.2 (or of Lemma 7.1) with λ1(g1) < 0 . Consider the metrics gt = tg1 + (1 − t)g0

and corresponding lowest eigenvalue λ1(gt) of Lgt
defined by (7.2). Now λ1(gt) is a

continuous function of t (in fact, it is a real analytic function of t [Ka]) with λ1(g0) > 0
and λ1(g1) < 0 . Thus for some 0 < t < 1 , λ1(gt) = 0 so by (7.3) Sgt

= 0 , as desired.
¤

7.3 The Yamabe Problem, Analytic Part.

Given a metric g on Mn , n ≥ 3 , Yamabe [Ym] asked if there is a pointwise conformal
metric g1 = u4/(n−2)g , u > 0 , having constant scalar curvature. Thus, one wants to find
a positive solution, u > 0 , of

Lu := −γ∆u + Su = kuα, (7.4)

where γ = 4(n− 1)/(n− 2) , and α = (n+2)/(n− 2) , and k is some constant. It is easy
to see that the constant k has the same sign as the lowest eigenvalue, λ1 , of L : just
take the L2(M) inner product of (7.4) with the eigenfunction ϕ > 0 to obtain

λ1〈ϕ, u〉 = 〈Lϕ, u〉 = 〈ϕ, Lu〉 = k

∫

M

ϕuα dxg.

If λ1 = 0 , then u = ϕ is an obvious solution of (7.4) with k = 0 , while if λ1 < 0 , then
Theorem 7.2 showed how one can solve the problem; moreover, the precise value of the
exponent α was unimportant since all we used was α > 1 .

The case λ1 > 0 is much more difficult (in fact, past experience has shown that
positive curvature is usually more difficult than negative curvature). Here the precise
value of α becomes quite significant. We will use the calculus of variations and follow
the procedure used to find the lowest eigenvalue of Lu = λ1u in Proposition 5.3. The
procedure is clearer if we eliminate some of the geometry and consider the equation

−∆u + cu = f |u|α, α = (n + 2)/(n − 2), (7.5)
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where c and f > 0 are given function. For convenience we may scale the metric (replace
g by (const.) g ) to have Vol(M, g) = 1 . Just as in (5.18) we seek a minimum of the
functional

J(u) =

∫

M
(|∇u|2 + cu2) dxg

(
∫

M
f |u|N dxg)2/N

, u > 0, (7.6)

where N = α + 1 = 2n/(n − 2) . Multiplying u by a positive constant, minimizing J in
(7.6) on H2,1(M) is equivalent to minimizing the functional

J(u) =

∫

M

(|∇u|2 + cu2) dxg (7.7)

on the set

Q = {u ∈ H2,1(M) :

∫

M

f |u|N dxg = 1} (7.8)

(in geometric terms, if g1 = u4/(n−2)g , then dxg1
= uNdxg so the condition

∫

fuN dxg =
1 simply normalizes the volume of the metric g1 ).

Hölder’s inequality tells us that J is bounded below on Q because
∣

∣

∣

∫

M

cu2 dxg

∣

∣

∣ ≤ max|c(x)|
∫

M

u2 dxg

≤ const.
(

∫

M

|u|N dxg

)2/N

≤ const.
(

∫

M

f |u|N dxg

)2/N

.

Let
σ = inf

ǫA
J(u), (7.9)

and let uj ∈ Q be a minimizing sequence. Then
∫

M

(|∇uj |2 + u2
j ) dxg = J(uj) +

∫

M

(1 − c)u2
j dxg ≤ constant

so the sequence {uj} is in a bounded set in H2,1(M) . Consequently there is a weakly
convergent subsequence, which we relabel uj , with uj ⇁ u in H2,1(M) . The difficulty is
showing that

∫

M
fuN dxg = 1 . By the compactness of the Sobolev Embedding Theorem

1.1, this sequence converges strongly uj → u in Lp for all p < 2n/(n − 2) = N , but
not for p = N , which is what we need to prove u ∈ Q . Thus, if we replace the constant
N by N − ǫ (and equivalently, α in (7.5) by α − ǫ ), then one can continue to imitate
the proof of Proposition 5.3 and prove the existence of a positive solution of (7.5) for any
exponent α less that (n + 2)/(n − 2) . (At the final step one may have to replace u
by (constant) u to eliminate the Lagrange multiplier.) However the compactness of the
embedding H2,1 →֒ Lp fails precisely at the case p = 2n/(n − 2) of geometric interest
(equation (7.5) —with the same difficult exponent—also arises in the study of Yang-Mills
fields).

At this stage, it is not at all clear if the difficulty we are encountering is because of
an inefficient method or because of some genuine obstruction. For instance, if c < 0 and
f < 0 then we would still have the above difficulties, while the methods of Chapter 5 give
many ways of solving (7.5), with the value of α > 1 being irrelevant. In Theorem 7.7
below we will show that the trouble we are having is genuine and basic to the problem,
not a defect of the method.

We must work harder to obtain results here. Let Λn > 0 be the best constant in the
Sobolev embedding of H2,1(Rn) →֒ LN (Rn) , with N = 2n/(n − 2) , as above. Then

Λn = min

∫

M
|∇ϕ|2 dxg

(
∫

M
|ϕ|N dxg)2/N

(M = R
n) (7.10)
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for all ϕ ∈ H2,1(Rn) . It turns out that Λn = n(n−2)
4 ω

2/n
n , where ωn is the volume of

the standard sphere Sn →֒ R
n+1 and that the same constant is optimal for any compact

(Mn, g) , independent of Mn or the metric g (see [Au-4, Theorem 2.30]): given any ǫ > 0
there is a constant Aǫ such that for all ϕ ∈ H2,1(Mn)

Λn‖ϕ‖2
LN ≤ (1 + ǫ)‖∇ϕ‖2

L2 + Aǫ‖ϕ‖2
L2 . (7.11)

Comparing the variational problems (7.10) and (7.6), it is plausible that Λn and σ (see
(7.9)) are related, but the following result of Aubin shows these constants are very closely
related. Our proof uses some ideas from [BN].

Theorem 7.5 (Aubin, see [Au-4]) Let (Mn, g) be a compact Riemannian manifold and
define σ and Λn as above. Then

σ ≤ Λn(max f)−2/N . (7.12)

Moreover, if strict inequality holds in (7.12), then there is a function u ∈ Q minimizing
J .

Proof. For a sphere of radius ρ , Sn(ρ) →֒ R
n+1 , the Mobius transformations give us

many conformal metrics with constant curvature. Their scalar curvature is

S = n(n − 1)/ρ2. (7.13)

The Mobius transformations we use are those induced on Sn(ρ) under stereographic
projection from Sn by the map z → tz on R

n .
The induced metric on Sn(ρ) is

gt =

[

2t

t2 + 1 + (t2 − 1) cos(r/ρ)

]2

g1, (7.14)

where g1 is the standard metric on Sn(ρ) and r = d(x, x0) is the distance (arc length)
from a point x ∈ Sn(ρ) to the fixed point, x0 , of this Mobius transformation. Then

writing gt = ψ
4/(n−2)
t g1 , as in (7.1), from (7.14) we find that

ψt(x) =

[

2t

t2 + 1 + (t2 − 1) cos(r/ρ)

](n−2)/2

(7.15)

and from (5.6), (7.13)

−4(n − 1)

n − 2
∆ψt +

n(n − 1)

ρ2
ψt =

n(n − 1)

ρ2
ψ

(n+2)/(n−2)
t

that is,

−∆ψt +
n(n − 2)

4ρ2
ψt =

n(n − 2)

4ρ2
ψ

(n+2)/(n−2)
t . (7.16)

The first step is to modify these special functions so they can be used in J(ψt) for any
manifold Mn . Pick 0 < δ < injectivity radius of (Mn, g) and let η ∈ C∞(R) satisfy
η(s) = 1 for s < δ/2 , η(s) = 0 for s > δ . For any point x0 ∈ M , let r = d(x, x0) and
let

ϕt(r) = η(r)ψt(r) ∈ C∞(M). (7.17)

A long computation reveals that for t → 0 we have

J(ϕt) = Λnf(x0)
−2/N + o(t). (7.18)
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By picking x0 at the point where f has its maximum, the right side is minimized. Since
σ = inf J , this proves (7.12).

To prove the last sentence in the theorem, note that before (7.9) we proved J is
bounded below by σ so let uj ∈ Q satisfy J(uj) ↓ σ . These uj are in a bounded
set in H2,1(M) so by the Sobolev theorem there is a subsequence, which we relabel uj ,
satisfying

uj ⇁ u weakly in H2,1(M)
uj ⇀ u in L2(M) and almost everywhere.

Let vj = uj − u so vj ⇁ 0 in H2,1 and vj → 0 a.e. in Lp for all p < N . We
will be done if we can show that vj → 0 strongly in H2,1 because then, by the Sobolev
Theorem, vj → 0 strongly in LN so uj → u strongly in LN . This implies that u ∈ Q
and J(u) = σ , that is, u gives the desired minimum.

To estimate vj we first estimate the numerator in (7.6). Now because vj ⇁ 0 in
H2,1(M) :

∫

(

|∇uj |2 + cu2
j

)

dxg =

∫

(

|∇(u + vj)|2 + c(u + vj)
2
)

dxg

=

∫

(

|∇u|2 + cu2
)

dx +

∫

|∇vj |2 dxg + o(1)

so by the definition of σ

≥ σ(

∫

f |u|N dxg)
2/N +

∫

|∇vj |2 dxg + o(1). (7.19)

Next we estimate the denominator in (7.6). For this we need the observation (see [BL])
that

∫

f |uj |N dxg =

∫

f |u + vj |N dxg =

∫

f |u|N dxg +

∫

f |vj |N dxg + o(1).

Combined with the Sobolev Inequality (7.11) and vj → 0 in L2 , we find

1 =
(

∫

f |uj |N dxg

)2/N

≤
(

∫

f |u|N dxg

)2/N

+
(max f)

Λn

2/N

(1 + ǫ)

∫

|∇vj |2 dxg + o(1) (7.20)

Because J(uj) = σ + o(1) , substituting (7.19) and (7.20) into (7.6) we obtain

σ
(

∫

f |u|N dxg

)2/N

+

∫

|∇vj |2 dxg + o(1)

≤ [σ + o(1)]
{(

∫

f |u|N dxg

)2/N

+
(max f)2/N

Λn
(1 + ǫ)

∫

|∇vj |2 dxg

}

+ o(1).

