
LECTURE 2
OPERATORS IN HILBERT SPACE

A.A.KIRILLOV

1. Hilbert spaces

We shall consider a class of real or complex vector spaces where the notion
of a self-adjoint operator makes sense. This class includes all Euclidean
spaces Rn, their complex analogues Cn and the classical Hilbert space H,
which is infinite-dimensional complex space. All these spaces we call simply
Hilbert spaces.

Let V be a real vector space. A map V × V → R, denoted by (v1, v2),
is called inner product (other terms: scalar or dot-product) if it has the
following properties:

1. Positivity: (v, v) ≥ 0 and (v, v) = 0 ⇐⇒ v = 0.
2. Symmetry: (v1, v2) = (v2, v1).
3. Linearity: (λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w).
For a complex vector space V the definition is almost the same with the

two small corrections. First, an inner product is a map V ×V → C; second,
the symmetry property is replaced by

2.′ Hermitian symmetry: (v1, v2) = (v2, v1), where bar means the
complex conjugation.

Proposition 1. In a finite-dimensional real (resp. complex) vector space V
any inner product in an appropriate basis has the form

(1) (v, w) =
∑

k

vkwk ( resp.
∑

k

vkwk ).

Proof. Let B = {e1, e2, . . . , en} be a basis in V . The equality (1) is equiv-
alent to the following property of B:

(2) (ei, ej) = δi,j :=

{
1 if i = j

0 if i 6= j

Such a basis is called ortonormal.
So, we have to prove that any finite-dimensional space posesses an ortonor-

mal basis. But there is a well-known orthogonalization process which trans-
forms any given basis into an ortonormal one.

¤
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Using the scalar product, we can define the length of a vector v ∈ V as

(3) |v| =
√

(v, v).

In the real case we define also the angle θ between two vectors v, w by

(4) cos θ =
(v, w)
|v| · |w| .

In the complex case the angle is not defined, but the notion of orthogonal or
perpendicular vectors still makes sense. It means that their inner product
vanishes.

Define the distance between two vectors by

(5) d(v, w) = |v − w|.
Proposition 2. The distance (5) satisfies the axioms of a metric space:

a) Positivity: d(v, w) > 0 and d(v, w) = 0 ⇐⇒ v = w.
b) Symmetry: d(v, w) = d(w, v).
c) Triangle inequality: d(v, w) ≤ d(v, u) + d(u, w).

Proof. The first two properties follow immediately from the definition. The
triangle inequality is equivalent to the inequality

(6) |v + w| ≤ |v|+ |w|.
The latter follows from well-known Bunyakovski-Cauchy-Schwarz inequality:

(7) |(v, w)| ≤ |v| · |w|.
¤

Thus, any vector space V with an inner product is a metric space. If this
metric space is complete, we call V a Hilbert space.

We say that a space V with an inner product is the direct sum, or
orthogonal sum, of two subspaces V ′ and V ′′ and write V = V ′ ⊕ V ′′ if

1. For any v′ ∈ V and any v′′ ∈ V ′′ we have (v′, v′′) = 0. In this case we
also write V ′⊥V ′′.

2. Any vector v ∈ V can be written (necessarily uniquely) in the form

v = v′ + v′′, where v′ ∈ V ′, v′′ ∈ V ′′.

Let V be a space with an inner product and X ⊂ V be any subset. Define
the orthogonal complement to X as

X⊥ := {y ∈ H
∣∣ (x, y) = 0 for all x ∈ X}

It is clear that X⊥ is a closed vector subspace in V .

Theorem 1. Let H be a Hilbert space and H ′ ⊂ H be a closed subspace.
Denote by H ′′ the orthogonal complement H ′⊥. Then H = H ′ ⊕H ′′.

Proof. We start with a geometric



LECTURE 2 OPERATORS IN HILBERT SPACE 3

Lemma 1. Let H ′ be a closed subspace in a Hilbert space H. For any point
x ∈ H\H ′ there is unique point y ∈ H ′ which is nearest point to x. The
vector x− y is orthogonal to H ′.

Proof of the Lemma. Let d be the greatest lower bound for the distances
d(x, y) where y ∈ H ′. We can find yn ∈ H ′ so that d(x, yn) < d + 1

n .
Consider the parallelogram with vertices yn, x, ym, yn + ym − x. We have

(8) 2|x− yn|2 + 2|x− ym|2 = |yn − ym|2 + 4
∣∣∣x− yn + ym

2

∣∣∣
2
.

