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1. Definitions and notations.

The group Sn, n ≥ 1, is usually defined as the group of all permutations of
the set Xn = {1, 2, . . . , n}. So, an element s ∈ Sn is a bijection (i.e., one-to-one
map) from Xn to Xn : k 7→ s(k). The composition of two such map is denoted by
s1 ◦ s2 : k 7→ s1

(
s2(k)

)
.

It is convenient to depict the permutation s as follows. Take two copy of Xn

represented as column vectors and draw a system of n arrows joining element k of
the first copy with the element s(k) of the second copy.

To depict the composition s1◦s2 we use three copies of Xn. Then we join elements
of the first copy with elements of the second one according to map s1 and elements
of the second copy with elements of the third one according to map s2. Finally, we
erase the second copy and “straighten” the broken lines joining elements of the first
and third copies. We get the picture of s1 ◦ s2.

At this place it is convenient to define an important characteristic of a permuta-
tion s. Namely, the number of intersection points of all arrows k 7→ s(k), 1 ≤ k ≤ n,
is called the length of s and is denoted by l(s).

Exercise 1. a) Describe all permutation of length 0; b) Describe all permutation
of length 1; c) What is the maximal length of an s ∈ Sn?

Denote by σi, 1 ≤ i ≤ n − 1, the permutation which exchanges i and i + 1 and
fixes all other elements of Xn.

Exercise 2. Show that elements σi, 1 ≤ i ≤ n − 1, generate the group Sn and
satisfy the relations

(1) σ2
i = e; σiσi+1σi = σi+1σiσi+1; σiσj = σjσi for |i− j| ≥ 2.

Theorem 1. An element s ∈ Sn has length l(s) ≤ k if and only if it can be
written as a product of ≤ k generators σ1, σ2, . . . , σn.
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Proof. From the definition of s1 ◦ s2 we derive that

(2) l(s1 ◦ s2) = l(s1) + l(s2)− 2m, m ≥ 0.

Indeed, if the arrows i 7→ s1 ◦ s2(i) and j 7→ s1 ◦ s2(j) have no intersections, then
sign of i − j equal to the sign of s1 ◦ s2(i) − s1 ◦ s2(j). Then the broken lines
i 7→ s1(i) 7→ s1 ◦ s2(i) and j 7→ s1(j) 7→ s1 ◦ s2(j) have zero or 2 intersections
depending on the sign of s1(i)− s1(j) (draw a picture).

If the arrows i 7→ s1 ◦ s2(i) and j 7→ s1 ◦ s2(j) have one intersection, then the
broken lines i 7→ s1(i) 7→ s1◦s2(i) and j 7→ s1(j) 7→ s1◦s2(j) have also 1 intersection
(prove it yourself, considering two possible signs of s1(i)− s1(j)).

Now, assume that s = σi1σi2 · · ·σik
. Then l(s) ≤ k because of (2). Conversely,

if l(s) ≤ k, consider the first intersection point (going from left to right). Let its
height is between i and i+1, then s′ = σi ◦s has the property l(s′) = l(s)−1. So s′

is a product of ≤ k− 1 generators, hence, s = σi ◦ s′ is a product of ≤ k generators.
¤

Another corollary from (2) is that the map

(3) sgn : Sn → {±1}; sgn (s) = (−1)l(s)

is multiplicative:

(4) sgn (s1 ◦ s2) = sgn (s1) · sgn (s2).

A permutation s is called even (resp. odd) if sgn s = 1 (resp. sgn s = −1). The
set of even permutations form a normal subgroup An ⊂ Sn of index 2.

2. Lagrange theorem and applications.

We say that a group G acts from the left on a set X if to each g ∈ G there
corresponds a transformation T (g) : x 7→ g · x, so that T (g1g2) = T (g1)T (g2), or
(g1g2) · x = g1 · (g2 · x). In this case X is called a left G-space.

The right G-space is defined analogously, but now for g ∈ G we associate the
transformation T ′(g) : x 7→ x · g so that T ′(g1g2) = T ′(g2)T ′(g1).

Any left action can be transformed into right action via the following rule.

Exercise 3. Show that if g 7→ T (g) is a left action, then g 7→ T (g−1) = T−1(g)
is a right action.

We say that G acts on X transitively, or, that X is an homogeneous G-space,
if for any two points x1, x2 ∈ X there is a g ∈ G such that T (g)x1 = x2.