Thus,
(

1 − (1 + ǫ)σ(max f)2/N

Λn

)∫

|∇vj |2 dxg ≤ o(1). (7.21)

Since strict inequality holds in (7.12), we can pick some ǫ > 0 so that the leading coefficient
is positive. Consequently

∫

|∇vj |2 dxg → 0 and hence vj → 0 in H2,1(M) . ¤

Once we have a minimum (or any critical point) of J , we can obtain a smooth positive
solution of (7.5).
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Corollary 7.6 Let c > 0 , f > 0 be smooth functions. If (7.6) has a critical point in
H2,1 , in particular if (7.12) holds, then there is a solution 0 < u ∈ C∞(M) of (7.5).

Proof. Let w ∈ H2,1(M) be a critical point of J . Then |w| is also in H2,1(M) and
|∇w| = |∇(|w|)| almost everywhere ([Au-4, p. 82]). Therefore J(w) = J(|w|) so u =
|w| ≥ 0 is also a critical point. Consequently, for any z ∈ H2,1(M)

∫

(∇u · ∇z + cuz − βfuαz) dxg = 0, (7.22)

where β is an (unknown) Lagrange multiplier. To prove that u is smooth, one can use
standard elliptic regularity (see the end of Theorem 5.2 if one knows that u ∈ Lp for
some p > 2n/(n− 2) . Trudinger [T, p. 271] proves this by a clever choice of the function
z in (7.22). An alternate approach is given in [BN, Lemma 1.5], where they use a result
of Brezis-Kato.

So far, we have a smooth solution u ≥ 0 of

Lu = −∆u + cu = βfuα. (7.23)

Just as in Proposition 5.3 (see equation (5.19)) we conclude that either u ≡ 0 or else
u > 0 everywhere. Since

∫

fuN dxg = 1 , u > 0 . Finally, we eliminate the constant β .
Since c > 0 and f > 0 then β > 0 (multiply (7.23) by u and integrate). Thus, letting
v = β1/(α−1)u we obtain a solution of (7.5). ¤

remark 7.1 If we delete the assumption that c > 0 in Corollary 7.6, then the above
argument still proves the existence of a solution u > 0 of (7.23); however it is possible
that β > 0 , β < 0 , or β = 0 —since β has the same sign as the lowest eigenvalue λ1

of L . Scaling u we can reduce to β = ±1 or β = 0 .

The last item in this section is a result of Kazdan-Warner that shows there are situ-
ations where equality holds in (7.12) and (7.5) does not have a solution, so J does not
have a minimum in this case. Therefore, the difficulties in solving (7.5) using the calculus
of variations are inherent in the problem and not just a defect of the method.

Theorem 7.7 [Kazdan-Warner [KW-6]] Let (Sn, g) be the standard unit sphere
in Rn+1 . If u > 0 is a solution of (7.5) with c = n(n−2)/4 , and α any exponent, then

∫

Sn

uα+1∇f · ∇ϕdxg + n−2
2

(

α − n+2
n−2

)

∫

Sn

uα+1fϕ dxg = 0 (7.24)

for any first order spherical harmonic ϕ , so −∆ϕ = nϕ . In particular for α = (n +
2)/(n − 2) if f = constant +ϕ > 0 , there is no solution of (7.5).

This theorem, which is still not very well understood, is obviously closely related to
the obstruction (5.47) to solving ∆u = 2 − heu on S2 .

In view of the existence Theorem 7.5 and the non-existence Theorem 7.7, it is useful
to have some information when strict inequality in (7.12) does hold. Aubin (see [Au-4])
did this by computing J(ψt) where ψt is defined by equation (7.15). For n > 4 he found
at x0

J(ψt) = Λnf−2/N
{

1 + 2ρ2

n(n−4)

[

γc − S − (n−4)
2

∆f
f

]

t2 + o(t2)
}

, (7.25)

where γ = 4(n− 1)/(n− 2) , as in (7.4). We shall discuss this further in the next section.
Notice that the scalar curvature appears in this equation even though it does not appear
explicitly in our equation ((7.5)).
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7.4 The Yamabe Problem, Geometric Part

To begin, we interpret the results of the previous section for the geometric problem (7.4).
In this case, comparing (7.4) with (7.5) we have S = γc and k = γf is a constant. Thus,
the term [· · · ]t2 in (7.25) is zero. It is interesting to see how exactly the case of geometric
interest causes the greatest trouble for (7.5). One is led to compute the next term in the
expansion (7.25). Aubin carried this out and found that (for S = γc and f ≡ constant)
if n ≥ 6 , then

J(ψt) = Λnf(x0)
−2/N{1 − a4|W |2x0

t4 + o(t4)}, (7.26)

where |W |2 is the pointwise norm of the Weyl conformal curvature tensor and a4 > 0
is a constant (actually, Aubin obtains (7.26) for a conformal metric). An immediate
consequence is the following result.

Corollary 7.8 [Aubin] If (Mn, g) is compact with n ≥ 6 and |W | 6= 0 at some point,
then there is a pointwise conformal metric with constant scalar curvature.

Note that if W = 0 everywhere, then there are metrics arbitrarily near g with |W | 6=
0 somewhere, so, at least for n ≥ 6 , the Yamabe problem can be solved affirmatively for
the generic metric.

Another corollary, due to Bérard-Bergery, shows that if we are given a metric g
with positive scalar curvature, then we can find another metric g1 with scalar curvature
S1 ≡ 1 . This in some ways resembles Theorem 7.2 above, except that here the metrics g
and g1 are not necessarily pointwise conformal (if we knew that we can always solve the
Yamabe problem (7.4), then we could find a pointwise conformal metric g1 ). To prove
this, we need a preliminary result. Let Ig be the functional

Ig(ϕ) =

∫

M
(γ|∇gϕ|2 + Sgϕ

2) dxg

(
∫

M
|ϕ|N dxg)2/N

associated with the equation (7.4) with the metric explicitly written, and let

σ(g) = inf Ig, (7.27)

just as in (7.9), except for some inessential alterations. In this notation, Theorem 7.5 tells
us that we can solve the Yamabe problem (7.4) if

σ(g) < γΛn = n(n − 1)ω2/n
n . (7.28)

Lemma 7.9 [Bérard-Bergery, see [Be-2]] The number σ(g) depends continu-
ously on g .

The proof is similar to the proof that the eigenvalues λj(g) of the Laplacian ∆g

depend continuously on g .

Corollary 7.10 [Bérard-Bergery] If (Mn, g) , n ≥ 3 , has a metric with scalar
curvature Sg ≥ 0(6= 0) , then it has a metric g1 with Sg1

≡ 1 .

Proof. By Theorem 7.2, there is a metric g− with Sg−
< 0 and hence σ(g−) < 0 . Also,

σ(g) > 0 . Let gt = tg− + (1 − t)g . Then for some 0 < t ≤ 1 we know that σ(gt) > 0
and σ(gt) also satisfies (7.28). Therefore, by Theorem 7.5 there is a metric g1 , pointwise
conformal to gt , with Sg1

≡ 1 . ¤

This last result enables us to give a reasonably complete answer to the question raised
in Chapter 6.4 on prescribing scalar curvature— although the more delicate questions
concerning solving (7.4) with a constant or more general function k(x) are still unresolved.

In view of the topological restrictions of Section 7.2, we separate the compact manifolds
into three groups:
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(i) those M that have a metric g with Sg ≥ 0(6≡ 0) ,

(ii) those M that have no metric with positive scalar curvature, but do have a metric
with Sg ≡ 0 ,

(iii) the other manifolds, so for any metric g , the scalar curvature Sg is negative
somewhere.

Theorem 7.11 Kazdan-Warner] For manifolds M in class I, any function S ∈ C∞

is the scalar curvature of some metric. For M in class II, a function S ∈ C∞ is a scalar
curvature if and only if either S is negative somewhere or S ≡ 0 . For M in class III,
a function S ∈ C∞ is a scalar curvature if and only if S is negative somewhere.

Proof. Because we can use Theorem 7.2, Proposition 7.4, or Corollary 7.10 to obtain
constant scalar curvature metrics, this result is an immediate consequence of Theorem
6.1. ¤
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Chapter 8

Surfaces With Constant Mean Curvature

[not yet revised]

8.1 Introduction

For a two dimensional surface in R
3 , one has the concept of Gauss curvature, that depends

on the metric, but not on the embedding in R
3 . In addition, one has the concept of mean

curvature that does depend on the embedding. A right circular cylinder of radius R has
zero Gauss curvature, since its metric is just that of the Euclidean plane, but its mean
curvature H = 1/R .

Minimal surfaces are the simplest examples of surfaces with constant mean curvature:
their mean curvature is zero. To be led to surfaces with constant non-zero mean curvature,
one considers the problem of finding a compact surface of least surface area whose volume
is a constant. Spheres are obvious examples: the sphere of radius R has mean curvature
1/R .

This leads one to the natural question, are spheres the only compact surfaces with
constant mean curvature? Since one may interpret mean curvature in terms of the surface
tension of a soap film, this question can be more vividly stated: are spheres the only soap
bubbles? We consider this in the first section.

The second section is devoted to a boundary value problem for surfaces of constant
mean curvature.

8.2 Compact Surfaces

Let M2 →֒ R
3 be a compact surface with constant mean curvature. Then must M2 be

just the standard round sphere? (Of course we must exclude the zero mean curvature
case, i.e. minimal surfaces, since for these, the Gauss curvature is never positive because
any compact M2 →֒ R

3 has positive Gauss curvature K somewhere—for example, it has
K > 0 at the point furthest from the origin).

The first results were by Liebmann in 1909, who proved that the only strictly convex
possibility is the round sphere (see the references in [HTY]).

Next, in 1951, Heinz Hopf proved that if M2 is the differentiable sphere, then the only
possibilities are the standard round spheres. In fact, he only assumed that S2 →֒ R

3 was
an immersion, not necessarily an embedding, so he allowed self-intersections. His proof
uses complex analysis in a non-trivial way.

A.D. Alexandrov, in 1958, showed that the only hypersurface Mn embedded in R
n+1

having constant mean curvature is the standard sphere. His beautiful proof is very geomet-
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ric and elementary, using only the maximum principle for second order elliptic operators
(see the exposition in [Sp]). The method has subsequently been useful for many problems.
This proof belongs in these lectures but alas, there was no time. More recently, Reilly [Re]
found an interesting different proof.

Since Alexandrov’s work, it is natural to attempt to extend his results to cover the case
where Mn is just immersed in R

n+1 , much as Hopf did in the special case of the sphere.
But just the opposite occurred when recently, Hsiang, Teng, and Yu [HTY] found new
examples of immersed compact hypersurfaces Mn →֒ R

n+1 , n ≥ 3 , with constant mean
curvatures. In fact, they found non-round spheres S2k−1 →֒ R

2kk ≥ 2 with this property.
Thus, Hopf’s result is very special to the case of the sphere S2 , and the assumption that
Alexandrov made that the hypersurfaces Mn →֒ R

n+1 are embedded can not be omitted
(except possibly in the still unresolved case n = 2 ).

