THE GROUP C_n . BASIC PROPERTIES.

A. A. KIRILLOV

Spring 2007

1. Definitions and notations.

In the first lecture we learned a lot of things about the series of Coxeter groups S_n , $n \ge 1$. Here we start to study another series of Coxeter groups. The *n*-th group of this series is denoted by C_n , $n \ge 1$. We define it as an abstract group isomorphic to the group of all isometries of *n*-dimensional cube.

Exercise 1. Compute the order of C_n .

Hint. Consider the homogeneous space X_{2n} consisting of centers of (n-1)-dimensional faces and show that a stabilizer of a point is isomorphic to C_{n-1} .

Exercise 2. Show that C_n is isomorphic to the semidirect product of a subgroup S_n and a normal abelian subgroup $A_n \simeq (\mathbb{Z}/2\mathbb{Z})^n$. Give the geometric interpretations for elements of S_n and of A_n .

Theorem 1. The group C_n is a Coxeter group with the graph

$$(1) \qquad \qquad \circ - - \circ - \circ$$

Proof. Choose an orthogonal coordinate system in \mathbb{R}^n so that our cube is bounded by hyperplanes H_k^{\pm} : $x_k = \pm 1$. Let $s_k, 1 \leq k \leq n-1$, be a reflection in \mathbb{R}^n interchanging x_k and s_{k+1} . Introduce also a reflection s_n which change the sign of x_n and fixes all other coordinates. The theorem follows from

Exercise 3. Show that reflections s_k , $1 \le k \le n$, generate C_n and satisfy the Coxeter relations:

(2)
$$(s_k s_j)^{m_{i,j}} = e$$
 for $m_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 2 & \text{if } |i-j| > 1 \\ 3 & \text{if } j = i+1 < n \\ 4 & \text{if } j = i+1 = n. \end{cases}$

The group C_n contains a subgroup isomorphic to S_n , but in its turn is contained in S_{2n} . Indeed, from Exercise 1 we see that $C_n/C_{n-1} \simeq X_{2n}$. Hence, $C_n \subset$ Aut $X_{2n} \simeq S_{2n}$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

A. A. KIRILLOV

Exercise 4. Let $\sigma \in S_{2n}$ be a permutation with *n* cycles of length 2. Show that the centralizer of σ in S_2n is isomorphic to C_n .

Using Exercise 4 we can realize the subgroup $C_n \in S_{2n}$ as follows. Let X_{2n} be realized as the set of numbers $\pm 1, \pm 2, \ldots, \pm n$ and permutation σ acts as a multiplication by -1. Then elements of C_n are exactly those permutations $s \in S_{2n}$ which have the property

$$(3) s(-k) = -s(k).$$

Let now $s \in C_n \subset S_{2n}$ and $\langle s \rangle$ be a cyclic subgroup generated by s. Consider the orbits of $\langle s \rangle$ in X_{2n} . The set of orbits is invariant under σ . But the orbits themselves are not necessarily invariant. More precisely, there are two kind of orbits:

- 1. The σ -invariant orbits $\Omega = -\Omega$ of length 2k.
- 2. The pairs Ω , $-\Omega$ of disjoint orbits of length l.

By an inner automorphism (i.e. renaming of numbers so, that if k goes to m, than -k goes to -m), we can reduce the orbit of the first kind to the form

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow k \longrightarrow -1 \longrightarrow -2 \longrightarrow \cdots \longrightarrow -k \longrightarrow 1.$$

A pair of orbits of the second kind can be reduced to the form

 $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow l \longrightarrow 1$ $-1 \longrightarrow -2 \longrightarrow -3 \longrightarrow \cdots \longrightarrow -l \longrightarrow -1$

It is rather clear that the conjugacy class of s in C_n is determined by lengths of all cycles of the first kind and by lengths of all cycles of the second kind. Thus, as a label of the conjugacy class of s we can take a pair of partitions of the number n.

Namely, $\lambda = \{\lambda_1 \ge \lambda_2 \ge \dots \lambda_p > 0\}$ are half-lengths of cycles of the first kind and $\mu = \{\mu_1 \ge \mu_2 \ge \dots \mu_q > 0\}$ are the lengths of cycles of the second kind.

Exercise 5. Compute the cardinality of the class $C_{\lambda,\mu} \subset C_n$.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA 19104-6395 E-mail address: kirillov@math.upenn.edu