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1. Groups of transformations and abstract groups.

The notion of an abstract group came from more concrete notion of group of
transformations. Suppose, we have some set X and a collection G of transforma-
tions of X. Here by transformation we understand a map f : X → X.

Such a collection G is called a group if the following is true:

a) If g1, g2 are two transformations from G, then their composition g1 ◦ g2 also
belongs to G. Recall that g1 ◦ g2 denotes the consecutive application of g2 and g1.

b) Every transformation g ∈ G is invertible and the inverse transformation g−1

also belongs to G.

A typical example of a group of transformation is the set of transformations
which preserve one or several properties of elements of X. For example, if X is a
metric space with a distance function d(x, y), then the collection of all invertible
isometries, i.e. transformations g such that d(g · x, g · y) = d(x, y), form a group.

For us the most important example is the group GL(V ) of all invertible lin-
ear transformations of a vector space V . By definition, it consists of invertible
transformations A : V → V such that A(v1 + v2) = Av1 + Av2 and A(λv)− λAv.

If we choose a basis in V , the group GL(V ) can be identified with the group
GL(n, K) of invertible matrices with elements from the basic field K (which will
be usually R or C). Subgroups of GL(V ) or GL(n, K) are called linear groups.

An abstract group is what remains from a group of transformations if we forget
about transformations and consider G as a set endowed with the multiplication law,
satisfying the associativity axiom: (g1 · g2) · g3 = g1 · (g2 · g3).

Note that in case of groups of transformations we did not require the associativity
since it is an intrinsic property of the operation of composition.

It is not difficult to show that every abstract group can be realized as a group
of transformations.

It turns out that many quite different groups of transformations can be isomor-
phic as abstract groups. Here is an example:

The same abstract group can be considered as
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• The group of isometries of an equilateral triangle.

• The group GL(2, F2) where F2 is a field with two elements.

• The group of Möbius transformations generated by z → 1− z and z → 1
z .

• The group of projective transformation of the projective line over F2.

• The group S3 of all permutations of three objects.

2. Groups generated by reflections and Coxeter groups.

A very interesting and important class of linear groups is the groups generated
by reflections. Recall that a linear operator s in Euclidean space Rn is called
reflection if it preserves the inner product and all points of a hyperplane M ⊂ Rn

If the equation of M is (v, a) = p for some non-zero vector a ∈ Rn and some p ∈ R,
then

(1) s(v) = v + 2
p− (v, a)

(a, a)
a.

It is clear that s2 = Id, so all groups generated by one reflection are isomorphic to
the abstract group C2 = Z/2Z.

Consider now two reflections s1 and s2 with mirrors M1 = {v ∈ Rn|(v, a1) = p1}
and M2 = {v ∈ Rn|(v, a2) = p2}. What can we say about the group G generated
by s1, s2?

Note first that G preserves all points of the orthogonal complement to V =
Ra1 + Ra2. So, we can consider only this space V which has dimension 1 or 2.

Case I. M1 is parallel to M2, dim V = 1. On the line R1 = Ra1 = Ra2 we
have two mirrors M1, M2 which are just points. Choosing appropriate coordinate
we can assume that M1 = 0 and M2 = 1

2 . Then s1 : x 7→ −x, s2 : x 7→ 1 − x.
The group G is the affine group Aff (1, Z) consisting of transformations x → ax+ b
with integer coefficients. Since the inverse transformation x 7→ x−b

a also must have
integer coefficients, we see that a = ±1.

As an abstract group, G is a semi-direct product of the subgroup C2 generated
by s1 and the normal subgroup Z generated by s2s1 : x 7→ x + 1.

Case II. M1 and M2 are not parallel, dim V = 2. We can choose the origin into
the intersection M1

⋂
M2 and consider only 2-plane V spanned by a1 and a2. If

the lines mi = Mi

⋂
V form an angle α, the transformation s1s2 is a rotation on

the angle 2α.
If α is commensurable with π, the rotation has a finite order m and the group G,

as an abstract group, is isomorphic to the dihedral group Dm (the isometry group
of a regular m-gon).

Otherwise, G is an infinite group isomorphic to Aff (1, Z).
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Now we come to Coxeter groups. They are defined as abstract groups possessing
a special set of generators and relations. Namely, let S be a finite set and assume
that a function m : S × S → {1, 2, . . . , ∞} is given such that

(2) m(s, s′) = m(s′, s); m(s, s′) = 1 ⇐⇒ s = s′.

A Coxeter group G corresponding to given S and m is a group with the following
properties:

a) The group G is generated by the set S with the relations1

(3) (ss′)m(s, s′) = e for all s, s′ ∈ S × S

b) If H is any group generated by the set S with relations (3), there is a unique
homomorphism ϕ : G → H which is identical on S.

To illustrate this definition, we prove here

Theorem. Let S = {s1, s2} and m(s1, s2) = m. Then the Coxeter group G is
isomorphic to Dm if m is finite, and to Aff (1, Z) if m = ∞.

Proof. We consider only the case m = ∞. We saw already that Aff (1, Z) is gen-
erated by two involutions s1 : x 7→ −x and s2 : x 7→ 1

2 − x. More precisely, the
element gε,k : x 7→ εx + k can be written as:

(s2s1)k if ε = 1, (s2s1)ks2 if ε = −1

Let H be any group generated by two involutions s1, s2 (e.g., the group Dm). The
homomorphism ϕ : G → H is given by

ϕ(g1,k) = (s2s1)k, ϕ(g−1,k) = (s2s1)ks2.

¤

1If m(s, s′) = ∞, (3) means that the element ss′ has infinite order.
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Homework 1. (Due Sept. 15)

1. Give the proof of the Theorem above for a finite m.
(4 points)

2. Show that S3 is a Coxeter group. Find S and m in this case.
(6 points)

3. Which of the following transformation groups are isomorphic as abstract
groups?

a) The group of rotations of a solid cube in R3.

b) The group SL(2, F3) of unimodular matrices over the field with 3 elements.

c) The group S4 of permutations of four objects.

d) The group PGL(2, F3) of transformations of the projective line over F3.

(2.5 points for each pair)
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