Hsiang-Teng-Yu seek their examples as hypersurfaces of revolution. For n ≥ 3 , there
are many possible definitions of a “hypersurface of revolution”. The most flexible and
useful definition is to view them as hypersurfaces that are invariant under some small sub-
group of the orthogonal group. These new hypersurfaces M2k−1 →֒ R

2k are differentiable
spheres that are invariant under the action of O(k) × O(k) . The condition of constant
mean curvature appears as an ordinary differential equation in this case.

There is much to be done before we really have a clear picture of all the possible
constant mean curvature surfaces.

8.3 A Boundary Value Problem

Given a closed curve Γ in R
3 , we may seek a surface M having Γ as its boundary

and having prescribed mean curvature H . The well-known Plateau Problem, that seeks
a minimal surface with prescribed boundary is an example.

The above vague formulation does not at all specify the topological type of M . It
has long been known that, for example, some curves are the boundaries of both orientable
and non-orientable surfaces. Thus we will be more specific.

Let Ω ⊂ R
2 be the open unit disc, Ω = {(x, y) : x2 + y2 < 1} and γ : ∂Ω → R

3 be
a smooth curve. Given a smooth function H(x, y) we seek a function u : Ω → R

3 having
mean curvature H and agreeing with γ on ∂Ω . The partial differential equations are
(using the standard “cross product” of vectors in R

3 ):

∆u = 2H · ux × uy in Ω, (8.1)

with Dirichlet boundary conditions

u = γ on ∂Ω. (8.2)

So far, most work has concentrated on the case H ≡ constant > 0 , so we will restrict our
attention to that case (note that the sign of H is irrelevant, since it can be reversed simply
by reversing the orientation of the surface). As an example, let γ : (x, y) 7→ (Rx,Ry, 0)
be a circle of radius R . Then there are two solutions of (8.1)-(8.2), namely, the upper
and lower spherical caps of a sphere of radius a ≥ R having mean curvature H = 1/a . If
R and H are both large, it appears likely that there is no solution. In this special case
where Γ is a circle, Heinz [Hz] proved that there is no solution if HR > 1 . Of course if
HR < 1 then we are in the above situation and have two solutions, while if HR = 1 the
only obvious solution is the hemisphere.

In order to measure the “size” of the boundary curve, γ(∂Ω) , let us assume that it
lies in a closed ball of radius R . S. Hildebrandt [Hi] proved, in 1970 that if HR < 1 ,
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then there is (at least) one solution to the Dirichlet Problem (8.1)–(8.2). We shall sketch
his proof shortly.

Earlier, based on the spherical caps example above, Rellich had conjectured that for
any curve Γ = γ(∂Ω) there should exist at least two solutions, at least for H sufficiently
small. The proof that this is true if HR < 1 (and γ(∂Ω) is not a constant) was recently
given by Brezis-Coron [BC] (independently, Struwe also proved that for some c > 0 if
HR < c then there are two solutions, but his method seems to give no information on c ).
If γ(∂Ω) is a constant, then H . Wente showed that u = constant is the only solution.

It would be interesting to know when these two solutions are the only solutions. Even
in the case where γ(∂Ω) is a round circle we do not know if there are solutions other
than the two spherical caps. There are many natural questions in this area that call one’s
attention.

Hildebrandt’s proof of the existence of at least one solution of the Dirichlet Problem
(8.1)-(8.2), assuming H > 0 is a constant and HR < 1 , uses the calculus of variations.
He minimizes the functional

E(v) =

∫

Ω

|∇v|2 dx + 4
3H

∫

Ω

v · (vx × vy) dx (8.3)

in the set of vector-valued functions v ∈ H2,1(Ω) such that v = γ on ∂Ω and ‖v‖L∞ ≤ R′

for some R′ > R with HR′ < 1 . It is obvious that

E(v) ≥
(

1 − 2
3H‖v‖L∞

)

∫

Ω

|∇v|2 dx ≥ 1
3

∫

Ω

|∇v|2 dx, (8.4)

that shows that E is bounded below. Let σ = inf E and say E(vj) ↓ σ . From (8.4) and
the fact that ‖vj‖L∞ ≤ R′ the sequence lies in a bounded set in H2,1(Ω) , so there is a
subsequence that converges weakly in H2,1(Ω) . The only tricky part of the remainder of
the proof is how one treats the last integral in (8.3) for the sequence vj (see [Hi] or [BC]
for details).

To prove the existence of at least two solutions, Brezis-Coron use the above solution,
that we call w , as their first solution and seek a second solutions u as u = w + v .
Substituting this into (8.1) we find that v must satisfy

Lv := −∆v + 2H(wx × vy + vx × wy) = −2H(vx × vy) (8.5)

in Ω with
v = 0 on ∂Ω. (8.6)

We seek a variational problem for v —but want to avoid getting the obvious solution
v ≡ 0 of (8.5). The linear differential operator L in (8.5) is self-adjoint and is the
Euler-Lagrange operator for the functional

J(v) =

∫

Ω

[|∇v|2 + 4Hw · (vx × vy)] dx. (8.7)

(Note J(v) =< Lv, v > after an integration by parts.) On the other hand, the right side
of (8.5) is the Euler-Lagrange operator for the functional

Q(v) =

∫

Ω

v · (vx × vy) dx. (8.8)

( Q(v) is often described as a type of “volume”, perhaps because it is cubic in v , but I
am not sure.)



98 Chapter 8. Surfaces With Constant Mean Curvature

Thus, it is reasonable to minimize the quotient

P (v) =
J(v)

Q(v)2/3
(8.9)

or, equivalently, to minimize J on the set where Q = 1 . The Euler-Lagrange equation
for this is exactly (8.5), except that one may have to replace v by constant v to eliminate
the Lagrange multiplier.

As usual, the first step is to show that J is bounded below. One proves that for some
constant c > 0

J(v) ≥ c‖v‖2
H2,1(Ω) (8.10)

for all v in H2,1(Ω) (here H2,1(Ω) is a slightly modified version of H2,1(Ω) to incorpo-
rate the boundary condition v = 0 on ∂Ω ; it is defined as the completion of C∞

0 (Ω) in
the H2,1(Ω) norm).

Inequality (8.9) proves that a minimizing sequence is bounded in the space H2,1(Ω)
and hence has a weakly convergent subsequence. The problem comes from the fact that
functional Q(vj) is not continuous under this convergence, just as we saw in the Yamabe
problem for the functional (7.6). In fact, the analogy is much closer than one might expect,
and the proof here was strongly influenced by that of Theorem 7.5.

Let

S = inf

∫

|∇ϕ|2 dx

Q(ϕ)2/3
(8.11)

for all ϕ ∈ H2,1 ∩ L∞ , that is similar to (7.10) where we used the best constant in
a Sobolev inequality. One can view (8.10) as an isoperimetric inequality and show that
S = (32π)1/3 . There is no map ϕ : Ω → R

3 giving this constant (in this case the integrals
in (8.10) are over R

2 , not Ω ). In fact there is a family of such maps

Ψt(x, y) =
(x, y, t)

x2 + y2 + t2
, t 6= 0. (8.12)

These play the same role as the functions Ψt in (7.15). Parallel to proving that σ ≤ Λn

(i.e. (7.12) with f = 1 ), here one uses the functions (8.11) to show that

σ < S, (8.13)

where σ = inf J(v) for v satisfying Q(v) = 1 . Armed with this inequality, one can
prove that there is a map v : Ω → R

3 minimizing (8.8) with Q(v) = 1 . Of course, the
condition Q(v) = 1 shows that v 6≡ 0 and hence that u = w + v is a distinct second
solution of the problem. For more details, we refer to the paper [BC].



Chapter 9

Ricci Curvature

[not yet revised]

9.1 Introduction

Since we now have some reasonable understanding of the scalar curvature, it is time to
consider seriously the Ricci curvature. The local problem of solving

Ric(g) = Rij (9.1)

was discussed in Chapter 6.5. Here we will consider a few global questions. First, we recall
that (Mn, g) has constant Ricci curvature if

Ric(g) = λg (9.2)

for some constant λ . Metrics having constant Ricci curvature are customarily called
Einstein metrics. Taking the trace of (9.2) we obtain λ = S/n where S is the scalar
curvature. Thus (9.2) the same as

Ric(g) = 1
nSg. (9.3)

If n = 2 , then (9.3) is always satisfied—except that S may not be a constant—while
for n ≥ 3 , if (9.3) holds then the second Bianchi identity (A.31) shows that S ≡ const.
anyway. From now on, we assume n ≥ 3 and M is compact (and connected, of course).

Topological obstructions. Bochner’s result (see Theorem 3.3 shows there are
topological obstructions to positive Ricci curvature. After Aubin’s earlier work showing
there are no topological obstructions to negative scalar curvature and Gao-Yau [Gao, Gao-
Yau] for Ricci curvature in the three dimensional case, Lohkamp [Lo] proved that every
smooth compact manifold of dimension at least three has a smooth metric with negative
Ricci curvature, so there are no topological obstructions to negative Ricci curvature. Note
that there are topological obstructions to negative sectional curvature.

One can also ask if there are topological obstructions to manifolds having Einstein
metrics. We first discuss the case n = 3 . In this case one can associate with every
2 -dimensional plane a unique normal direction. Thus, in an orthonormal basis e1, e2, e3

one can write the Ricci curvature, viewed as a quadratic form, in terms of the sectional
curvatures as Ric(e1) = sect (e1, e2) + sect (e1, e3) , with similar formulas for the other
directions, e2, e3 . Solving the resulting three equations gives an explicit formula for the
sectional curvature in terms of the Ricci curvature. In tensor notation this formula is

Rijkℓ = gikRjℓ − giℓRjk − gjkRiℓ + gjℓRik − 1
2S(gikgjℓ − giℓgjk), (9.4)
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This formula shows that an Einstein metric in dimension 3 must have constant sectional
curvature. But then its universal cover is either R

3 or the sphere S3 . Consequently,
S2×S1 , whose universal cover is S2×R , can not have an Einstein metric. It is unknown
if, for example, S3 and T 3 have negative Einstein metrics (negative means negative scalar
curvature).

For n = 4 , Thorpe (see [Be-2]) found some topological obstructions to Einstein met-
rics. This was later rediscovered and improved by Hitchin. Subsequently Polombo showed
that these are obstructions to the Ricci curvature being too pinched, not just Einstein
metrics. There are no known topological obstructions if n ≥ 5 , but one expects there are
some that have not yet been found.

By now, it should be evident that there are more questions than answers, even to the
most obvious questions concerning Ricci curvature.

