Math480/540, TOPICS IN MODERN MATH.
What are numbers?
Part 11

A. A. Kirillov*

Jan. 2008

In a role of numbers can occur not only elements of a field or a skew-
field. In this part I talk about other mathematical objects which are used
as numbers. It is interesting that all of them had appeared first in “pure”
mathematics and later were used in mathematical physics and some other
applications. It support the thesis that there is only one mathematics in
which some domains have already found application and other not yet.

1 Matrices as numbers

Examiner: What is a multiple root of a
polynomial?

University entrant: Well, it is when we
substitute a number in the polynomial
and get zero. Then do it again and again
get zero and so k times... But on the

(k + 1)-st time the zero does not appear.

From the mathematical folklore of
Moscow State University

1.1 Matrices; basic facts

Square matrices give us the remarkable generalization of the notion of a
number. Let us denote by Mat, (K) the set of all n x n matrices with
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entries from a field K. These entries are usually denoted by A; ; (or by a; ;)
where i is a row number and j is the column number. The set Mat,, (K)
form a K-algebra. It means that the elements of Mat,(K) can be added,
multiplied and mu tiplied by numbers (i.e., elements of K). Namely,the
addition, subtraction and multiplication by a number are defined element-
wise:

(A£B)ij=Aij+Bij,  (A-A)j=A-Aij

and multiplication is defined by the formula

(A“B)ij =) Aix- B (1)
k

This rule seems to be rather artificial. Sometimes, people ask: isn’t it
better (and more natural) to define the multiplication element-wise, as all
other operations? The answer is no! The definition (1) defines much more
interesting and important algebra, than the direct sum of n? copies of K.
The point is that (1) follows from the geometric interpretation of a matrix
A € Mat, (K) as a linear transformation of a n-dimensional vector space V'
over K.!

Indeed, if {v;}, 1 <i <mn, are the coordinates of a vector v € V, then a
matrix A defines the transformation v — AV, where

(Av)i =Y A (2)
i

and a direct computation shows that the product (i.e composition) of trans-
formations (2) corresponds to the product of matrices by the rule (1).

Thus, we can add, subtract and multiply matrices like numbers. But
there are are also distinctions. First, the multiplication of matrices is, in
general not commutative: AB # BA. Second, a division by a matrix (from
the right or from the left) is possible only if the matrix is invertible. It is
known that A is invertible iff det A # 0.

Exercise 1 Let F, be a field with q elements. How many matrices are in
Mat,(F,) and how many of them are invertible?

!'Note that it is not a sole way to give a geometric sense to a matrix. One can, for
instance, consider a matrix A € Mat, (K) as a bilinear form on V, i.e. a map from V xV to
K, which is linear in both arguments. The difference can be seen when we change a basis
in V. The matrix of a linear operator is transformed according to the rule A — Q™ *AQ,
and a matrix of a bilinear form — according to another rule A — Q*AQ. Here Q~? is the
inverse matrix and Q" is the transposed matrix.

In this section a matrix A always corresponds to a linear operator.



The lack of commutativity prevented for a long time the use of matrices
in a role of numbers. Only after appearance of quantum mechanics the
“non-commutative numbers” became popular. We discuss it later and now
consider another important feature of numbers. Namely, numbers can serve
as arguments in functions. Let us look, how far matrices can be used in this
capacity.

1.2 Matrix polynomials

The simplest functions studied in analysis are polynomials. Let P(z) =
Yoo cxx® be a polynomial with real coefficients. It is clear, how to give
sense to an expression of the form P(A) where A € Mat,(R). We have to
put

m
P(A) = Z cr AR (3)
k=0
where, by definition, A? is a unit matrix which we denote by 1 (or by 1,,, if
it is necessary to indicate the size of a matrix).

Exercise 2 Let P := R[x] be the polynomial algebra over R with one gener-
ator x. Find all homomorphisms ¢ of P (in the category of associative real
algebras with a unit) to the algebra Mat,, (R).

One of the oldest problems of in algebra: to find the roots of a given
polynomial P(z). Later it turns out that the inverse problem is also of
interest: to describe all polynomials for which a given number is a root.
The answer is given by the

Theorem 1 (Bezout Theorem) The set of all polynomials for which a
given number a is a root is an ideal in P generated by x — a.?

Let us look, which restrictions on polynomial P are imposed by the
equation

P(A)=0. (4)
The answer is rather simple, if the matrix A is diagonal:
aa 0 ... 0
A= 0 a = diag(a1, ag, ..., ap).
0 0 .. oa

2A more habitual formulation: P(a) = 0 iff P is divisible by (z — a).



In this case we have P(A) = diag(P(a1), P(a2), ..., P(an)). Therefore
(4) is equivalent to the system

P(a;) =0, 1<i<n. (5)

So, the sole matrix A replaces the whole set {a1, ag, ..., ap}.
Let now the matrix A be not necessarily diagonal, but can be reduced
to the diagonal form:

A=Q 'AQ where A =diag(A, A2, ..., Ap).
It easy to check (but much more important to understand) that
P(Q7'AQ) = Q7' P(A)Q. (6)

Therefore the equation (4) is equivalent to the system P()\;) =0, 1 < i < n.

We see again that a matrix A € Mat,(R) replaces a set of n numbers.
From the linear algebra course you know that these numbers are eigenvalues
of the matrix A, i.e. the roots of the characteristic equation

det(A—X-1)=0.

The eigenvalues form a set S which is called spectrum of A. If all the
eigenvalues are different, we say that A has a simple spectrum. It is known
that any matrix with a simple spectrum in K can be diagonalized over K.
We come to the theorem.

Theorem 2 Let A be a matriz with a simple spectrum S which is contained
in K. Then a polynomial P € K|x] vanishes at A iff P|s = 0.

Exercise 3 Show that the theorem remains true even when the spectrum is
not in K but in some extension K O K.

The theorem is one of manifestation of the general principle:

The matrixz elements form only a perishable body of the operator A, while
the eigenvalues express its immortal soul.

Other manifestations of this principle occur below. Now I suggest the
following subject for meditation.

Problem. Let [A] denote a point of the projective space }P’”Q_l(]R),
corresponding to a non-zero matrix A € Mat,,(R).

Describe the behavior of the sequence {[A"]} (in particular, find out
when it has a limit and how the set of limit points can look like).



1.3 Matrices and field extensions

For a given matrix A € Mat,,(K) we consider the set K[A] of all matrices
of the form P(A), P € K[z]|. It is clear that K[A] is the minimal subalge-
bra with unit in Mat,,(K) which contains A. On the other hand, K[A] is
isomorphic to a quotient of K|[x] by the ideal I(A) defined by (4).

Theorem 3 If A is has a simple spectrum S C K, then the algebra K[A]
is isomorphic to the algebra KI[S| of K-valued functions on S.

Indeed, from (6) it follows that the isomorphism in question can be
defined as follows:

K[A] 5 P(A) — (P(\), ..., P(\y)) € K(S).

More interesting situation arises when the spectrum of A is not simple
or is not contained in K.

The model example of a matrix with non-simple spectrum is the so-called
Jordan block:

A1 0 ...00
0 A 1 ... O
TN =1 ...
0 0 o ... 1
0 0 0 ... A

Exercise 4 Prove that for A = J,(\) the ideal I(A) consists of polynomials
P satisfying
PQA) =P\ =...P D) =o. (7)

As is well-known (and easy to check), the spectrum of J,(\) consists of a
single point A. It shows that the analogue of the theorems (2) and (3) are
wrong.

However, from an intuitive point of view, it is convenient to believe that
these theorem are still valid, even if for this we have to change some previous
definitions.? In our case we have to change the definition of a spectrum and
the class of functions considered. We want to consider the spectrum of J,,(\)
not as a single point A, but as an infinitesimal neighborhood of order n — 1
of this point which we denote U,,_1()).

3Here, as in many other cases, one can use the principle:

If a definition impedes the validity of a nice theorem, change it.



The Theorem (3) suggests what how we must understand the restriction
of a polynomial P to U,—1(\): we have to develop P in a power series in
(x — A) and cut it after term of degree n — 1. Then conditions (7) will be
equivalent to P |Un—l( ») = 0. In case K = R this construction is well-known
in analysis and can be applied to any smooth function defined in an ordinary
neighborhood of A\. More precisely, a n-jet of a function f at the point A is
the expression

n k
() =3 5o EA
k=0

which we consider as the restriction of f to Uy(A).

