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1. Definitions and notations.

In the first lecture we learned a lot of things about the series of Coxeter groups
Sn, n ≥ 1. Here we start to study another series of Coxeter groups. The n-th group
of this series is denoted by Cn, n ≥ 1. We define it as an abstract group isomorphic
to the group of all isometries of n-dimensional cube.

Exercise 1. Compute the order of Cn.

Hint. Consider the homogeneous space X2n consisting of centers of (n − 1)-
dimensional faces and show that a stabilizer of a point is isomorphic to Cn−1.

Exercise 2. Show that Cn is isomorphic to the semidirect product of a subgroup
Sn and a normal abelian subgroup An ' (Z/2Z)n. Give the geometric interpreta-
tions for elements of Sn and of An.

Theorem 1. The group Cn is a Coxeter group with the graph

(1) ◦ − − ◦ − − ◦ − − · · · − − ◦ − − ◦ 4−− ◦

Proof. Choose an orthogonal coordinate system in Rn so that our cube is bounded
by hyperplanes H±

k : xk = ±1. Let sk, 1 ≤ k ≤ n − 1, be a reflection in Rn

interchanging xk and sk+1. Introduce also a reflection sn which change the sign of
xn and fixes all other coordinates. The theorem follows from

Exercise 3. Show that reflections sk, 1 ≤ k ≤ n, generate Cn and satisfy the
Coxeter relations:

(2) (sksj)mi,j = e for mi,j =





1 if i = j

2 if |i− j| > 1
3 if j = i + 1 < n

4 if j = i + 1 = n.

The group Cn contains a subgroup isomorphic to Sn, but in its turn is contained
in S2n. Indeed, from Exercise 1 we see that Cn/Cn−1 ' X2n. Hence, Cn ⊂
AutX2n ' S2n.
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Exercise 4. Let σ ∈ S2n be a permutation with n cycles of length 2. Show that
the centralizer of σ in S2n is isomorphic to Cn.

Using Exercise 4 we can realize the subgroup Cn ∈ S2n as follows. Let X2n

be realized as the set of numbers ±1, ±2, . . . , ±n and permutation σ acts as a
multiplication by −1. Then elements of Cn are exactly those permutations s ∈ S2n

which have the property

(3) s(−k) = −s(k).

Let now s ∈ Cn ⊂ S2n and 〈s〉 be a cyclic subgroup generated by s. Consider the
orbits of 〈s〉 in X2n. The set of orbits is invariant under σ. But the orbits themselves
are not necessarily invariant. More precisely, there are two kind of orbits:

1. The σ-invariant orbits Ω = −Ω of length 2k.
2. The pairs Ω,−Ω of disjoint orbits of length l.

By an inner automorphism (i.e. renaming of numbers so, that if k goes to m,
than −k goes to −m), we can reduce the orbit of the first kind to the form

1 −→ 2 −→ 3 −→ · · · −→ k −→ −1 −→ −2 −→ · · · −→ −k −→ 1.

A pair of orbits of the second kind can be reduced to the form

1 −→ 2 −→ 3 −→ · · · −→ l −→ 1
−1 −→ −2 −→ −3 −→ · · · −→ −l −→ −1

It is rather clear that the conjugacy class of s in Cn is determined by lengths of all
cycles of the first kind and by lengths of all cycles of the second kind. Thus, as a
label of the conjugacy class of s we can take a pair of partitions of the number n.

Namely, λ = {λ1 ≥ λ2 ≥ . . . λp > 0} are half-lengths of cycles of the first kind
and µ = {µ1 ≥ µ2 ≥ . . . µq > 0} are the lengths of cycles of the second kind.

Exercise 5. Compute the cardinality of the class Cλ,µ ⊂ Cn.
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