Uniqueness. Say there are two metrics g1 and g2 with

Ric(g1) = Ric(g2). (9.5)

Since Ric(cg1) = Ric(g1) for any constant c > 0 , the most we can expect to conclude
is that g1 = const.g2 . Hamilton proved that if g0 is the standard metric on Sn and
if Ric(g) = Ric(g0) on Sn , then g = cg0 for some constant c > 0 , so uniqueness does
hold in this situation. This was subsequently extended by DeTurck-Koiso [DKo]. One
consequence in their work is that certain positive definite symmetric tensors can not be
the Ricci tensors of a Riemannian metric; this is a non-existence result for the equation
Ric(g) = Rij . The proofs use Hamilton’s observation that if Ric(g) is positive definite,
and hence may also be viewed as a metric itself, then the second Bianchi identity (A.30)
states that the identity map

(M, g)
id.−→ (M,Ric(g))

is a harmonic map (see [EL-1] for the definition). For more information see the book
[Be-2].

Regularity. If Ric(g) is smooth, must g be smooth? A simple example shows that
this may depend on the coordinates used. Let g0 be the standard flat metric on the torus
Tn (so g0 =

∑

i(dxi)2 in the usual local coordinates and is real analytic). If ϕ : Tn → Tn

is a diffeomorphism of class Ck but not of class Ck+1 , then Ric(ϕ∗(g0)) ≡ 0 , that
certainly is smooth, while the metric g = ϕ∗(g0) ∈ Ck−1 but g ∈ Ck . This example also
shows that Einstein metrics need not be smooth, since here g is also an Einstein metric.

This issue was clarified by DeTurck-Kazdan [DK], who showed that it is important
to pick “good” local coordinates. If g =

∑

ij gij(x) dxidxj , then we say that g ∈ Ck

(or C∞ , or Cω = real analytic) in these coordinates if the functions gij(x) ∈ Ck (or
C∞ etc.) in these coordinates. The main point is that harmonic coordinates are optimal
for regularity questions. Harmonic coordinates are, by definition, where the coordinate
functions x1, . . . xn are harmonic functions, ∆xk = 0 . Isothermal coordinates if n = 2
are an example (see Chapter 6.2).

Proposition 9.1 (DK) If in some coordinate chart g ∈ Ck, α , k ≥ 1 (or Cω ), and
a tensor T ∈ Ck, α (or Cω ) then in harmonic coordinates we also have T ∈ Ck, α (or
Cω ). In particular, g ∈ Ck, α (or Cω ) in harmonic coordinates.

The proof follows from the observation that if a function u ∈ C2 satisfies ∆u = 0 ,
then in local coordinates (1.6)

∑

i,j

∂

∂xi
(gij

√

|g| ∂u

∂xj
) = 0.
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Thus if g ∈ Ck, α , then u is the solution of a linear elliptic equation whose coefficients
are in Ck−1, α so, by elliptic regularity (Theorem 2.3), u ∈ Ck+1, α . Thus the isometric
map ϕ from the given coordinates (x1, . . . , xn) to harmonic coordinates (u1, . . . , un) is
of class Ck+1, α . Transforming a tensor T of rank at least one involves only the first
derivatives of the map ϕ , so T ∈ Ck, α (or Cω ) in harmonic coordinates too.

Note that geodesic normal coordinates are not optimal; Example (2.3) in [DK] shows
that one can lose two derivatives in these coordinates.

As we saw in Chapter 6.5 when we computed the symbol of the differential operator
Ric(g) , this operator is not elliptic because of its invariance under the group of diffeomor-
phisms. However if one restricts to harmonic coordinates, then Ric(g) is elliptic.

Proposition 9.2 [DK] In harmonic coordinates,

Ric(g)ij = − 1
2gst ∂2gij

∂xs∂xt
+ Q(g, ∂g), (9.6)

where Q is a real analytic function of its variables; in fact, it is a polynomial except,
because of the presence of g−1 , it involves det g in the denominator. From this formula,
in harmonic coordinates Ric(g) is an elliptic operator.

Proof. Using the standard formula for the Laplacian (1.6) we find that ∆xi = 0 implies

gst
(∂gis

∂xt
− 1

2

∂gst

∂xi

)

= 0.

Taking the partial derivative of this with respect to xj and adding it to a similar formula
with the roles of i and j interchanged we find that

gst
( ∂2gis

∂xt∂xj
+

∂2gjs

∂xt∂xi
− ∂2gst

∂xi∂xj

)

= −∂gst

∂xj

∂gsi

∂xt
+ · · · ,

where the remaining terms on the right are similar to the first term in the right. In
particular, the right hand side depends only on g and its first derivatives. We now use
this in the explicit formula for Ric(g) (A.28) to obtain (9.6). ¤

As an immediate application, by using elliptic regularity (Theorem 4.1) we obtain the
following.

Corollary 9.3 [DK]
a). If in harmonic coordinates g ∈ C2 is a Riemannian metric with Ric(g) ∈ Ck, α for
some k ≥ 0 (or Ric(g) ∈ Cω ), then in these coordinates g ∈ Ck+2, α (or Cω ).
b). In harmonic coordinates Einstein metrics are real analytic.

remark 9.1 In part a) one can avoid the use of harmonic coordinates if instead one
assumes Ric(g) is invertible. For this, say Ric(g) = R and use DeTurck’s device of intro-
ducing the equivalent elliptic operator Ric(g) + δ∗

(

R−1Bian (g,R)
)

, where 2 Bian (g,R)
is the expression in the Bianchi identity (6.29) and δ∗ . the symmetric covariant derivative
of a 1− form is defined by (δ∗w)ij = 1

2 (wi;j + wj;i) . Since Bian (g,R) = 0 , this operator
is Ric(g) , yet it is elliptic.
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9.2 Positive Einstein Metrics on M 3

.
A basic question is if a given manifold Mn has an Einstein metric—or better yet, a

metric of constant sectional curvature. The formula (9.4) expressing the sectional curva-
ture in terms of the Ricci curvature in dimension three shows that in this special dimension
the constant sectional curvature metrics are just the Einstein metrics. This question is
important because if Mn admits an Einstein or constant sectional curvature metric, then
one can use the metric to help read off properties of M . For example, as we mentioned
previously if Mn is simply connected and admits a metric with constant positive sectional
curvature, then Mn must be the sphere Sn .

Some progress has been made if n = 3 , and on Kähler manifolds. In this section we
discuss the recent work of Hamilton [H-2] on positive Einstein metrics on three dimensional
manifolds, while the next section takes up the Kähler-Einstein case.

Theorem 9.4 (H-2) Let (M3, g0) be compact with positive Ricci curvature. Then there
is a family of metrics gt , 0 ≤ t ≤ ∞ , with positive Ricci curvature and with g∞ an
Einstein metric.

In view of a result of Aubin [Au-3], it is actually sufficient to assume that Ric(g0) ≥ 0 ,
with Ric(g0) > 0 at one point, because then Aubin shows that one can deform g0 to a
metric with everywhere strictly positive Ricci curvature. On the other hand, the manifold
S2 × S1 , whose standard metric has Ric(g0) ≥ 0 but does not admit an Einstein metric
(see Section 9.1 above), shows that one needs Ric(g0) strictly positive somewhere.

Hamilton thus wants to solve (9.3) with S > 0 . It is reasonable to use the heat
equation and seek the metrics gt by solving the initial value problem

∂gt

∂t
= 2[13S(gt)gt − Ric(gt)] (9.7)

with

gt|t=0 = g0 (9.8)

S(g) is, as usual, the scalar curvature and the factor 2 is for convenience later. Instead of
using the heat equation, one could try the continuity method to solve (9.2), but this has
not yet been done.

Using (9.7) one can derive an equation for ∂S/∂t . This is a “backward” heat equation,
and we mentioned earlier (Chapter 3.5) that the initial value problem is not always solvable
for such equations. Instead, since S(g∞) will be a constant, Hamilton replaces S(g) by
its average

r(g) =
1

Vol(g)

∫

M

S(g) dxg

and solves
∂g

∂t
= 2[13r(g)g − Ric(g)] (9.9)

(we will sometimes write g instead of gt ) with the initial condition (9.8). It is easy to
check that for these metrics d Vol(gt)/dt = 0 so, scaling g0 if necessary, we have the
normalization Vol(gt) = Vol(g0) = 1 .

For computations it is often more convenient to treat the simpler unnormalized equa-
tion

∂g

∂t
= −2 Ric(g). (9.10)
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To go from (9.10) to (9.9) one makes the change of scale g∗ = ψg , choosing ψ(t) > 0 to
satisfy the normalization condition Vol(g∗) = 1 and use a new time variable t∗ defined
by t∗ =

∫

ψ(t)dt . Then a calculation shows that g∗ satisfies

∂g∗

∂t∗
= 2[13r(g∗)g∗ − Ric(g∗)], (9.11)

as desired.
We follow the same steps as in the model problem in Chapter 5 to solve (9.9), (9.8),

except that here everything is considerably more complicated.

Step 1 is to prove the short time existence of a solution to (9.10) with initial conditions
(9.8). Now equation (9.10) is almost but not quite, parabolic. The difficulty is with
degeneracies caused by the group of diffeomorphisms, just as we saw in Chapter 6.5 for the
equation Ric(g) = Rij . Hamilton used the Nash-Moser implicit function theorem for this
step. Subsequently, DeTurck [D-4] simplified this and showed how one can use standard
parabolic theory. He lets Tij be any invertible symmetric tensor, such as T = g0 , and
solves the initial value problem

∂g

∂t
= −2[Ric(g) − σ∗(T−1Bian (g, T ))], (9.12)

where 2Bian (g,R) is the expression in the Bianchi identity (6.29) and, for a 1 -form w ,
we define σ∗w by (σ∗w)ij = 1

2 (wi;j + wj;i) , that is, σ∗w is the symmetric covariant
derivative. The virtue of (9.12) is that it is a parabolic equation, so by Theorem 4.6
there is a solution gt of (9.12) satisfying (9.8). To go from (9.12) to (9.10) we use a
diffeomorphism ϕt defined by

dϕt

dt
= v(ϕt(x), t), ϕ0 = id,

where v is the vector field dual to the 1 -form −T−1Bian (gt, T ) . A computation then
shows that if gt satisfies (9.12) then the metric ϕ∗

t (gt) satisfies (9.10) and (9.8) for at
least some short time interval 0 ≤ t < ǫ ; this consequently gives a solution of (9.11) in a
small time interval.