Of course, we can not consider Uy, (\) as an ordinary neighborhood (com-
pare $ 3). For example, the polynomial P(z) = (x — A\)™ vanishes on Uy, (\)
but has a unique root x = A.

Let us consider the case when the spectrum of A is not contained in K.
Then the characteristic polynomial

xA(z) :=det(A—z-1) (8)

does not decompose into linear factors. Let, for instance, x4 is irreducible,
i.e. does not decompose at all into factors of smaller degrees. Then the
ideal I(A) C K|[x] is simple and generated by xa. Therefore, the algebra
K(A) ~ K[x]/I(A) has no zero divisors and is a field containing K. We

denote it by K.

Lemma 1 Let the matriz A is of size n xn, so that x4 has degree n. Then,
the field K as a vector space over K, has dimension n.

Indeed, the elements 1, A, A%, ..., A" ! are linearly independent, because
I(A) contains no polynomials of degree < n — 1. On the other hand, from
the Cayley identity

xa(A4) =0 (9)

every element of K can be written in the form
ao-l—i—al-A—i—...—i—an_yA"*l, (10)

where a; € K.
If we want the theorem (3) to be still valid, there are two ways:

1. We can think that Spec A, the spectrum of A, consists of one point X,
not belonging to K, and K[A] ~ K is interpreted as the set of all functions
on this single point A, taking values in K.



2. We can think that Spec A consists of all n eigenvalues of A in K
and the algebra K[A] consists of K-valued functions on the spectrum which
satisfy the additional condition. Namely, denote by G' = Gal(K /K) the so-
called Galois group of the field K over K. It consists of all automorphisms
of the field K which fix all elements of K. The condition in question is

flg-N)=g-f(\) forall ge G, \e SpecA.

0 1
-1 0
irreducible over R polynomial x a(x) = 22+1. Here the field K is isomorphic
to C. We get a well-known realization of C by real matrices of the form

Examplel If K = R, A = H H, then I(A) is generated by the

apg ai

a0-1+a1'A:H
—a1 Qo

Exercise 5 Find the group Gal(C/R.

0 1
-1 0
ducible over R polynomial x 4(z) = 2® +x + 1 and the field K is 1somorphic
to Fy. We obtain a simplest realization of the field F4* by matrices over Fy:

Example 2 If K =Fy, A =

, then I(A) generated by the irre-

9y €T =

pp=| b
I A N T |

Exercise 6 Find the group Gal(F4/Fs2).

1.4 Operational calculus

We know now, more or less, what are polynomial functions of matrices. Let
us look, how to define more general functions of a matrix argument. For
this we turn from algebra to analysis and use the limit operation. It is well-
known that many functions can be approximated by polynomials in one or
another sense. So, an analytic function on R is approximated by partial sums
of its Taylor series and this approximation is uniform on any closed segment
[a, b]; any continuous function on a segment [a, b] € R can be uniformly
approximated by a sequence of polynomials; a continuous function on the

“Which, certainly, is different from the ring Zs4 = Z/47Z.



circle 22 + y? = 1 is uniformly approximated by polynomials P(z, y), or
N

trigonometric polynomials Z ay, cos kx + by sin kz.

k=—N
Let us choose a vector space F' of functions which admit approximation

by polynomials in some sense and try to define the value f(A) for f € F as
follows:

f(A) := lim P,(A) where P, — f when n — oo. (11)
n—oo
Here we have in mind that P, — f in the sense of F' and P,(A4) — f(A)
elementwise. This definition make sense if and only if the condition F,, — 0
in the sense of F' implies P(A) — 0 elementwise. Of course, it depends on
the matrix A and of the definition of a limit in F'.

Example 3 Fiz a finite set S C R and say that a sequence of functions
{fn} is convergent if it converges at any point x € S.

Then the definition (11) make sense for any matriz A with a simple spec-
trum Spec A C S. Moreover, if A = Q7'DQ, D = diag (A1, A2, ..., A\p),

then f(4) = diag (f(\), f(), - FOM))

Example 4 Call a sequence of functions {fn} convergent if the sequences
{féi) (), 0<i<n—1,x €S, are convergent.

Then the expression f(A) make sense for any (n—1)-smooth function f
and for any matriz of size < n with a spectrum Spec A C S.

Example 5 A function f(z) = ﬁ 1s infinitely smooth and on any closed
segment can be uniformly approximated by polynomials together with any

number of derivatives.
0 1

However, for A = 10

H the value f(A) is not defined since 1 + A% = 0.

1.5 Functions of Hermitian matrices

The examples in the end of the previous section show that the notion of a
function of a matrix is rather delicate and handling with care is required.
In the same time, there is a remarkable class of matrices A for which the
expression f(A) is defined practically for all reasonable functions on R. It is
the class of Hermitian matrices, i.e. such complex matrices A which satisfy

A=A" or Qi 5 = Qj ;- (12)



In particular, all real symmetric matrices and pure imaginary antisymmetric
matrices are Hermitian.

Exercise 7 Let a sequence {P,} of polynomials tends to 0 at any point
x € R. Prove that P,(A) — 0 for any Hermitian matriz A.

This statement remains true for matrices of infinite order corresponding
to the so-called Hermitian operators in a Hilbert space. It plays a basic role
in the mathematical model of quantum mechanics, because in this theory
the physical observables are modelled by Hermitian operators.

We have, however, to make precise, what we understand under a matrix
of infinite order and how to handle them. We are staying on a geometric
base and consider matrices as operators acting on vectors. So, we must
make clear, what is infinite vector. By the analogy with a finite-dimensional
case, we could call an infinite real (or complex) vector any sequence v\ =
(x1, 2, ..., Tp, ... ) where x; are real (or complex) numbers. These vectors
indeed form an infinite-dimensional vector space. But if we want to study
geometric notions, such as length, angle, orthogonality, we have to restrict
the class of sequences considered. Namely, call a sequence N~ = {zf}r>1
admissible if the series Y, |zk|* is convergent. The basic properties of
admissible sequences we collect in the following

Exercise 8 Prove that

a) For any two admissible sequences x = {xi}r>1 andy = {yi}tr>1 the
series Y .~q TkYy, S convergent.

b) The admissible (real or complex) sequences form a (real or complex)
vector space under the usual operations of addition and multiplication by a
number.

¢) Define the scalar (or dot-) product of admissible sequences and the
length of x by the formulas

(%, ¥) = > i xl = (> )’ (13)

k>1 k>1

=

Then the following Cauchy inequality holds:

166 y) < x| -yl (14)

The space of all admissible sequences is called a (real or complex) Hilbert
space and is usually denoted by H in honor of David Hilbert who introduced
and used this space for studying the integral equations of mathematical



physics. More details you can find in [19] and in [9] where you can find
several beautiful problems from the geometry of Hilbert space.

Now we can tell which infinite matrices we shall consider: those, which
define a continuous linear operators in a Hilbert space. Unfortunately, it is
rather difficult to describe this class of matrices in terms of the matrix en-
tries. A necessary, but not sufficient, condition is the existence of a constant
C such that >, |a;;|> < C for all j and > |a; j|> < C for all i. A suffi-
cient, but not necessary, condition is the convergence of the double series
Zi,j |ai,; 2

What can be said about the spectrum of an infinite Hermitian matrix?>

It is easy to give an example of a (diagonal) matrix which has a countable
set of eigenvalues. More instructive is the following example, which shows
that the spectrum can contain a whole segment of the real axis.

Example 6 Consider an infinite matriz A with entries

1 li—jl=1
QAij =

0 otherwise.

To understand the properties of the operator defined by this matriz, we es-
tablish the correspondence between admissible sequences x = {zy}r>1 and
2m-periodic odd functions on a real line with a coordinate t, by the formula

o
{2k }h>1 — Zxk sin kt. (15)
k=1

It can be shown that the image H of the space H under this correspondence
consists of all 2m-periodic odd real functions ¢ on R which satisfy the con-
dition

s
/ lo(t)|?dt < oo (in the sense of Lebesgue integral).
0

The scalar product in H goes to a scalar product in H given by

(o, V) = 2 /07r o(t)(t)dt.