Since the first two lengths are < d + 1
n and the last one is ≥ d, we obtain

|yn − ym|2 < 4
(

d +
1
n

)2

− 4d2 =
8d

n
+

4
n2

.

We see, that d(yn, ym) → 0 when n → ∞. Therefore, {yn} is a Cauchy
sequence. But H ′ is closed, hence complete, and the sequence {yn} has a
limit y. For this y we have d(x, y) = d.

Let now w be any vector from H ′. We show that (x− y, w) = 0 Assume
the contrary. Multiplying w by the appropriate scalar, we can assume that
(x − y, w) is real. Consider the function of the real variable t given by
f(t) = d(x, y + tw)2. By definition, this function has a minimum at t = 0,
hence f ′(0) = 0. On the other hand, we have f(t) = (x − y − tw)2 =
d2 + 2t(x− y, w) + t2|w|2 and f ′(0) = (x− y, w) = 0.

¤

Come back to the theorem. Consider any x ∈ H. If x /∈ H ′, let x′ be
the nearest point to x in H ′. If x ∈ H ′, put x′ = x. In both cases we have
x = x′ + x′′ where x′ ∈ H ′, x′′ ∈ H ′′.

¤

Theorem 2. Let H be a Hilbert space and f : H → C be a continuous
linear map. We call f a bf continuous linear functional on H. There exist
a unique vector y ∈ H such that

(9) f(x) = (x, y) for all x ∈ H.

Proof. We can assume that f 6= 0 (otherwise, we could put y = 0). Denote
by H ′ the kernel of the functional f , i.e. the set of vectors x such that
f(x) = 0. It is clear that H ′ is a closed vector subspace in H. Let H ′′ be its
orthogonal complement. I claim that dim H ′′ = 1. Indeed, since f 6= 0,H ′ 6=
H. So, dim H” ≥ 1. Assume that x1 and x2 are two vectors from H ′′. The
vector x := f(x2)x1 − f(x1)x2 belongs to H ′′ (as a linear combination of x1

and x2) and to H ′ (because f(x) = 0). Hence, x = 0. If f(x1) is non-zero,
we obtain x2 = −f(x2)

f(x1
x1. If f(x1) = 0, then x1 ∈ H ′′⋂H” = {0}. In both

cases x1 and x2 are dependent. It follows that dim H ′′ ≤ 1.
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Thus, dimH ′′ = 1 and H ′′ = C · y0. Put y = f(y0)y0

|y0|2 . We check that
f(x) = (x, y) for all x ∈ H. For x ∈ H ′ both sides are zeros. For x ∈ H ′′ we

have x = cy0. Therefore, f(x) = cf(y0) and (x, y) = (cy0,
f(y0)y0

|y0|2 ) = cf(y0).
¤

Consider now an orthonormal system of vectors {xα}α∈A in a Hilbert
space H. We call such a system complete if ({xα}α∈A)⊥ = {0}.

An orthonormal system {xα}α∈A is called a Hilbert basis in H if any
vector x ∈ H can be (necessarily uniquely) written in the form

(10) x =
∑

α∈A

cαxα where cα = (x, xα).

Here A can be any set of indices and we have to explain how the right hand
side in (10) is defined.

Lemma 2. For any x ∈ H and any orthonormal system {xα}α∈A ⊂ H only
countable set of coefficiets cα = (x, xα) can be non-zero.

Proof. Denote by An the subset of those α ∈ A for which |cα| > 1
n . I claim

that the cardinality |An| is finite. Indeed, for any finite subset B ∈ An

the vector y = x − ∑
β∈B cβxβ is orthogonal to all xβ, β ∈ B. Therefore

|x|2 = |y|2 +
∑

β∈B |cβ|2, or,
∑

β∈B |cβ|2 = |x|2 − |y|2 ≤ |x|2. Since |cβ| > 1
n

for every β ∈ B, we conclude that |B| < n2|x|2. It follows that the set An

is finite. Evidently, the union
⋃

n≥1 An is countable and contains all indices
α for which cα 6= 0.

¤
So, we have only to define the sum of a countable family of vectors. It

can be done as usual:
∞∑

k=1

ckxk = lim
n→∞

n∑

k=1

ckxk.