To get more information, one needs formulas for the evolution of Ric(gt) and S(gt) ,
where gt is a solution of (9.10). In dimension three they are genuine heat equations;

∂ Ric(gt)

∂t
= ∆Ric(gt) − Q, (9.13)

where Q is a polynomial in gt,Ric(gt) , and S(gt) (but does not contain any additional
derivatives of these) and

∂S(gt)

∂t
= ∆S(gt) + 2|Ric(gt)|2. (9.14)

From (9.13) and a version of the maximum principle for symmetric tensors, Hamilton
shows that if Ric(g0) is positive, then so is Ric(gt) for t > 0 . This guarantees that all
of our metrics gt , and also the corresponding metrics g∗t = ψgt , will have positive Ricci
curvature.

Step 2 is to show that this solution g∗ of (9.11) exists of all 0 ≤ t∗ < ∞ . To do this,
say a solution exists on some maximal interval 0 ≤ t∗ < T ∗ . By difficult but elementary
arguments using the maximum principle one obtains appropriate a priori estimates on the
solution gt of (9.10) and on Ric(gt) and their derivatives and can conclude that T ∗=∞ .
(The arguments in [H-2] can be simplified somewhat — for instance one can prove Lemma
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16.7 in [H-2] without the sphere theorem by proving that r(g∗) is an increasing function
of t∗ and observing that r(g∗) ≤ maxM S(g∗) . However, to be candid, I have not yet
checked all the details.)

Step 3 is to prove that the g∗ converge to an Einstein metric as t∗ → ∞ . This
involves two types of estimates. One of them proves that pointwise the three eigenvalues
λj(x, t∗), j = 1, 2, 3 , of Ric(g∗) converge to some common value, λj(x, t∗) → λ(x), j =
1, 2, 3 , and that S(g∗) → 3λ(x) as t∗ → ∞ . The second estimates are on the derivative
of the scalar curvature S(g∗) to show that λ(x) ≡ constant. The inequalities used to
prove these assertions are rather complicated, although doubtlessly will be simplified by
subsequent work. After this, it is relatively straightforward to prove that the metrics g∗

converge to an Einstein metric.
The main obstacle to extend this to dimensions higher than three is that we can no

longer use (9.4) to replace the sectional curvature by the Ricci curvature. In addition, some
higher dimensional spheres are known to have several different positive scalar curvature
Einstein metrics. This may cause complications in proving convergence of metrics to
Einstein metrics because there are now several possible targets. We should also make the
obvious remark that if one can prove that every compact simply connected 3 -manifold M
has a metric with positive Ricci curvature, then by Hamilton’s Theorem 9.4 M is S3 .
This is, of course, the Poincaré conjecture. It is not at all clear how one can fill the gap
by proving the existence of a metric with positive Ricci curvature.

9.3 Kähler-Einstein Metrics

a) Some background on Kähler geometry

Let M2m be a manifold of real dimension 2m and let (x1, . . . , xm, y1, . . . , ym) be local
coordinates. Write zk = xk + iyk, k = 1, . . . ,m so z = (z1, . . . , zm) are complex local
coordinates. M2m is a complex manifold if there is an atlas so that the change of coordi-
nates is by analytic functions. Then m is the complex dimension. If u is a function we
can write

du =
∑

k

(
∂u

∂zk
dzk +

∂u

∂zk
dzk), (9.15)

where, by definition,

∂

∂zk
= 1

2 (
∂

∂xk
− i

∂

∂yk
) and

∂

∂zk
= 1

2 (
∂

∂xk
+ i

∂

∂yk
).

We also define

∂u =
∑

k

∂u

∂zk
dzk and ∂u =

∑

k

∂u

∂zk
dzk,

so d = ∂ + ∂ . A differential 2 -form of the type dzk ∧ dzℓ is called of type (2, 0) , while
dzk ∧ dzℓ of type (1, 1) and dzk ∧ dzℓ of type (0, 2) . Now

0 = d2u = ∂2u + (∂∂ + ∂∂)u + ∂
2
u. (9.16)

Since ∂2u is of type (2, 0) , (∂∂ + ∂∂)u of (1, 1) and ∂
2
u of type (0, 2) , we conclude

that ∂2 = ∂
2

= ∂∂ + ∂∂ = 0 .
If g is a Hermitian metric on M , then

g = ds2 = 2
∑

gαβ dzα dzβ ,
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where gαβ = gαβ = 0 and gαβ = gβα = gβα for α, β, α, β running from 1 to m .
The Kähler (or fundamental) form associated with g is the (1, 1) form

γg = i
2π

∑

gαβ dzα ∧ dzβ . (9.17)

This is a real form since γg = γg . It is positive since gαβ is positive definite. The
manifold (M, g) is said to be a Kähler manifold if γg is closed: dγg

= 0 . There are many
equivalent ways to write this Kähler condition. We simply refer to standard books (as well
as the seminar [SP]) for generalities and examples and just list the facts we actually need.

Fact 1 The Kähler Laplacian on a function u is

∆Ku =
∑

gαβ ∂2u

∂zα∂zβ
. (9.18)

One can show that ∆u = 2∆Ku , where ∆ is the real Laplacian we have been using.

Fact 2 The Ricci curvature is given by the formula

Rαβ = −
∂2 log(det gαβ)

∂zα∂zβ
. (9.19)

(The simplicity of this formula—compared to the much more complicated one for general
Riemannian manifolds—is the reason one can often prove many results in Kähler geom-
etry). For convenience we will often use the notation u′′ for the complex hessian of a
function

u′′ =
∂2u

∂zα∂zβ
.

Then (9.19) reads
Ric(g) = −(log det g)′′.

Just as g and γg are related, we define the Ricci form to be the (1, 1) form

ρg = i
2π

∑

Rαβ dzα ∧ dzβ , (9.20)

so ρg is a real form. In view of (9.19) we have

ρg = − i
2π ∂∂ log(det g). (9.21)

Fact 3 Let ω be a closed (1, 1) form on a compact Kähler manifold. Then ω is exact
(or cohomologous to zero) if and only if there is a function h so that ω = ∂∂h . One
proves this using Hodge theory; it is obvious that if ω = ∂∂h then ω = d∂h so ω is
exact.

Fact 4 The cohomology class of the Ricci form (on a compact Kähler manifold) is
independent of the metric, since if g and g1 are two Kähler metrics, then from (9.21)

ρ − ρ1 = i
2π ∂∂ log[(det g)/(det g1)]

= i
2π ∂∂ log f

(9.22)

where f is the real valued function (det g)/(det g1) . This cohomology class of closed
(1, 1) forms is called the first Chern class, and written c1(M) — or sometimes just c1 .
In complex dimension one = real dimension 2 , this is just the Gauss-Bonnet theorem.
We say that c1(M) is positive if there is a positive (1, 1) form in c1(M) ; the definition
that c1(M) is negative is obvious.
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Fact 5 The volume form dvg of a Kähler manifold (M, g) is

dvg = am(det g) dz1 ∧ . . . ∧ dzm ∧ dz1 ∧ . . . ∧ dzm, (9.23)

and also
dvg = bm(γg)

m, (9.24)

where am and bm are constants depending only on the dimension.
From now on M will be a compact connected Kähler manifold of complex dimension

m .

b) Calabi’s Problem: the formulation

We know that the Ricci form ρg represents c1(M) . Calabi asked if the converse is true:

Calabi’s problem: Let ω be a closed real (1, 1) form that represents c1(M) . Is
there a Kähler metric g whose Ricci form is ω , so ρg = ω ?

We formulate this as a partial differential equation. Since M is Kähler, there is some
Kähler metric g0 . We seek g cohomologous to g0 , that is, γg is cohomologous to γg0

.
Then by Fact 3 there is a real function ϕ so that

γg − γg0
= i

2π ∂∂ϕ, (9.25)

or equivalently, in the notation introduced after (9.19),

g − g0 = ϕ′′. (9.26)

Also ρg0
and ω both represent c1(M) , so by Fact 3

ω − ρg0
= − i

2π ∂∂f (9.27)

for some real function f . If ω = ρg , then by (9.22)

ω − ρg0
= ρg − ρg0

= − i
2π ∂∂ log(det g/det g0).

Combining this with (9.26) and (9.27) we conclude that

∂∂f = ∂∂ log[det g0 + ϕ”)/det g0].

Taking the trace of both sides, from (9.18) one finds ∆(f − log[ ]) = 0 so f − log[ ] =
constant. Incorporating this constant into f we find that ϕ must satisfy the Monge-
Ampère equation

det(g0 + ϕ′′) = (det g0)e
f . (9.28)

But since γg and γg0
are cohomologous, then by Fact 5 Vol(M, g0) = Vol(M, g) , that is

∫

M

ef dvg0
= Vol(M, g0). (9.29)

This can always be arranged by adding a constant to f .
In the case of complex dimension m = 1 this equation is the elementary linear equa-

tion 1 + ∆Kϕ = ef , that is
∆ϕ = 2ef − 2,

whose solvability is evident.
The solution ϕ of (9.28), if one exists, is unique up to an additive constant. This is

obvious from part b) of the Comparison Theorem 4.4. The first complete existence proof
was by S.T. Yau [Y].
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Theorem 9.5 (Calabi’s Problem). Let (M, g0) be a compact Kähler manifold and ω a
closed real (1, 1) form that represents c1(M) . Then there is a unique Kähler metric g
cohomologous to g0 (i.e. γg

∼= γg0
) whose Ricci form is ω .

One consequence is that there exist Riemannian manifolds whose Ricci curvature is
everywhere zero, but whose sectional curvature is not everywhere zero. While this is not
surprising, there were no examples prior to this result. To give an example, consider a
K-3 surface. It is a compact Kähler manifold with c1 = 0 and Â 6= 0 so by the above,
there is a Kähler metric with zero Ricci curvature. This metric can not have zero sectional
curvature since if it did, all the Pontryagin classes (these are polynomials in the curvature)
would be zero. But then we have a contradiction Â 6= 0 because Â is expressed in terms
of a Pontryagin class.

c) Kähler-Einstein metrics

Given a compact Kähler manifold, M , we seek a Kähler-Einstein metric, so, for some
constant λ

Rαβ = λgαβ , or equivalently, ρg = λγg. (9.30)

Since ρg represents c1(M) and γg is positive, this means that λc1(M) must be positive
(unless γ = 0 ).

If λ = 0 then c1(M) = 0 and we know from Calabi’s problem that there is a Kähler-
Einstein metric, the one with Ricci curvature zero. Thus we assume λ 6= 0 .

Question: If c1(M) is positive (or negative), does M have a Kähler-Einstein metric?
We write this as a partial differential equation. There is some Kähler metric; its Ricci

form ρ0 represents c1(M) and hence must be positive or negative so we can define a new
metric g1 and corresponding Kähler form by γg1

= ρ0/λ . Then λγg1
represents c1(M) ,

as does ρg1
. Thus there is a real function f so that

ρg1
− λγg1

= i ∂∂ f. (9.31)

If the desired Kähler-Einstein metric g exists, then λγg = ρg so λγg also represents
c1(M) . This means there is a real function ϕ so that

γg − γg1
= i ∂∂ϕ, that is, g − g1 = ϕ′′. (9.32)

Thus
ρg − ρg1

= λγg − (λγg1
+ i ∂∂ f) = i ∂∂ (λϕ − f).