™

5The reader brought up on the rigorous principles of mathematical analysis will, prob-
ably, refuse to discuss this question in the lack of an accurate definition of the spectrum.
I think, however that it is more important to have an intuitive idea of spectrum than to
learn by rote its definition.

10



Exercise 9 Let p(t) =t for —m <t < 7 and be extended further by 2m-
periodicity. Show that p € H, find its preimage x € H. What means in this
case the equality |p|?> = |x|??

Exercise 10 Show that the linear operator in H given by the matriz A goes
under correspondence (15) to the operator of multiplication by the function
a(t) = 2cos t in the space H.

Hint: Use the equality 2costsin nt = sin (n — 1)t + sin (n + 1)t.

It follows that the expression f(A) make sense for any functions on the
segment [—2, 2] and that corresponding operator in H is the multiplication
by the function f(a(t)).

Exercise 11 Show that the matriz A has no eigenvectors in H.

We see that in the infinite-dimensional case the definition of the spectrum
as the collection of eigenvalues is no good at all. The true definition, working
in both, finite-dimensional and infinite-dimensional cases, and ensuring the
validity of the analogues of theorems (2) and (3), is given in textbooks on
functional analysis. Namely, a point A\ does not belong to Spec A if the
operator A — \- 1 has a continuous inverse operator Ry(A4) := (A —\-1)71,
the so-called resolvent for A.

11



2 Continuous matrices and von Neumann factors

What is rational is real; And what is real
is rational.

Hegel, Preface to “Elements of the
Philosophy of Right”

2.1 Infinite matrices

The notion of matrix admits several variants of transition to infinity. One of
them we examined in Section 1. There the matrix elements were numerated
by indices 4, j which run through the set N of natural numbers.5

Another variant is to consider index as a continuous variable taking, for
instance, real values. Then vectors become functions ¢ of a real variable t,
matrices become functions A of two real variables ¢, s, summation over a
discrete index becomes an integration and linear operators become integral
operators of the form

Ap (1) = /R A(t, 5)p(s)ds (16)

To make things precise, we have to tell, which kind of functions we con-
sider and what kind of integration we use. It turns out that after the most
natural and convenient choice of all specifications, we come to the same
theory of Hilbert spaces which we discussed above. The point is that one
can establish a correspondence between a space of functions and a space of
sequences so that all operations in Hilbert space: addition, multiplication
by a number, scalar product and limit are preserved. Such a correspondence
we constructed in Example (6).

In spite of its simplicity, the correspondence in question is a very strong
and deep result with many application in mathematics and mathematical
physics.

There is one more variant to construct infinite matrices. It was used
by John von Neumann about 70 years ago to construct remarkable infinite-
dimensional algebras, so-called von Neumann factors. This theory leads to
a surprising generalization of vector spaces where the dimension can take

50f course, we could use instead of N any other countable set. Often it is convenient
to use the set Z, of all non-negative integers, or the set Z of all integers, or n-dimensional
lattice Z™ and the like.

12



any real values. At that time this discovery was not further developed and
was considered rather as curious example like a non-measurable set. Now
the theory of von Neumann factors is one of central domain in functional
analysis and in quantum field theory, see e.g. [2].

I explain here several facts from this theory in some details, because 1
do not know any popular exposition of them.

Example 7 Consider matrices of a growing size n. We shall write them
as n X n tables of the fixed size but with smaller and smaller boxes. It
is convenient to put n = 2F, so that every algebra M = Mator can be
embedded in the next algebra My 1. Let us think, what we get in the limit
k — oo.

Consider the unit square on the plane and draw the main diagonal from
upper left to the lower right corner and also the parallel lines which divide
each side of the square into 2* equal parts. Denote the set obtained by
Xj. Then divide all lines in X} on equal parts with horizontal and vertical
projections of the size 27¥. Then the whole set X}, will contain 2%* parts.
Consider the set V. of complex-valued functions on X which are constant
on each of its part; we call such functions k-locally constant. It is a 22*-
dimensional complex vector space which is naturally isomorphic to the space
M}, = Matqi (C). Finally, consider the set X := (J,~; X} and identify V},
with the space of functions on X which are k-locally constant and vanish
outside Xj. Then Vi, C Vj41 and the space V' = |J;,~,; Vi has a structure of
infinite-dimensional algebra B

M = U M. (17)

k>1

One can ask, how we define functions from M in the boundary points of
the form (r1, ro) where r; are dyadic rational numbers 2"531.. There are two
reasonable answers:

1. It does not matter for the further constructions because there are
only countable set of these boundary points; and we shall consider only
equivalence classes of functions: f; = fs if they coincide almost everywhere.

2. Split every dyadic rational points into two points. Recall that in
dyadic system each dyadic rational number can be written in two different
ways, e.g. 0.011111... and 0.100000.... So, if we will consider any infinite
2-adic fraction as individual number, than we get the desired splitting. This
operation turns the segment [0, 1] into totally disconnected set, known as
Cantor set. The inverse operation of gluing points defines the so-called

13



Cantor ladder (or Devil ladder), a function which maps the Cantor set onto
the segment [0, 1].

The set X after this modification also becomes a totally disconnected
set X and all functions from M become continuous. Moreover, the set X is
a direct product of two topological groups.

Namely, let I' be the group of all infinite sequences with elements from
{0, 1} with the group law, given by componentwise addition mod 2. It
is just a complete direct product of a countable set of copies of Zs. as a
topological space, I' is homeomorphic to Cantor set.

On the other hand there exists a direct sum (or restricted product) I'g of
a countable set of copies of Zs. It is a countable discrete group, consisting of
those infinite sequences with elements from {0, 1}, which contain only finite
number of 1’s.

The set X is identified with I'g X I': the elements of the first group counts
the “diagonals” and elements of the second group label the points on a given
diagonal. Here we consider as a diagonal the subset of points z, y from the
unit square given by equation

r—1y = const mod 1.

The construction below make sense for more general pairs of groups.
Come back to the space M. We can introduce in it two different norms.
First, we can define a scalar product in M putting

(o, ) = /X ()P ()dx (18)

where dx denote the measure on X which on every segment of a diagonal is
equal to the length of the horizontal projection.

Exercise 12 Show that on the subspace My C M the scalar product (18)

can be given by the formula

tr (AB¥)
tr (1)

where tr denotes the trace of a matriz and * means Hermitian conjugation.

(A, B) = 27%tr (AB*) = (19)

As usual, when you have a scalar product, you can define the length of a
vector by |p| = 1/(p, ) the distance d(p1, p2) = |p1 — p2| and the limit:
on — @ <= d(pn, ¢) — 0. The completion of M with respect to this
distance we call H; it is a complex Hilbert space. In our realization H
coincides with the space L?(X, dx) of square-integrable (in Lebesgue sense)
functions on X. The inner product is given by the same formula (18) where
integral is understood in Lebesgue sense.

14



2.2 Construction of an algebra C

Recall now that M is an associative algebra. Indeed, any two elements
1, @9 from M belong to some M. Thus, they are identified with matrices
from Matyx (C) and can be multiplied as such. This multiplication law can
be given by the formula

(o1 2) (@, y) = > 1 (z, )pa(t, ) (20)

t

where summation is over a countable set of such ¢ € [0, 1], for which x — ¢
and t — y are dyadic fractions (practically, for ¢; € M the summation is
over the finite set of ¢ such that x — ¢ and ¢ — y have denominator 2¥). Note
that (20) is similar to the ordinary rule of matrix multiplication.

Now we introduce in M another norm putting

o - 9
]

where | - | is the length defined above. Note, that this definition implies (if
we put 1 = 1) that ||¢| > |¢|.

leoll = sup (21)

Exercise 13 Show that for matrices A of second order (or, for elements

Ms)

|A2 + /A% — 4] det AJ?

AP = tr (A47),  [|A* = 5

Exercise 14 Show that for matrices of format n x n
Al < JIA] < JA]- Vn. (22)

The completion of M with respect to the norm || - || we denote by C. From
this definition follows that C can be considered as an algebra of continuous
operators in H which is symmetric in the sense that if A € C, then A* € C.
Moreover, C is closed with respect to the norm || - ||, which coinsides with
the ordinary operator norm.