Theorem 3. An orthonormal system of vectors in a Hilbert space is a basis
iff it is complete.

Proof. If an orthonormal system is a Hilbet basis, then any vector, orthog-
onal to the system, has zero coordinates, hence is zero itself.

Let now {xα}α∈A ⊂ H is a complete system. Show that it is a Hilbert
basis. For any vector x ∈ H consider the sum (10). According to Lemma
(2), only countable set of indices cα are non-zero. Label them by positive
integers and consider the corresponding sum

(11)
∞∑

k=1

ckxk.

As in the proof of the lemma, we establish that
∑∞

k=1 |ck|2 ≤ |x|2. Therefore,
the remainder of the series (11) tends to zero and we denote by x′ the
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corresponding sum. It is clear that x′ has the same coordinates as x. Hence,
the difference x′−x is orthogonal to all xk. It is also orthogonal to all other
xα. Since our system is complete, we get x′ = x.

¤
Now we come to examples.
The first example is the classical space l2 of all sequences of complex

numbers {ck}k≥1 satisfying the condition

(12)
∞∑

k=1

|ck|2 < ∞

The inner product is defined by

(13) ({ck}, {bk}) =
∞∑

k=1

ckbk.

We leave to the reader to check the completeness of this space.
Second example is another classical space L2([0, 1], dx) of equivalence

classes of square integrable complex-valued functions on [0, 1]. The inner
product is defined by the Lebesgue integral:

(14) ([f ], [g]) =
∫ 1

0
f(x)g(x)dx, f ∈ [f ], g ∈ [g].

Actually, this space can be describe in more natural terms. Consider the
space C[0, 1] of all continuous complex-valued functions on [0, 1] with the
inner product

(15) (f, g) =
∫ 1

0
f(x)g(x)dx

given by ordinary Riemann integral. It satisfies all the axioms of Hilbert
space except the completeness. It turn out that the completion of this
space is exactly L2([0, 1], dx). Moreover, in C[0, 1] we can consider the
subspaces C∞[0, 1] of smooth functions ot Pol[0, 1] of polynomial functions
or Trig[0, 1] of trigonometric polynomials. All of these subspaces are dense
in L2([0, 1], dx), hence, the latter is a completion of the former.

Theorem 4. The system of functions

(16) en(x) = e2πinx, n ∈ Z,

is an orthonormal basis in the Hilbert space H = L2([0, 1], dx).

Proof. We have to show that any element of H, which is orthogonal to all
en is zero. We shall use the fact that this element can be arbitrary well ap-
proximated (in the Hilbert metric) by a continuous function. For the above
definition of L2 it follows from the Lebesgue theory, and from our definition
by completion it is obvious. Now, we quote the Weierstrass theorem which
claims that any continuous function on [0, 1] can be uniformly (hence, also
in the Hilbert metric) approximated by trigonometric polynomial, i.e. by
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a finite linear combination of our basic functions en. But our element is
orthogonal to this approximating functions; therefore, it is orthogonal to its
limit, i.e. to itself. ¤
Exercise 1. Define the functions Bk(x), k ≥ 0, on [0, 1] by the conditions

a). B′
k(x) = kBk−1(x) for k ≥ 1. b) Bk(0) = Bk(1) for k > 1.

c) B1(x) = x− 1
2
.

(17)

a) Show that Bk is a polynomial of degree k with the highest term xk.
b) Find the coefficients of Bk with respect to the basis (16)
c) Express the sum ζ(2k) :=

∑

n≥1

1
n2k in terms of the constant term of B2k.

Exercise 2. Find the angles of the triangle with vertices 0, 1, x in L2([0, 1], dx)

Exercise 3. Let H be the space of holomorphic functions on C such that∫

C
|f(z)|2e−|z|2dxdy < ∞.

Show that H is a Hilbert space with the inner product

(18) (f, g) =
1
π

∫

C
f(z)g(z)e−|z|

2
dxdy

and a Hilbert basis

(19) fn(z) =
zn

√
n!

, n ≥ 0.

Exercise 4. Find the orthonormal basis in L2([−1, 1], dx) by the orthogo-
nalization of the system {1, x, x2, . . . }.

Hint Consider the Legendre polynomials Pn(x) = 1
2nn!

dn

dxn

[
(x2 − 1)n

]
.
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