But also
ρg − ρg1

= −∂∂ log(det g/det g1).

Combining the last two equations we see that ϕ must satisfy the Monge-Ampère equation

det(g1 + ϕ′′) = (det g1)e
f−λϕ. (9.33)

In the special case of complex dimension one, this reads (recall ∆ = 2∆K )

1 + 1
2∆ϕ = ef−λϕ

In Chapter 5.7 we already saw that the case λ < 0 is much easier than the case λ > 0 ,
where we found the obstruction (5.47) to solving this equation on S2 . This situation
persists in higher dimensions T . Aubin proved that if λ < 0 then equation (9.32) has
exactly one solution (the uniqueness is an immediate consequence of part b) of Theorem
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4.4, while there are several Kähler manifolds with c1 > 0 that do not admit Kähler-
Einstein metrics. Futaki [Fu] found an extension of (5.47) to the higher dimensional case
(9.32) with λ > 0 , and gave valuable new examples and insight into the solvability of
(9.33) and the existence of positive Kähler-Einstein metrics. Let us formally state the
existence assertion.

Theorem 9.6 (Au-1) Let (M, g0) be a compact Kähler manifold with c1 < 0 . Then
there is a Kähler-Einstein metric g : ρg = −g . Moreover, if −γg0

represents c1 , then g
is the unique such metric cohomologous to g0 .

In applications one uses the Kähler-Einstein metric as a canonical metric to simplify
various formulas and give clearer insight into problems.

For example, if M is a compact Kähler surface (i.e. dimC M = 2 ), then one can
prove that the Chern classes satisfy 3c2(M) ≥ c2

1(M) , with equality if and only if M is

biholomorphically covered by the ball in C
2

(this was first proved by S. T. Yau, although
the inequality 3c2 ≥ c2

1 for Kähler-Einstein metrics had been observed by H. Guggen-
heimer in 1952). To give the proof, one uses the known fact that the characteristic class
3c2(M) − c2

1(M) can be written as a complicated integral involving curvature

3c2 − c2
1 =

∫

M

(curvature terms).

Since the left is independent of the Kähler metric, we may use any convenient metric.
In particular, if we use a Kähler-Einstein metric, the integrand is simply a square so the
inequality 3c2 − c2

1 ≥ 0 becomes evident. It is also easy to check when equality can occur.
(An analogous proof in two real dimensions is to obtain the sign of the Euler characteristic,
χ(M) , using the Gauss-Bonnet theorem and the existence of constant curvature metrics).

d) Complex Monge-Ampère equations: Existence

Both the Calabi problem and the existence of Kähler-Einstein metrics lead us to solve the
complex Monge-Ampère equation

det(g0 + ϕ′′) = (det g0)e
f−λϕ, (9.34)

requiring that g0 +ϕ′′ be definite. If λ = 0 , we must add the necessary condition (9.29).
We will sketch the existence proofs. They use the continuity method. The easier case

is λ < 0 .
λ < 0 . Consider the family of problems

det(g0 + ϕ′′) = (det g0)e
tf−λϕ, 0 ≤ t ≤ 1 (9.35)

where g0 + ϕ′′ is positive definite. At t = 0 we have the obvious solution ϕ = 0 . Let A
be the subset of t ∈ [0, 1] such that one can solve (9.35). To prove that A is open is a
routine application of the implicit function theorem (an exercise for the reader).

The proof that A is closed is, as usual, more difficult. The first step is to obtain a
uniform estimate for the solution, independent of t ∈ [0, 1] . At the point where ϕ has its
maximum, we use local coordinates in which g0 is the identity and ϕ′′ is diagonal with
non-positive eigenvalues αk ≤ 0 (because ϕ has its maximum there). Then (9.5) reads

1 ≥ Πk(1 + αk) = etf−λϕ, 0 ≤ t ≤ 1

so
|λ|ϕ ≤ max

M
f.
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By also considering the point where ϕ has its minimum we obtain the uniform estimate

|ϕ| ≤ ‖f‖∞/|λ| (9.36)

To estimate the higher derivatives of ϕ we must work harder. We estimate ∆ϕ [It would
be nice if there were some general procedure for doing this, as we did in Chapter 5.3, but
there is none yet]. Let

F = log(m − ∆Kϕ) − cϕ,

where c is a sufficiently large real constant, and let ∆′
K be the Laplacian in the metric

g = g0 + ϕ′′ . At the point where F has its maximum, then clearly ∆′
KF ≤ 0 . A

computation using this and (9.36) shows that for some constant c ,

0 < m + ∆Kϕ ≤ c (9.37)

(the inequality 0 < m + ∆Kϕ is obvious since g = g0 + ϕ′′ is positive definite and
m = dimC M ). This gives a uniform estimate on ∆Kϕ . It also shows that for 0 ≤ t ≤ 1
all of the metrics g = g0+ϕ′′ are uniformly equivalent (to prove this, use local coordinates
in which g0 is the identity and ϕ′′ is diagonal at the point z ∈ M under consideration).

Next one estimates the Hölder norm ‖ϕ‖C2, σ . Here one can apply a general result of
Evans (see [GT, second edition] for a simplified proof). This approach replaces a special
and complicated estimate of the third derivatives for (9.35). Once one has a C2, σ a priori
estimate for the solutions of (9.35), then one can estimate the third derivatives of ϕ by
differentiating the equation (9.35) and observing that the first derivatives of ϕ satisfy a
linear equation whose coefficients we have just estimated. Repeating this one can estimate
all the derivatives of ϕ that one wishes.

Using these estimates for ϕ and its derivatives, the standard procedure of Chapter 5.3
show that the set A is closed and hence that for λ < 0 , there is a (unique) solution ϕ
of (9.34) with g0 + ϕ′′ positive definite.

For more details of this proof (as well as for related facts) see [Au-4] and [SP], except
see [GT] for the Hölder estimate on the second derivatives.
λ = 0 . In view of the necessary condition (9.29) we consider the equation

det(g0 + ϕ′′) = (det g0)[1 + t(ef − 1)] (9.38)

(one can devise many equally suitable equations). Note that g := g0 + ϕ′′ is required to
be positive definite. Write (9.38) as

F (ϕ) = 1 + t(ef − 1). (9.39)

Let Qk, σ
c =

{

u ∈ Ck, σ with
∫

M
u dvg0

= c
}

. Then

F : Qk+2, σ
0 → Qk+2, σ

Vol(M,g0)
(9.40)

For the continuity method, to prove the openness at t0 , let ϕ be the solution at t0 .
Then by a computation

F ′(ϕ)ψ = F (ϕ)∆′
Kψ,

where ∆′
Kϕ is the Laplacian in the metric g′ = g0 + ϕ′′ . By (9.23)

∫

F (ϕ)∆′
Kψ dvg0

=

∫

∆′
Kψ dvg = 0.

Thus the linearization, F ′(ϕ) , is an isomorphism between the tangent spaces of the spaces
in (9.40). This proves the openness.
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For the closedness, we again need a priori estimates. In the case λ < 0 the uniform
estimate was a simple consequence of the maximum principle. For the present case, λ = 0 ,
a totally different and much more difficult procedure is required. At the present time, the
simplest procedure is to obtain an Lp estimate of solutions of (9.38) of the form

(

∫

M

|ϕ|p dvg0
)1/p ≤ cp, (9.41)

where cp is independent of t and lim cp = c < ∞ as p → ∞ . Thus, letting p → ∞
in (9.41) we obtain the estimate: max|ϕ| ≤ constant. From here on, one uses the same
estimates already discussed for the case λ < 0 on the higher derivatives of ϕ to complete
the a priori estimates and hence the proof. Again, see [Au-4], [SP] and [GT] for more
details.



Appendix: Some Geometry Formulas
[needs substantial revision]

The primary purpose of collecting these formulas here is to fix our notation and sign
conventions.

Linear Algebra We begin with two basic formulas that are often neglected in
elementary courses. Let A(t) be an invertible matrix whose elements depend smoothly
on the real parameter t .

Derivative of A−1(t) .

dA−1(t)

dt
= −A−1(t)

dA(t)

dt
A−1(t) (A.1)

To prove this, differentiate the identity A(t)A−1(t) = I to find A′A−1 + AA−1′ = 0 .
Solving this for A−1′ gives the result.

Derivative of det A(t) . If A(t) is invertible then

d det A(t)

dt
= detA(t) trace

(

A−1(t)
dA(t)

dt

)

(A.2)

It is enough to verify this at t = 0 . First in the special case of a matrix B(t) with
B(0) = I we have B(t) = I + C(t)t , where C(0) = B′(0) . Then

det B(t) = 1 + [trace C(0)]t + o(t) = 1 + [trace B′(0)]t + o(t)

and the result is clear.
We can reduce to the special case by writing A(t) = A(0)B(t) . Then observe that

B(0) = I . Therefore
d det A(t)

dt

∣

∣

0
= detA(0)

d det B(t)

dt

∣

∣

0
.

But B′(0) = A−1(0)A′(0) , from which the result is clear.

Riemannian Metri and Geodesis Let Mn be a smooth ( C∞ ) n-dimensional
manifold with tangent bundle TM and let S(TM) denote the set of smooth vector fields
on M . In local coordinates (x1, . . . , xn) then dx1, . . . , dxn are a basis for the differential
1 -forms and ∂

∂x1 , . . . , ∂
∂xn are a dual basis for the vector fields.

Riemannian Metrics A Riemannian metric is a positive definite quadratic form g
that defines an inner product on vector fields V, W

〈V, W 〉 = g(V, W ). (A.3)

Consequently, in local coordinates the Riemannian metric is given by the positve definite
(symmetric) matrix

gij =
〈 ∂

∂xi
,

∂

∂xj

〉

, (A.4)

and we write

g = ds2 =
n

∑

i,j=1

gij(x) dxi dxj = gij(x) dxi dxj , (A.5)

where on the right we used the summation convention of summing on repeated indices. We
will sometimes use this convention. The above formula also introduces the usual element
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of arc length, ds . It is also standard to write gij for the inverse of the matrix gij and
|g| = det g so the Riemannian element of volume is

dxg =
√

|g| dx1 · · · dxn =
√

|g| dx.

If in local coordinates V =
∑n

i=1 vi ∂
∂xi and W =

∑n
i=1 wi ∂

∂xi , then from (A.3)–(A.4)
the inner product is

〈V, W 〉 = gijv
iwj .