Since the convergence in C is stronger than in H, we can consider C as
a subspace in H (dense in the topology of H). In our model C consists of
certain functions on X which are continuous and going to zero at infinity.
(Indeed, functions from M have these properties and convergence in norm
implies uniform convergence which preserve them.) The precise description
of this class of functions would be interesting but I do not know the answer.

15



2.3 Construction of a factor

Finally, we introduce in M one more definition of convergence which is
called strong operator convergence. Namely, we say that a sequence A, of
continuous operators in a Hilbert space H strongly converges to an operator
A if for any vector v € H we have |A,v — Av| — 0.

This kind of convergence is weaker than norm convergence, but stronger
than convergence in H. The completion of M with respect to this conver-
gence we denote by V. Unfortunately, we do not know yet the description of
W, interpreted as a function space on X. Ttis certainly is between the space
Ly(X,dx) of square integrable functions and the space Cp(X) of continuous
functions, vanishing at infinity.

Lemma 2 The space W consists of all elements ¢ € H for which

Y
ol := sup 1222

vee\(oy [V
Corollary 1 For o € W and vy € H the products p -1 and ¢ - are defined
i H. Moreover,

-l <l - 19 and |- o] <[] o] (24)

So, the algebra W has two realizations as an algebra of operators in
H: the algebra L(W) of all operators of left multiplication ¢ — ¢ -1 and
the algebra R(W) of operators of right multiplication: ¢ +— 1 - . Here
p €W, ¥ € H. Moreover, these realizations are isometric: the norm of
element ¢ € W is equal to norms of operators L(p) and R(p).

< 00. (23)

Corollary 2 For ¢ € W and ¥ € H assume that

- ¥l <lpl-a and |-¢[ <b-g]. (25)
Then ¢ € W and ||¢|| < min(a, b).

2.4 von Neumann algebras

For any non-empty set S of operators in a Hilbert space H we define by S"
the commutant of S which consists of all operators, commuting with every
operator from S. von Neumann proved the following remarkable

Theorem 4 (von Neumann) If the set S is symmetric (i.e. together with
any operator A contains the adjoint operator A*), then S™ = S' and S" is
the closure of the algebra, generated by S in the sense of strong operator
topology.
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Exercise 15 Prove this theorem for finite-dimensional Hilbert spaces.

Definition 1 An von Neumann algebra is an operator algebra satisfying

AY = A,

Come back to our example. The first important property of algebras
L(W) and R(W) is described by the lemma.

Lemma 3
LOW) = RW),  RW)!'=L(W).

Proof. Let C be an operator in H and let C € L(W)'. Then for any
B e M C H we have

C(B)=C(B-1) = CL(B)(1) = L(B)C(1) = BC(1) = R(C(1))(B),

hence, C = R(C(1)) and we are done, if only we knew that C(1) € W. But
this can be deduced from corollary (2).

Thus, the algebras L(W) and R(W) are mutual commutants and are von
Neumann algebras.

The second basic property is that the intersection L(WW) (| R(W) consists
only of scalar operators. We leave to the reader to prove this property.

On the other hand, for any von Neumann algebra A it is easy to see,
that A A' coincides with the common center of A and .A'. The von Neu-
mann algebras with trivial center (i.e. consisting of scalar operators only)
von Neumann himself called factors. This name comes from the following
remarkable fact: any von Neumann algebra can be realized as a continuous
product of factors. So, factors play the role of prime numbers or simple
groups, or irreducible representations.

Exercise 16 Let H be a finite-dimensional Hilbert space and W is a sym-
metric algebra of operators in H, containing 1.

a) Prove that W' =W, i.e. W is a von Neumann algebra.

b) Assume that W is a factor, i.e. the center of W consists of scalars.
Show that H can be realized as a space of matrices of the format m X n
so that W ~ Mat,,(C), W' ~ Mat,,(C), the first algebra acts on H by left
multiplication and the second by right multiplication.

The factors W and W! from the exercise are called factors of type I,
and I, respectively.

This result admits a partial generalization to the infinite-dimensional
case. Namely, if W is a factor in a Hilbert space H and if W, as a topological
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algebra is isomorphic to the algebra L(H7) of all continuous linear operators
in a Hilbert space Hy, then the algebra W' is isomorphic to L(Hz) for some
Hilbert space Ho and H can be identified with a Hilbert tensor product
H; X Hy. The factor W is called a factor of type 1. The dual factor W!
belongs to the type I,, or I, depending on the dimension of Hs.

The exercise above shows that only factors of type I occur in finite-
dimensional case.

2.5 Relative dimensions

The von Neumann discovery is that there are another types of factors which
are non-isomorphic to L(H). We show below that ours L(WW) and R(W) are
examples of such factors of new type. For this goal we introduce the notion
of relative dimension of two subspaces in H, invented by von Neumann.
Let W be a factor acting in H. Consider the set of all closed subspaces
in H which are stable with respect to YW. We call such spaces admissible.

Exercise 17 Let Hy be a closed subspace in H and P be the orthoprojector
from H to Hy. Show that Hy is admissible iff P € W'.

Below we often identify the subspaces with corresponding orthoprojectors.
Let us call two admissible subspaces Hy, Ho equivalent if there exists an
element u € W' such that

u*u =P, wu* =P, where P;is the orthoprojector to H;. (26)
In this case we write H; ~ Hs.

Exercise 18 Show that equations (26) are equivalent to the statement that
u maps Hi isometrically onto Ho and annihilates Hf while the adjoint op-
erator u* maps Hy isometrically onto Hy and annihilates Hs-.

We shall say that an admissible subspace Hj is bigger than another
admissible subspace Hs if Hi has a part, equivalent to Hy. An admissible
subspace Hj is called infinite if it contains a proper subspace, equivalent to
the whole Hj; otherwise, it is called finite.

The most interesting are those factors for which the whole space H is
finite (being, of course, infinite-dimensional in the ordinary sense). Such fac-
tors are called factors of type I1;. We consider in more details the geometry
related to these factors.
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Theorem 5 (von Neumann) Let W is a factor acting in a Hilbert space
H. For a pair of admissible subspaces Hi, Hy C H ezactly one of the fol-
lowing is true:

1. H;i s bigger than Ha, but Hy is not bigger than Hi;

2. Hs is bigger than Hy, but Hy is not bigger than Ho;

3. Hi and Hy are equivalent.

The sketch of the proof. There are two alternatives:

A1) H; contains a part equivalent to Ha;

Ag) H; does not contains a part equivalent to Ho.

and

B1) Hj contains a part equivalent to Hy;

Bs) Hj does not contains a part equivalent to Hj.

So, we have together 4 possibilities: A1& By, A1& By, A& B, A& Bs.

Lemma 4 In the case A1&B1 we have Hy ~ Hs.

The proof is analogous to the proof of the Cantor-Bernstein theorem in the
set theory. Namely, let uw € W' be an operator which maps isometrically
Hj to the part of Hy and vanishes on Hi-. Also, let v € W' be an operator
which maps isometrically Hs to the part of H; and vanishes on H2L Then
we have two decreasing chains of admissible subspaces:

Hy D vHy D vuHy D vuvHs D vuvuH, D wvuvuHs O ... (27)
Hs D uHi D uwwHsy D wvuHy D wwuvHy D wvuvuH, O ...
Denote by V; the subspace Hy ©vHs := Hy ()(vH2)* and by Vs the subspace
Hs © uH;. Then we obtain

Hi=ViovVo@ovulVs QovuwvVo @ --- @ VP

Hy =Vo @ uVy @ uwoVo QuvuVy @ --- @ V5° (28)

where
o= ﬂ(vu)kHl, Vo= ﬂ(uv)ng.
k>0 k>0

Look on the equivalence classes of all these subspaces. It is clear that in the
first sequence in (28) the subspaces are equivalent alternatively to V; and
V5, while in the second sequence they are equivalent alternatively to Vo and
Vi. Also, uV® = V3 and vV3© = Vi* and wvlype = Id, so that V™ and
vV are equivalent.

It is now easy to establish equivalence between H; and Ho
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Lemma 5 The case As&Bs mever happens.

For any unitary operator u € W' consider the subspaces Vi = Hp(\uHo
and Vo = Hgﬂu_ng. It is clear that V; € H; and Vi = V5. Let us show
that these subspaces are non-zero for some v € W'. Assume the contrary.
Then the space W' Hj has zero intersection with Hy, hence, is a non-trivial
subspace invariant with respect to W'. But this subspace is also admissible,
hence, invariant with respect to W. Therefore, the projector to this subspace
belong to WO W' = {C - 1}, a contradiction.

So, any two admissible subspaces Hy, Hs have non-zero equivalent parts.
Using Zorn’s Lemma, one can show that there is a maximal element in the
set of all pairs of equivalent parts. From the lemma, this maximal element
must contain either H; or Ho.

So, any two admissible subspaces are comparable: either they are equiv-
alent, or one of them is bigger that another. Actually these possibilities are
not exclude one another. But then a subspace is equivalent to its proper
part, hence is infinite. The factor is called of type II if any admissible sub-
space H; contains a finite subspace V C Hj.

The most interesting are those factors of type II for which the whole
space H is finite (being, of course, infinite-dimensional in the ordinary sense).
Such factors are called factors of type I1;. We consider in more details the
geometry related to these factors.

First of all, the equivalence classes of admissible subspaces are ordered:
[H1] > [H2] if Hy contains a part, equivalent to Hs. (Here [Hi] is the
equivalence class of H;.) Moreover, we can compare the relative size of two
admissible subspaces exactly how in Euclidean geometry we compare the
relative size of two segments. Namely, let [H;] > [Hz]. Denote by n; the
maximal number n such that H; contains orthogonal sum of n subspaces
Vi, 1 <4 < n, each of which is equivalent to Hs.

Exercise 19 Show that 1 < ny < oo.
Then denote by Hs the orthogonal complement in H; to the &, V;.
Exercise 20 Show that [H3] < [Ha].

Denote by ne the maximal number n such that Hs contains orthogonal sum
of n subspaces W;, 1 < ¢ < n, each of which is equivalent to H3. And so
on...

It can happen that after several steps we come to the case Hpi1 =
{0}. Then both H; and Hy can be presented as orthogonal sums of parts,
equivalent to Hy, so that H; contains M; such parts.
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Exercise 21 Show that

T‘(Hl, HQ) = — =n1+

L
Nk
We call r(Hy, Hs) the relative dimension of Hy and Hy.
It is possible, though, that the process never ends. Then H; and Hy
are non-commensurable and their relative dimension is an irrational number
r(Hy, Hs), given by an infinite continuous fraction.

2.6 Relative trace

The notion of relative dimension allows to define the so-called relative
trace on the algebra W'. Namely, for any orthoprojector P in W' we define

tr P =r(PH, H) (29)

and extend this definition to the whole algebra by linearity and continuity
in strong operator topology.

We now show that the algebra L(W) constructed in Section 2.3, is a
factor of type IT;. Indeed, we know that L(W)' = R(W)

Exercise 22 Show that for an operator in LOWV)' = R(W) corresponding
to a function ¢ on X the relative trace can be computed by the formula

1
tro :/0 o(t, t)dt. (30)

Exercise 23 Find in the space H
a) two orthogonal and equivalent admissible subspaces;
b) three pairwise orthogonal and equivalent admissible subspaces.
c) establish explicitly the equivalence of subspaces in question.

Example 8 Quantum torus T,.

The title of this example reflects the general tendency to relate to quan-
tum theory every transition from a commutative objects to non-commutative
ones.
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It is well-known that any compact topological space is determined by the al-
gebra C(X) of continuous functions on X and any smooth compact manifold
M is determined by the algebra C*°(M) of smooth functions on M.” The
corresponding quantum objects arise if we replace the commutative algebra
A = C°(M) by some non-commutative algebra A,

In the case M = T? the algebra A consists of functions

fla,y) = cp ™ot (31)

k,l

where summation is over 2-dimensional lattice Z2, and the coefficients satisfy
for every N € N the conditions:

’Ck,l| SCN'(1+]€2+Z2)_N. (32)

Let now Zq be an associative algebra with involution, generated by the unit
and by two elements u, v satisfying the relations

uu=uu* =1, vi'u =w* =1, uv = quu, (33)

2miT

where ¢ = e is a complex number with |¢| = 1. By A, we denote the

completion of Zq, which consists of formal sums
Z e uFol, (34)
k,l

where the coefficients satisfy the conditions (32). We consider A, as an
algebra of smooth functions on the quantum torus Tg. It is clear that for
q = 1 the quantum torus becomes the ordinary one.

From the algebra A, one can construct a Hilbert space H, the algebra
W and two its representations L and R in the space H along the lines used
above, so that

L(W)=RW), RW)=LW), LW)[\|RW)=C-1.

It turns out, that the dual factors L(W) and R(W) belong to type I, when
7 € Q (i.e. when ¢ is a root of unity) and to type II; otherwise.

Exercise 24 Show that I1i-factors of example 8 are isomorphic to factors
constructed before.

"For instance, the points of M can be reconstructed as maximal ideals in C°°(M),
smooth vector fields on M are just derivations of C°°(M) and so on (see $ 7).
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Example 9 Quantum spheres Sg and Sg.

It is well-known that the sphere S® has a group structure (see $ 4) and the
sphere S% can be considered as homogeneous S>-space. All these statements
can be formulated in terms of smooth functions on S? and S®, never men-
tioning the points. Then we can build the quantum analogues by replacing
C>(5?%) and C*>(S3) by appropriate non-commutative algebras

For example, the fact that S% acts on S? is described by a smooth map
5% x 8% — S2.
And this map is determined by an algebra homomorphism
C°(5?) — C™(83 x §%) = C=(8?%) Q@ C™(S?).

It turns out that there exist a non-commutative deformations A, of C*°(S?3)
and B, of C°°(5?) such that all necessary homomorphisms make sense. This
allow us to speak about quantum group Sg’ and of its homogeneous space
Sz. Detailed description of these deformation was first done in [16].

Hints and answers.

3 What is supersymmetry?

I realized that China and Spain is
absolutely the same land, and only by
ignorance are considered as different
countries. I advise to everybody to write
down on a paper Spain and you get
China.

N. V. Gogol, “Notes of a madman”.

3.1 Symmetry and supersymmetry

In mathematics, as in all other sciences, the symmetry plays a very impor-
tant role. Usually, the properties of symmetry are expressed using the no-
tions of groups, homogeneous spaces and linear representations (see [8]). But
in last quarter of century a new type of symmetry acquires bigger and big-
ger value, especially in mathematical physics and related domains of math-
ematics. It got a nickname SUSY from the physical term supersymmetry.
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In mathematics, the supersymmetry means, in a sense an equality of rights
for plus and minus, for odd and even, for symmetric and antisymmetric etc.
In physics, this is a parallel between bosonic and fermionic theories.

In a few words, the ideology of supersymmetry can be formulated as
follows. To every ordinary or even notion (definition, theorem, construction
etc) there must correspond an odd analogue, which together with the original
object form a superobject. And this superobject manifest in a higher level
the features of the initial ordinary object.

In particular, the SUSY formalism requires the new kind of numbers.
They differ from the ordinary ones by the property of multiplication: it is
not commutative, but anticommutative: xy = —yx. In particular, 22 = 0.
These new numbers must be used as widely and with same rights as ordinary
numbers. E.g., they can play the role of coordinates of a vector, arguments
of a function, local coordinates on a manifold (see, e.g.,[14]).

For some notions the odd analogues are rather evident; for others they
are more complicated and sometimes unexpected. I bring here only a few
elementary examples, leaving to the active reader to extend this list. Try,
for example, to answer the question: what means the SUSY for a problem
you are working now (or have worked recently)?

3.2 Supersymmetry in algebra

Let us start with the linear algebra. The superanalogue of a vector space is
a Zo-graded vector space V decomposed into direct sum: V = V5@ V;. Here
0, 1 are elements of Zo := Z/27; vectors from Vj are called even, vectors
from Vj are called odd. The pair (dim Vj, dim V;) is called a dimension of
Ve

Exercise 25 Define a direct sum and a direct product of Zo-graded vector
spaces so that their dimensions were correspondingly added and multiplied.
(You have also define the addition and multiplication rules for dimensions.)