For brevity in local coordinates it is customary to write a vector field V simply as vi .

In carrying out computations, it is useful to know that one can always introduce
coordinates with the properties that at one point p one has

gij(p) = δij and, for all i, j, k
∂gij(x)

∂xk

∣

∣

∣

x=p
= 0. (A.6)

Indeed, one can obtain this by a change of coordinates which is a polynomial of degree
at most two - but a more conceptual approach is to use so-called Riemannian normal
coordinates, where one uses as local coordinates at the given point the geodesics (see
below) which start at the given point; actually, these geodesics give polar coordiates, from
which one obtains a set of corresponding cartesian coordinates by the usual formulas. One
obvious advantage of (A.6) is that the Christoffel symbols (see below) are then zero at
this one point.

Although one can pick coordinates so the first derivatives of the metric zero at one
point, there are essential obstructions to making the second derivatives of the metric
zero. These obstructions are measured by the curvature, which will be introduced below.
Riemann showed that one can introduce local coordinates so that a metric is the standard
Euclidean metric if and only if the curvature is zero (see the extensive discussion in Spivak
[Sp, Vol. 2], where this is called the “Test Case”). Riemann also used an enlightening
counting argument. He pointed out that locally on an n -dimensional manifold a metric
is a symmetric matrix and so has 1

2n(n + 1) functions. However a change of coordinates
allows one to impose at most n conditions on the metric. Thus he states that there should
be some set of 1

2n(n + 1) − n = 1
2n(n − 1) functions which determine a metric. These

functions are the curvature tensor (again, see [Sp, Vol 2] for more).

Since any inner product induces an identification between a vector space and its dual
space, the Riemannian metric induces a natural identification between 1 -forms and vector
fields. In our local coordinates, the 1 -form v is v =

∑

vi dxi ; the dual vector field then
has the coordinates vi = gijvj . Similarly vi = gijv

j . This natural identification gives an
inner product on 1 -forms α and β :

〈α, β〉 = gijαiβj = αiβi.

Gradient Given a smooth function f , if we write fi = ∂f
∂xi then the differential of f is

the 1 -form df = fidxi and its gradient is the dual vector field ∇f = grad f = f i = gijfj .
Thus, as an exercise in notation, for functions ϕ and ψ we have

〈∇ϕ, ∇ψ〉 = gijϕ
iψj = gijϕiψj = ϕiψi.

In particular, |∇ϕ|2 = gijϕiϕj = ϕiϕi .

Geodesics Knowing the element of arc length, we can determine the length of a curve.
Given two points P and Q , it is natural to seek the shortest curve joining them. Such a
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curve is called a geodesic. In Euclidean space these are simply straight lines. Our discussion
will be formal, presuming there is a smooth shortest curve x(t) = (x1(t), . . . , xn(t)) and
that all discussion takes place in one coordinate patch in Euclidean space. We obtain the
standard Euler-Lagrange differential equations in the calculus of variations.

Because arc length is independent of the parameterization, any parameterization of
this shortest curve will be adequate. To simplify the computation we will assume the
desired geodesic x is parametrized by arc length s . Then

∑

i,j

gij(x)
dxi

ds

dxj

ds
= 1 (A.7)

Say the curve has length L , x(0) = P and x(L) = Q . Let y(s) = (y1(s), . . . , yn(s)) be
a smooth curve with y(0) = 0 and y(L) = 0 ; of course the parameter s is not necessarily
the arc length for the curve y . For all small real λ we consider the family of curves x+λy
which also join P and Q . Then, using the notation ẋ = dx/ds , the arc length is given
by

L(x + λy) =

∫ L

0

√

∑

i,j

gij(x + λy)(ẋi + λẏi)(ẋj + λẏj) ds

Since x is the shortest curve we see that the scalar-valued function ϕ(λ) = L(x + λy)
has a minimum at λ = 0 . Thus by calculus dϕ

dλ = 0 at λ = 0 . We use the above formula
for the length L along with the normalization (A.7) to compute this derivative:

0 =
d

dλ
L(x + λy)

∣

∣

∣

λ=0
=

∫ L

0

[

∑

i,j

gij(x)ẋiẏj + 1
2

∑

i,j,h

∂gij(x)

∂xh
yhẋiẋj

]

ds

Now integrate the first term by parts, removing the derivative from the ẏj , observing
that there are no boundary terms since y(0) = y(L) = 0 , to find

0 =

∫ L

0

∑

h

[

−
∑

i

d

ds

(

gih(x)ẋi
)

+ 1
2

∑

i,j

∂gij(x)

∂xh
ẋiẋj

]

yh ds.

Since the yh are arbitrary except for their boundary values, we deduce that the remaining
term in the integrand must be zero. We rewrite this, using summation convention, as the
following Euler-Lagrange differential equation for the problem of minimizing the arc length,
that is, for finding geodesics:

gih(x)ẍi +
∂gih(x)

∂xj
ẋiẋj − 1

2

∂gij(x)

∂xh
ẋiẋj = 0,

Equivalently, we can rewrite this as

ẍk + Γk
ij ẋ

iẋj = 0, (A.8)

where

Γk
ij = 1

2gkh
(∂ghj

∂xi
+

∂gih

∂xj
− ∂gij

∂xh

)

. (A.9)

The Γk
ij are called the Christoffel symbols associated with the metric. Since the coefficient

of Γk
ij in (A.8) is symmetric in i j , we have also defined Γk

ij to have the same symmetry:

Γk
ij = Γk

ji . When we define the covariant derivative below we will again obtain the
Christoffel symbols and there this symmetry will be more natural. From the usual existence
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theorem for ordinary differential equations, we can find a unique solution with given initial
position and tangent vector. Note that in this brief discussion of geodesics, we only used
the first derivative of the arc length functional. Thus, we have not at all considered
the issues of when a geodesic actually minimizes the distance. As one might surmise, a
treatment of this involves the second derivative of the arc length functional.

Connetion, Covariant Derivative

Covariant Derivative of a Vector Field On an arbitrary manifold, there
is no invariant way to take the derivative of a vector field A connection gives a rule
for differentiating a vector field (one can equivalently view it as a way of defining parallel
translation of a vector, although we shall not take the time to do so here). On a Riemannian
manifold, the metric itself defines an inner product and hence specifies how to translate
a vector field parallel to itself so one can use this to define the derivative as the limit
of a difference quotient. We will take a different approach to defining the derivative. A
connection defines an operator ∇ : S(TM) × S(TM) → S(TM) . One thinks of ∇V W
as the directional derivative of W in the direction of V . The Riemannian connection has
the following properties for all vector fields V,W,Z ∈ S(TM) and all ϕ,ψ ∈ C∞(M) :

1) ∇ϕV +ψW Z = ϕ∇V Z + ψ∇W Z ,

2) ∇V (ϕW + ψZ) = V (ϕ)W + ϕ∇V W + V (ψ)Z + ψ∇V Z ,

3) V 〈W, Z〉 = 〈∇V W, Z〉 + 〈W, ∇V Z〉 (compatible with the metric),
and

4) ∇V W −∇W V = [V,W ] (connection is torsion free).

Given a metric, one proves there is a unique connection with these properties. One way
to do this is to give an explicit (messy) formula for the connection using the metric. In
local coordinates, since ∇ ∂

∂xi

(

∂
∂xj

)

is a vector field, it is some linear combination of the

basis vectors ∂
∂xi . One writes

∇ ∂

∂xi

(

∂
∂xj

)

=
∑

Γk
ij

∂
∂xk . (A.10)

The torsion-free Property 4 gives the symmetry Γk
ij = Γk

ji . In view of the linearity

Properties 1-2, the coefficients Γk
ij , called the Christoffel symbols, define the connection

∇V W for any vector fields V and W . The Christoffel symbols will turn out to be the
same as thse used above in our discussion of geodesics.

We now use Property 3 with equation (A.4) to compute these Christoffel symbols.
First

∂gij

∂xh
=

∂

∂xh

〈 ∂

∂xi
,

∂

∂xj

〉

=
∑

s

Γs
hi gsj +

∑

s

Γs
hj gis. (A.11)

Using this formula one computes
∂ghj

∂xi + ∂gih

∂xj − ∂gij

∂xh . After observing the cancellation one
again obtains the standard formula (A.9) for the Christoffel symbols.

Using Property 2 and equation (A.10) it is now straightforward to compute the co-
variant derivative of a vector field W = wi ∂

∂xi

∇ ∂

∂xj
W =

∂wi

∂xj

∂

∂xi
+ wi∇ ∂

∂xj

∂

∂xi
=

(∂wi

∂xj
+ wkΓi

kj

) ∂

∂xi
= wi

;j
∂

∂xi
, (A.12)

where we have introduced the tensor notation

wi
;j = wi

,j + wkΓi
kj , (A.13)
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with wi
,j = ∂wi

∂xj . If one uses this notation, the subtle visual difference between wi
;j and

wi
,j can cause difficulties. Note that for a scalar-valued function ϕ the covariant deriva-

tive and ordinary partial derivatives are the same so in tensor notation dϕ = ϕ;i dxi =
ϕ,i dxi , that is, ϕ;i = ϕ,i .

If V =
∑

vi ∂
∂xi , one can clearly compute ∇V W using the linearity property 1 ) and

(A.13).

Implicit in the above discussion was the following definition of ∇ :

∇W (V ) = ∇V W (A.14)

so, for example,
∇W

(

∂
∂xi

)

= wk
,i

∂
∂xi

and hence
∇W =

∑

i,k

wk
;i dxk ⊗ ∂

∂xi . (A.15)

This explicitly exhibits ∇W in terms of its classical tensor components wk
;i . It also

shows that ∇W is a tensor of type (1, 1) (it has one “upper” index and one “lower”
index), while W is a tensor of type (1, 0) .

As a digression we apply equation (A.2) to record the following formula for
∑

j Γj
ij .

We will use it shortly.

∑

j

Γj
ij = 1

2

∑

jk

gjk ∂gjk

∂xi
=

1
√

|g|
∂
√

|g|
∂xi

(A.16)

Other Covariant Derivatives One uses the covariant derivative of a vector field
to define the covariant derivative of all other tensors. Instead of a general definition, we
give a few examples from which the general case should be clear. For any function f we
define ∇V f = V (f) . We assume the usual product rule holds for covariant differentiation
of any tensor field as well as the linearity modeled on previous Properties 1 ) and 2 ) for
the covariant derivative of a vector field.

We first treat differential 1 -forms. Let α = αi dxi be a 1 -form. We compute ∇V α
which will be another 1 -form. Say ∇ ∂

∂xj
α = αi;j dxi . We wish to compute the αi;j .