Exercise 26 Define the index of a Za-graded vector space V.= V5 & Vi the
number (V) := dim V5 — dim Vj. Show that

iVaWw)=i(V)+i(W), iVeW)=iV)-iW).

Remark 1 Sometimes the index itself is considered as a right superanalogue
of dimension. The only disadvantage of index in the role of superdimension
1s that two spaces with equal indices are not necessarily isomorphic.

8More precisely, it should be called superdimension but I do not want to abuse the
prefix “super”.
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Remark 2 The notion of the index of a Zs-graded vector space is long ago
i use in algebraic topology. Indeed, the Euler characteristic, the Lefschetz
number and other alternated sums in topology are all examples of indices.

Pass now to linear operators. For two Zo-graded vector spaces V, W we
denote by L(V, W) the set of all linear maps from V to W (disregarding
the grading). This set has also the natural structure of a Zs-graded vector
space. Namely write an operator A € L(V, W) as a block matrix
Ags  Apt
A= 00 01 H 35
H Arp  Ani (35)

where A;; is an operator from V; to W;. The blocs along the main diagonal
are even, the off-diagonal blocks are odd. So, if we denote by p(x) the parity
of an object x, taking values in Zs, then for an operator A and a vector v
we have

p(Av) = p(A) + p(v). (36)

This principle holds for all other multiplicative operations: multiplication
of operators, tensor product of vector spaces and operators, inner product
etc. So, we have

Rule 1. Under multiplication parities add.

Moreover, in all definitions, identities, equations etc which contain mul-
tiplicative operations, the additional factors +1 arise according to”

Rule 2. If in an ordinary algebraic formula there are monomials with
interchanged factors, then in corresponding superalgebraic formula each

permutation of terms x and y must be accompanied by the extra factor
(—1)P@)py),

Exercise 27 Formulate the superanalogues of
a) commutativity: xy = yx;
b) associativity: (xy)z = z(yz);
c) Jacobi identity: [z, [y, z]] + [y, 2], z] + [z, z], y] = 0.

An important notion in linear algebra is the notion of a trace tr A of an
operator A. The characteristic property of the trace, which determines it
up to scalar factor, is

tr AB=trBA, or tr[A, B]=0.

9This formulation is taken from [14]. Physicists prefer more rich sentence: when some-
thing of parity a flows past something of parity b, the sign (—1)* arises.
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In a superalgebra the commutator of homogeneous elements is given by the
formula

[A, Bl = AB — (—1)PAPBI g4, (37)

We define a supertrace of an operator A written in the form (35) by the
formula

strA = tr Aoo —tr AH. (38)
Exercise 28 Show that str[A, B] =0 for all A, B.

Exercise 29 Check that the Zs-graded vector space L(V, V') with the oper-
ation of supercommutator is a Lie superalgebra (i.e. the superanalogue of
the Jacobi identity holds).

The result of this and the previous exercises can be formulated as follows:
the supertrace is a homomorphism of the Lie superalgebra L(V, V') into R
(with zero commutator).

After that it would be naturally to define a superanalogue sdet of the
determinant and establish the identity

sdet (exp A) = exp (str A) (39)

which is well-known in ordinary case. It can be done, indeed, but not so
straightforward as we acted until now.

The point is that to study the properties of determinants is natural on
the language of Lie group theory,'? and this theory is essentially non-linear.

Try, for instance to define a notion of a supergroup so that the set GL(V')
of invertible linear operators in a super vector space V were an example of
such object. The correct answer is not simple and is formulated on the
language of the theory of supermanifolds (see the end of this section).

3.3 Supersymmetry in analysis

Assume that we have several even variables x1, xo, ..., z, and several odd
variables &1, &, ..., &m. A function of all these variables is by definition the
expression
fla, &) = filwr, w2, ..., xn)és (40)
I
where the summation is over all subsets I = {iy, i2, ..., i}, 1 < i1 <

19 < -+ < ik < m, & means the product & &, - &, and fr(x) are smooth

10A lie group is a group which is also a smooth manifold, so that group multiplication
is a smooth map. Most of groups used in different applications are Lie groups.
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functions of even variables. We assume that they are real valued and have
compact supports (i.e. vanish outside a certain compact set). It is clear
that expressions (40) form a real associative algebra with respect to ordinary
addition and multiplication, taking into account the relations &§&; + &;& =
0. We denote this algebra by C5°(R™™) and consider its elements (40) as
smooth functions on a supermanifold R™™

It is known that main operations of analysis, differentiation and integra-
tion, can be defined in pure algebraic terms, using the algebra of smooth
functions. This approach to analysis can be easily extended to supermani-
folds.

Recall that a derivation of an associative algebra Aisamap 0: A < A,
satisfying the it Leibnitz rule:

0(ab) = 9(a)b + ad(b).

Exercise 30 Show that any derivation of the algebra C5°(R™) has the form

of = adyf

k=1
where ay, € C*°(R™) and O = 0/0xy, is the operator of the partial derivative

with respect to xy.

For a superalgebra A it is natural to define a derivation as a map 0 :
A — A, satisfying the it super-Leibnitz rule:

d(ab) = 8(a)b + (—1)PDPD g)(p)

where p(0) is a parity of the derivation in question. In the algebra C3°(R™™)
we can define the even derivations d; and odd derivations ¢ by the condi-
tions

kaj = 5k,j> 8k£J = 0, 5kxj = 0, 5kf] = 5k,j-

More general differential operators on a supermanifold M can be also defined
in terms of the function algebra A(M). I only recall how it can be done
for ordinary manifolds. Denote by My the operator of multiplication by a
smooth function f in A(M).

Exercise 31 Show that a map D : A < A is a differential operator of
order < k if and only if

[HD’ Mfo]v Mfl]a ce Mfk] =0

for all (k + 1)-tuples of smooth functions fo, f1, ..., fr.
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Exercise 32 Prove that the algebra C®(R%™) is finite-dimensional and
find its dimension.

Exercise 33 Show that any linear operator A in the space C°°(R%™) is
differential, i.e. has the form

A= Z ar,j€10s

1,J

where I = {iy < iy < --- <}, J={ji <jo<---<ji} and as y are real
coefficients.

Pass now to the integration over a superspace R™™. The ordinary inte-
gral over R" is determined up to a scalar factor by the properties:

1. Integral is a continuous linear functional on C§°(R™™).

2. Images of operators 0;, i < i < n, are contained in the kernel of this
functional.

It is natural to define the integral over a superspace so that it possessed
the analogous properties.

Therefore, we come to the formula

flz, )d"xd™E = fi2..m(x)d . (41)
Rn,m Rn
This very formula was in the source of integral calculus on supermanifolds.

Exercise 34 Show that any linear operator in the space C*°(R%™) can be
written as an integral operator:

(Af)(E) = A& n) f(n)d™n (42)

RO,m

where A(§, ) is a function of 2m odd variables and the integral over vari-
ables n is supposed to be interchangeable with left multiplication by variables

3

Exercise 35 Prove that the trace of the integral operator (16) can be com-
puted by the formula

trA = AV (&, €)dme (43)

RO,m

where the operation sends a monomial £y to the monomial ns&;.
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A very important property of an integral is its behavior under the change
of variables. For an ordinary (even) integral this behavior is essentially en-
coded in the notation (in the case of one variable this notation was suggested
by Leibnitz): the integrand is not a function f(x), but the differential form
f(x)d". Here d"x is a short notation for the n-form daz' Adxz? A ---Adz™. If
the variables z* are the functions of another variables ¢/, then d"z transforms
into %dny, where fracD(x)D(y) is the Jacobian of the change of variables,

oxt/oyt - oxl/oy"
equal to the determinant of the Jacobi matrix . e e
oz /oyt - Oz /oy"

Note that this rather cumbersome rule is an immediatecorollary of the
two simple principles:

1. The rule of the differential:

da’ = Z oz |9y’ dy’ .

J

2. The properties (associativity and anticommutativity) of the wedge
product:
(anb)ANc=aAN (bAc), aNb=—bAa.

In the odd case the expression d"¢ is no longer a tensor! It is a new
geometric object which is called an integral form, or Berezin form in the
honor of one of the founders of supersymmetry F.A. Berezin (1931 - 1980).
The general definition of integral forms can be done in the context of the
theory of supermanifolds. Here I mention only that already under linear
changes of variables the quantity d™&, contrary to the quantity d™x, is not
multiplied, but is divided by the determinant of the corresponding matrix.
One can see it on the following simple

Example 10 Let E—n;=a; -1, 1 <i < m. Then
[agrtntre= [mmeemamy=[Jai- [@&-gud™,
=1

which implies d™n = ([T, a;)” " d™¢.

This fact has a crucial value in the quantum field theory, where it is used
to fight with divergences. To those, who want to know more about this, my
advise is to read the Preface and Introduction to the [14] and after that the
materials quoted there (e.g. [17]).
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Exercise 36 a) Compute the integral

/RO’M exp (Z ai,j&fj)
[2¥}

where A = ||a; || is a skew-symmetric nondegenerate matriz of order 2m.
Compare it with the even integral

/ exp —7 Z bijr'a? d"

1,

where B = ||b; j|| is a real symmetric positively defined matriz.
b) Show that det A of a 2m x 2m skew-symmetric matriz is a full square
of a certain polynomial Pf(A) of degree m in the matriz elements a; ;.

3.4 Supersymmetry and geometry

Let now pass to the geometry. As we saw above, both, algebra and analysis
suggest to introduce the notion of a supermanifold. I shall not give here the
rigorous definition, referring to the books [14, 13, 18]. Instead, I compare
the definition of a supermanifold with the definition of an algebraic manifold
in its modern form.

A naive definition of an algebraic manifold as a set of solutions of a sys-
tem of algebraic equations in affine or projective space in modern mathemat-
ics is superseded by a functorial definition. Namely, an algebraic manifold
M over a field K is considered as a functor from the category of commutative
K-algebras to the category of sets. To each K-algebra A there corresponds
the set M4 of A-points of M, i.e. solutions of the corresponding system of
equations with coordinates from A.

If now we replace in this definition the term “commutative K-algebra”
by ”supercommutative Zo-graded K-algebra”, we get the definition of a
supermanifold.

Thus, we give up the set-theoretic approach and describe all properties
of a supermanifold in terms of functions on it. In particular, instead of a
map M < N we consider the corresponding homomorphism of K-algebras
C*®°(N) < C*°(M). The role of a point m € M is played by a maximal ideal
in C*°(M). Note, that a supermanifold, contrary to the classical case, is
not determined by the set of its points.

Here is a simple but rather important example of a supermanifold. Con-
sider the algebra A of smooth functions f(¢, 7) of one even variable ¢ and
one odd variable 7. We consider A as an algebra of smooth functions on
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a supermanifold M of dimension (1, 1) which is a superanalogue of a real
line. In complete analogy with the even case, call a vector field on M any
derivation of the algebra A.

Exercise 37 Prove that any even (respectively, odd) vector field on M has
the form

L R - B

where f, g, @, are smooth real functions of t.

The set of all vector fields on M form a Lie superalgebra with respect to the
operation of supercommutator:

[Ul, 1)2] = V1V — (_l)p(m)p(vz)vﬂ}l. (45)

It is remarkable that an even field vy = % is a square of the odd field

& = 8% + T%: vo = [€o, &o). This have the principal importance for the
theoretical physics. Indeed, let the variable ¢t denote the physical time. All
the evolution laws are formulated in terms of the field vg. Hence, they are
corollaries of more fundamental laws, formulated in terms of the field &.

Changing with time is a special case of the action of a Lie group on a
manifold. In this case the group in question is the additive group of the real
field R and the manifold is the phase space of a physical system. Another
examples arise when our system possesses certain kind of symmetry. Until
recently, only ordinary Lie groups are considered in the role of a symmetry
group (translation group, rotation group, Lorentz and Poincare groups etc).
The idea of supersymmetry is that Lie supergroups (i.e. group objects in
the category of supermanifolds) also can play such a role. It turns out, that
the most of ordinary symmetry groups can be naturally extended to the
supergroups.

Example 11 Let V = V5 @& Vi be a Za-graded real vector space. Define a
supergroup GL(V') as follows. For any supercommutative associative super-
algebra A we define GL(V) 4 as the set of all invertible matrices A of the
form (35) such that even blocks have even elements and odd blocks have odd
elements. Thus we defined GL(V') as supermanifold. To define a supergroup
structure we must construct morphisms

GL(V) x GL(V) — GL(V) and GL(V) —s GL(V),

corresponding to multiplication law and the inversion map. We can’t do it
here because the morphisms of supermanifolds were not yet defined.
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Exercise 38 Show that the formula
sdet A = det (Ago — A01A1_11A10) - det (Al_ll) (46)

defines a homomorphism of the group GL(V') 4 to the multiplicative group
A of invertible elements of A.

This homomorphism is called superdeterminant, or Berezinian of the oper-
ator A. Actually, it defines the homomorphism of GL(R™™) into GL(R!).

Exercise 39 Formulate the rule of changing variables in the integral (41).

Exercise 40 Prove the equality (39).

3.5 Supersymmetry and arithmetic

This is a new subject, and not so many papers are appeared in this domain.
Here we follow the article by D.Spector “Supersymmetry and the Mobius
function” in Comm. Math. Phys., 1980. The point is a physical interpre-
tation of some number-theoretical functions and, in particular, the Mdbius
function:

(—1)* if n is a product of k different primes
p(n) = { :
0 otherwise.

The main subject of study in the statistical mechanics is the so-called
partition function Z as a function of the temperature of the system. It
encodes the statistical properties of a system in thermodynamic equilibrium.
In quantum theory this quantity is equal to tre®” where P is the energy
operator in a Hilbert space H and (3 is a parameter which is proportional to
the inverse absolute temperature: G = ﬁ, k is the Boltzmann’s constant.
When the system possesses a supersymmetry, the operator P has the form of
Q? where Q is odd skew-Hermitian operator. In this situation the Witten’s
formula holds:

stre™?F = ind ker P (47)

where ker means the kernel of the operator P and ind is the difference of
dimensions of even and odd components (see $ 1). In particular, the left
hand side actually does not depend on 8! Passing to the limit § — 0 or
B — oo in (47), one can obtain several important relations depending on
the system in question.
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In the D. Spector’s article a model is considered which contains bosonic
and fermionic particles,labelled by prime numbers. Every pure state (a
vector from an orthonormal basis in H) is determined by the total quantity
of particle of each sort. Assume that there are k; bosonic particles and
g; fermionic particles of sort p;. Here k; is a non-negative integer and ¢;
takes values 0, 1 due to the Pauli principle. This state of the system can be
conveniently labelled by the pair (N, d) where

N:pri, d:pri.
% %

The mathematical formulation of what physicists call Bose-Einstein (or
Fermi -Dirac) statistics is as follows. Let Ly denote the phase space of
one-partical states (bosonic or fermionic). Then the full phase space has the
form

H=S(Ly)®AL_)

where S means the symmetric algebra and A denotes the exterior, or anti-
symmetric algebra.

In our model N can be any natural number and d can be any divisor of
N which is squarefree (i.e. not divisible by any square). The parity of the
state is determined by the number of factors in d : (—=1)P(N, d) = p(d).

Exercise 41 Derive from the Witten formula the relation

S oy, (48)
n=1

n

Hints and answers.
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4 Differential and integral calculus on a lattice

Elementary length — same as
fundamental length.

Physics Encyclopedic Dictionary.
Moscow, Soviet Encyclopedia, 1983.

4.1 Introduction

Physicists are still arguing about the structure of our space on very small
scale: is it infinitely divisible or there exists a certain elementary length? In
the latter case the role of real line must take some discrete (i.e. consisting
of isolated points) set. Several arguments show that it is convenient to
choose as such set an arithmetic progression with common difference h or
a geometric progression with common ratio q. These progressions can be
finite or infinite from one or both sides. It turns out that on this “discrete
line”, or lattice there exists a beautiful analogue of the ordinary calculus.