The key procedure is to introduce a vector field W = wi ∂
∂xi and use that α(W ) = αiw

i

is a scalar-valued function. Then using these rules we find the formula by the following
sequence of steps (the left side of the second equation follows from the left side of the first
equation etc.).

∇ ∂
∂xj

(α(W )) = (∇ ∂
∂xj

α)(W ) + α(∇ ∂
∂xj

W )

∇ ∂
∂xj

(αiw
i) = (αi;j dxi)

(

wk ∂

∂xk

)

+ (αi dxi)
(

wk
;j

∂

∂xk

)

αi,jw
i + αiw

i
,j = αi;jw

i + αi(w
i
,j + wℓΓi

ℓj).

After cancelling two terms and renaming some indices we are left with

αi;jw
i = αi,jw

i − αkwiΓk
ij .

Since this must hold for any vector field W , we conclude that

αi;j = αi,j − αkΓk
ij , (A.17)
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that is,

∇ ∂

∂xj
α =

(∂αi

∂xj
− αkΓk

ij

)

dxi.

Just as in the case of vector fields, this leads us to write

∇α =
∑

ij

αi;j dxi ⊗ dxj . (A.18)

We next show that the metric itself has covariant derivative zero, ∇V g = 0 . As
we saw above, one can simplify computations by working directly with the coefficients of
the tensors. Using our assumption that the product the product rule holds for covariant
differentiation, we see that

∇ ∂
∂xk

〈W, Z〉 = ∇ ∂
∂xk

(gijW
iZj)

= (∇ ∂
∂xk

gij)W iZj + gij(∇ ∂
∂xk

W i)Zj + gijW
i (∇ ∂

∂xk

Zj)

= (∇ ∂
∂xk

gij)W iZj + 〈∇ ∂
∂xk

W, Z〉 + 〈W, ∇ ∂
∂xk

Z〉.

But by property 3 ) of the covariant derivative (compatibility with the metric), this is
equal to the same right-hand-side without the first term. Thus ∇ ∂

∂xk

gij = 0 and hence,

by linearity, ∇V g = 0 for any vector field V . In tensor notation, gij;k = 0 . After one
knows how to compute hij;k , that is, the covariant derivative of any tensor field of the
form hij dxi ⊗ dxj , then a special case is the computation showing that gij;k = 0 .

We next compute the second derivative ∇2W of a vector field W . The result, defined
below, will be a tensor field of type (1, 2) . Now since ∇ZW is itself a vector field, we
can compute ∇V (∇ZW ) . However, using the definition (A.14) and the assumption that
the product rule holds for differentiation:

∇V [∇ZW ] =∇V [∇W (Z)] = (∇V ∇W )(Z) + ∇W (∇V Z) (A.19)

=(∇V ∇W )(Z) + ∇∇V ZW. (A.20)

This formula defines (∇V ∇W )(Z) . Also, as in (A.14), we define ∇2W to be

∇2W (Z, V ) = (∇V ∇W )(Z).

Combining the last two formulas we find that

∇2W (Z, V ) = ∇V [∇ZW ] −∇∇V ZW. (A.21)

The same procedure works for the second derivative of any tensor field.

We now carry out the straightforward, although tedious, details to write this in local
coordinates for V = ∂

∂xk and Z = ∂
∂xj . Since ∇ ∂

∂xj
W = wi

;j
∂

∂xi , we have

∇ ∂

∂xk
∇ ∂

∂xj
W = wi

;j,k
∂

∂xi
+ wi

;j∇ ∂

∂xk

∂

∂xi
=

(

wi
;j,k + ws

;jΓ
i
sk

) ∂

∂xi
. (A.22)

Substituting the formula (A.13) for wi
;j we get the long formula

∇ ∂

∂xk
∇ ∂

∂xj
W =

(

wi
,jk + wℓ

,kΓi
ℓj + wℓ

,jΓ
i
ℓk + wℓ

∂Γi
ℓj

∂xk
+ wℓΓs

ℓjΓ
i
sk

) ∂

∂xi
. (A.23)
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This formula reveals important information. It is not symmetric in j and k , so second
derivatives do not commute, but since the first three terms on the right are symmetric in
j and k , the error does not involve any derivatives of the vector field W . We will shortly
use this observation to define the curvature.

Hessian, Laplacian, and Divergence The Hessian of a function ϕ is defined as

Hess ϕ = ϕ;ij = ϕ,ij − ϕ,kΓk
ij . (A.24)

Note that this is symmetric in ij and defines a quadratic form on vector fields.
Using formula A.16 we have the following formulas for the Laplacian

∆ϕ = gijϕ;ij = ϕ;i
i =

1
√

|g|
∂

∂xi

(

gij
√

|g| ∂ϕ

∂xj

)

, (A.25)

Note that, for good reason, many mathematicians use the opposite sign for the Laplacian.
We will define the divergence of a vector field V so that the Divergence Theorem is

valid. The technique we use is both simple and useful. For a bounded region Ω with
smooth boundary the Divergence Theorem states that

∫

Ω

div V dxg =

∫

∂Ω

V · N dAg, (A.26)

where N and dAg are the unit outer normal vector and element of volume on the bound-
ary. The inner product on the right is in the Riemannian metric. We also require the
property (derivation) that for any scalar-valued function ϕ

div(ϕV ) = ∇ϕ · V + ϕdiv V,

where again the inner product in the first term on the right is in the Riemannian metric. To
avoid worrying about the boundary term in the Divergence theorem, we will use functions
ϕ whose support lies inside Ω and that Ω lies in a coordinate patch so that we can apply
the classical form of the Divergence theorem. First observe that the above formula for the
volume element dxg and an ordinary integration by parts and give

∫

Ω

∇ϕ · V dxg =

∫

Ω

∂ϕ

∂xi
vi

√

|g| dx = −
∫

Ω

ϕ
∂(

√

|g| vi)

∂xi
dx

Using this in the Divengernce Theorem we find

0 =

∫

Ω

div(ϕV ) dxg =

∫

Ω

ϕ
(

− 1
√

|g|
∂(

√

|g| vi)

∂xi
+ div V

)

dxg

Because this is to hold for any smooth ϕ , we obtain the desired formula for the divergence
of a vector field,

div V =
1

√

|g|
∂(

√

|g| vi)

∂xi

Again we caution that many mathematicians use the opposite sign for the divergence.
From equations (A.16) and (A.12) we can also write the divergence using vector field
notation as

div V =
∑

i

〈∇ei
V, ei〉.

In classical vector analysis one often writes div V = ∇ · V ; despite temptations we have
avoided this because of possible confusion with the covariant derivative. The divergence
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can also be used to write the Laplacian as ∆ϕ = div∇ϕ and of course give the same
formula (A.25). To many, including myself, this second approach to the Laplacian —
using the Divergence Theorem — is more natural.

======================================

Riemann curvature tensor

Riem (g) = Rh
ijk =

∂Γh
ik

∂xj
−

∂Γh
ij

∂xk
+

∑

ℓ

(

Γh
ℓjΓ

ℓ
ik − Γh

ℓkΓℓ
ij

)

(A.27)

Ricci curvature tensor

Ric(g) = Rij = Rh
ihj = 1

2gst
( ∂2gis

∂xj∂xt
+

∂2gis

∂xi∂xt
− ∂2gij

∂xs∂xt
− ∂2gst

∂xi∂xj

)

+ Q(g, ∂g), (A.28)

where Q is a function of g and its first derivatives only, and is homogeneous of degree 2
in the first derivatives, ∂g . For the standard sphere (Sn, g0) of radius 1 in R

n+1

Ric(g0) = (n − 1)g0.

Scalar curvature
S(g) = S = gijRij = Ri

i (A.29)

so on (Sn, g0) , S(g0) = n(n − 1) . If dim M = 2 , then Gauss curvature = 1
2 scalar

curvature.
Second Bianchi identity

Rtijk;ℓ + Rtiℓj;k + Rtikℓ;j = 0, (A.30)

where the semi-colon ; is covariant differentiation. In particular, for the Ricci tensor this
gives

2Rik;
i = S;k (A.31)

First variation formulas
Let g(t) be a family of metrics for real t , with dg/dt|t=0 = h . Then

d

dt
Riem (g(t))|t=0 = 1

2gis(his;kj + hks;ij − hki;sj − his;jk − hjs;ik + hji;sk), (A.32)

where the covariant derivatives are in the g(0) metric.

d

dt
Ric(g(t))|t=0 = 1

2 (hi
ℓ
;kℓ + hk

ℓ
;iℓ − hki;ℓ

ℓ + hℓ
ℓ
;ik) (A.33)

d

dt
S(g(t))|t=0 = −hi

i
;s

s + his
;is − hisRis (A.34)

Pointwise Conformal metrics on (Mn, g0)
If g1 = e2ug , so g1 is pointwise conformal to g , then

dxg1
= enudxg, (A.35)

|∇g1
ϕ|2 = e−2u|∇ϕ|2, for any function ϕ, (A.36)
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Ric(g1) = Ric(g) − (n − 2)(u;ij − u;iu;j) − gij(∆u + (n − 2)|∇u|2), (A.37)

where ∆ and ∇ are the Laplacian and gradient in the g metric.

S(g1) = e−2u[−2(n − 1)∆u − (n − 1)(n − 2)|∇u|2 + S(g)]. (A.38)

If n = 2 , then S(g) = 2K(g) , where K(g) is the Gauss curvature of g so

Kg1
= e−2u[−∆u + K] (A.39)

Dimension 2: If g = Edu2 + 2F du dv + Gdv2 with

E(p) = G(p) = 1, F (p) = 0, and ∇E(p) = ∇F (p) = ∇G(p) = 0 (A.40)

at a point p , then

Gauss curvature (p) = K(p) = − 1
2 (Evv − 2Fuv + Guu), (A.41)

where Evv is the second partial derivative with respect to v , etc.
In particular, if

g1 = g − (dz)2, (A.42)

where g is as above and ∇z(p) = 0 , then

K1(p) = K(p) − (zuuzvv − zuv
2). (A.43)

This is a special case of the following formula for the Gauss curvature of g1 = g − (dz)2

at any point:

K1 =
K

1 − |∇z|2 − det(Hess z)

(1 − |∇z|2)2 det g
(A.44)

Ricci commutation formulas

vi;kℓ = vi;ℓk − vjR
j
iℓk and vi

;kℓ = vi
;ℓk + vjRi

jℓk (A.45)

These (equivalent) formulas show that covariant derivatives commute except for a cor-
rection involving the curvature. They are often used as the definition of the Riemann
curvature. They imply similar formulas for more complicated tensor, such as

hij;kℓ = hij;ℓk − hisR
s
jℓk − hsjR

s
iℓk (A.46)

Weitzenböck formulas
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