4.2 Arithmetic progression

Let us start with an arithmetic progression and put for simplicity h = 1.
So, instead of “continuous line” R we consider “discrete line” Z. Let f
be a real valued function on Z, i.e. infinite in both sides sequence of real
numbers { f(k), k € Z}. Since Z is discrete, all such functions are continuous.
Moreover, all functions are differentiable if we define the lattice derivative
Af of the function F' by the formula

Af(n) = f(n+1) = f(n). (49)
We also define the lattice integral

N n—1
/ F(k)Ak = Y f(k). (50)

From these definitions immediately follows the lattice analogue of the Newton-
Leibniz formula: if AF = f, then

/N F(k)Ak = F(n) — F(m). (51)

m
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Further, in a usual calculus the monomials

xn

P,(x) = g

play an important role. They are characterized by the properties:

P/ =P, 1, P,(0)=0 for n>0, Py(z) = 1. (52)

The lattice analogue of P,(z) are the polynomials IT,(x) characterized by
the conditions

All, =1I,,—;, 1,(0)=0 for n >0, IMy(x) = 1. (53)
Exercise 42 Compute explicitly polynomials I1,,(z).

Exercise 43 Let f(x) be a polynomial of degree < n which takes integral
values at all integral points.

a) Show that f(x) is an integral linear combination of My (x), 0 < k <
n f(2) = Yo milli(a).

b) Prove that in the formula above the coefficients my can be computed
as

my, = (Ak f) 0).

This is a lattice analogue of the Taylor formula.

Using polynomials II,, one can derive many summation formulas. Con-
sider, as an example, the sum Sy(n) = > p_,k* We observe that k% =
2II5(k) + 111 (k). Therefore,

So(n) = [ K2AK = [ (2T (k) + 11y (k) Ak =
2(Ma(n + 1) = (1)) + (Ta(n + 1) = Ta(1)) =
tn(n+1)(2n+1).
To obtain more general summation formulas one have to know, how to ex-
press polynomials Py in terms of I and vice versa. From the exercise above
we see that for any n both { Py }o<k<pn and {II; }o<r<n are bases in the space

of all polynomials of degree < n. Therefore there exist the coefficients {an;}
and {by;} such that

IL,(z) = zgamPi(a;), P,(z) = ZO bpiIL; (). (54)
1= =
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Exercise 44 Prove that forn > 1

-1 n—1 1
apo = bnO = 07 apl = La bnl = e
n n!
To compute the remaining coefficients, we use the fact that the operator A

can be expressed in the form

hD 1
A=e¢eP —1, or, more generally A = — (55)
where D = % is the usual derivative and h is the common difference for our
arithmetic lattice.

Further, instead of computing every coefficient {an;} and {b,;} sepa-
rately, we compute all of them simultaneously, finding the generating func-
tions

Az, y)= > ama™  Bla,y) = > buz"y"

0<k<n 0<k<n

Exercise 45 Prove that
T -1 -1
Alz, y) = (1 —y(e” — 1)) ., Bz, y) = (1 — ylog(1 + a;)) ,

Come back to summation formulas. We are interested mainly in in sums
of type (50), i.e. lattice integrals. Since the formulas of lattice analysis in the
limit h — 0 turn to the formulas of ordinary calculus, it is natural to try to
express the lattice integral in terms of ordinary antiderivative F'(x). Such
an expression was found almost 3 centuries ago by Euler and Maclaurin.
The idea of Euler was especially simple. Let F be a lattice antiderivative of
f- It is related to the ordinary antiderivative F' as follows:

D

Af:f:Df, or f:eDi—lF

Using Bernoulli numbers B — k (see $ 2), we can write

T " F®)
1 = E Bnﬁ’ hence F = E BnT
n>0 n>0

6.’E

We come to the final formula

n—1
> 1) =3 e (FO )~ FO(m)). (56)
k=m s>0
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Exercise 46 Derive from the Fuler-Maclorin formula the following sym-

bolic equalities:

(B+n+1)F—(B+1)*
k+1

(B+ 1)K =B* for k>2. (58)

Sk(n) = (57)

The meaning of these equalities is as follows: after expanding both sides
in powers of B, replace each term B* by the number Bj. E.g., the second
equality for £ = 2 means By 4+ 2B; + 1 = Bs, which implies B; = —%.

Exercise 47 a) Compute first 10 Bernoulli numbers, using the (58).
b) Compute the sum Ss(n).

Bernoulli numbers appear in analysis of trigonometric functions.
Exercise 48 Prove the following formulas:

1
COtx:E_Z|B%|W; tanx:Z]ng] 0!

Consider the lattice analogue of the exponential function e*®. In ordinary
calculus we can define this function or by the series ), -, A" Py () or by
differential equalion f’(x) = Af(z) with initial condition f(0) = 1.

Exercise 49 a) for which X the series E(x) := ) > 0X"IL,(x) is conver-
gent?
b) show that E(x) satisfies the difference equation (AE)(x) = \E(z).

4.3 Geometric progression

Here the variable X runs through the set!!

¢“ ={q", n e Z}.
Let D4 denote the difference derivative:

flaz) — fla)

(Dyf)(a) = R

(59)

" The symbol ¢ below has different meaning in different applications. It can be inde-
pendent from x variable, taking real or complex non-zero values; in other examples it is
a number of elements of a finite field. There are interesting theories where ¢ is a root of
unity. Finally, one can consider ¢ as a formal variable and consider polynomials, rational
functions or formal Laurent series in q.
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Continuing the analogy with the previous section, we define the family
of polynomials {@,(x)}»n>0 by the conditions:

DyQn =Qn-1, Qn(1)=0 for n>1, Qo(x) = 1. (60)

n

Exercise 50 Show that Q,(z) = (,gfq)l

where (ng)! == 14-24----- ng- and

g—1"
So, polynomials @),, are obtained from P, by replacement of their denom-
inators by their quantum analogue, or g-analogue (ng)!, while the II, were
obtained from P, by replacement of their numerators x™ by their lattice
analogue z(z — h)(x — 2h)--- (x — (n — 1)h).

Concider now the g-exponent function

exp,(\z) = Z A"Qn (). (61)

n>0

From this definition it is easy to derive that exp,(z) satisfies to the difference
equation
Dy exp,(Ax) = X - exp,(Ar) (62)

which implies the identity

expy(qz) = expy(z) - (1 + (¢ — 1)x).

Replace in this identity = by ¢z, ¢°z, ..., ¢" 'z and take the product. We
get
n—1
exp,(q"x) = exp, () - H(l + (g — D).
k=0

Note, that in the algebra of formal power series in ¢ and in the algebra of
analytic functions in ¢,z for |g| < 1 the infinite product

o0

[T+ @-1Dg)™

k=0

is convergent. Moreover, it satisfies to the same equation (62) and the same
initial condition f(0) = 1.2

12This statement is not correct as it is, because our function is defined only on the set
¢%, not containing zero. But this gap can be removed and we leave it to the reader.
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Therefore,
n—1

expy(z) = [[(1 + (¢ — D)g"z) .
k=0

Replacing here x by 1%(1, we come to a remarkable identity

exp, (1 = q) = ﬁu — " x).

k=0

Remembering the definition of exp (), we come to the identity

n—1 "
S x ‘
,}_[()(1 7e) T;) (1—q)(1—¢2)---(1—¢g" ) (63)

In the present time for many elementary and special functions non-trivial
g-analogues were found. They arise naturally in quantum theory, combina-
torics, number theory and topology. I bring here three interpretations of the
g-analogues of binomial coefficients

[ i ] . acq)!(((?:fE F)g)!

1. If ¢ is the number of elements of a finite field Fy, then [ Z } counts

q
the number of k-dimensional subspaces in n-dimensional space over F,.

2. If ¢ is a complex number, |¢| = 1 and u, v are the coordinate functions
of the quantum torus Ty, related by uv = quu, then

(u+v)" = z”: [ Z Lukv”_k.

k=0

3. Let ¢ be a formal variable. The expression [ Z ] is a polynomial in

q
q of degree k(n —k):
k(n—k

)
[ Z ] = Z mfz,kqs-
q s=0

It turns out that the coefficients my , have a remarkable representation-
theoretic meaning. The group S, acts naturally in space V. = Clzy, ..., 2y]
of ordinary polynomials and in space V_ = Ac(&1, ..., &) of polynomials
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in odd variables. Both spaces are graded by the degree of polynomials and
both split into tensor products Vo = I+ ® Hi of subspaces which consist
respectively of invariant and harmonic polynomials. We have:

m3 = dim Homg,,) (HY, H*).

In the last time the basic facts about g-analogues of hypergeometric
functions were intensively studied. See [6].

Hints and answers.
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