Suppose now that X is an homogeneous G-space with a marked point x0 ∈ X.
Let

(5) Stab(x0) := {g ∈ G
∣∣ T (g)x0 = x0}.

Then Stab(x0) is a subgroup of G. Conversely, for any subgroup H ⊂ G there exists
an homogeneous space X with a marked point x0 ∈ X such that Stab(x0) = H.
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To construct X explicitly, we assume that it exists and consider the set G(x) of all
elements g ∈ G which send x0 to x. For definiteness we suppose that X is a left
G-space. Let g(x) be a representative of the set G(x). Take any element g ∈ G(x)
and compare it with g(x). Since g · x0 = x = g(x) · x0, we get

(
g(x)−1g

)
x0 = x0,

hence, g(x)−1g ∈ H. Thus, G(x) = gH = {gh
∣∣ h ∈ H}. The subsets of the form

gH are called left H-cosets in G. We see, that points of X are in a bijection with
left H-cosets in G.

Now we can define our homogeneous space X as a collection of all left H-cosets
in G. Usually this collection is denoted by G/H. There is a natural left action of
G on G/H : g1 · (g2H) = (g1g2)H. The role of a marked point is played by the
H-coset H ⊂ G.

In the case when G is a finite group, we have the following equality

(6) |G| = |H| · |G/H|

where |X| denote the number of points in a finite set X.

Corollary (Lagrange Theorem). The order of a subgroup is a divisor of the
order of a group.

Exercise 4. Compute orders of the groups:
Sn, An, Rot(P ), Iso(P )
where P is a regular polytope in R3, Rot is the group of rotation and Iso is the

group of all isometries (rotations and reflections).

3. Conjugacy classes of Sn.

A map ϕ : G→ G is called an automorphism if it is a bijection and preserves
the multiplication law: ϕ(g1g2) = ϕ(g1)ϕ(g2). The collection of all automorphisms
form a group denoted by Aut(G).

For any x ∈ G the map ϕx(g) := xgx−1 is an automorphism of G. Such auto-
morphisms are called inner and form a subgroup Inn(G) ⊂ Aut(G).

Exercise 5. Show that Inn(G) is a normal subgroup in Aut(G).

The quotient group Aut(G)/Inn(G) is denoted Out(G) and its elements are called
outer automorphisms. If G is abelian, all automorphisms are outer. For some
groups, e.g. for all Sn, n 6= 6, all automorphisms are inner.

We say that two elements g1, g2 ∈ G are conjugate and write g1 ∼ g2 if there
exists an x ∈ G such that ϕx(g1) = g2. In this case g2 = x−1g1x and, denoting
x−1g1 by y, we can write g1 = xy, g2 = yx. Conversely, for any x, y ∈ G we have
xy ∼ yx.

A non-formal meaning of the conjugacy relation: two transformations are con-
jugate in G if they look the same for two observers, one of which is obtained from
other by a transformation from G.

Thus, any group G splits into conjugacy classes C0 = {e}, C1, C2, . . . , Ck. The
set of conjugacy classes we denote by Cl(G).
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Each conjugacy class C ⊂ G is an homogeneous G-space where G acts by inner
automorphisms. The stabilizer of a point g ∈ C is the centralizer of g in G,
denoted by ZG(g) and defined by:

(7) ZG(g) = {x ∈ G
∣∣ xg = gx}.

So, the cardinality of a conjugacy class C ⊂ G is always a divisor of the order of
the group G.

To go further we need a notion of a partition. Consider a sequence

λ = {λ1 ≥ λ2 ≥ · · · ≥ λr > 0} with
r∑

k=1

λk = n.

Such a sequence is called a partition of n. Usually a partition of n is depicted by
a Young diagram1 with n boxes, arranged in r rows so that kth row contains λr

boxes.
If we count boxes not by rows but by columns, we get another partition of n,

µ = {µ1 ≥ µ2 ≥ · · · ≥ µs > 0} which is called conjugate or dual to λ. The explicit
formula is

(8) µk = Card {λi

∣∣ λi ≥ k}.

Finally, we can count the number αk of cycles of size k and denote partition λ
by 1α12α2 · · ·nαn . Here αk = µk − µk+1.

Theorem 2. Let µ be a partition of n. Denote by cµ the permutation

(9) cµ = cµ1cµ2 · · · cµk

where cµi ∈ Sn permutes cyclically numbers from m1 + m2 + · · · + mi−1 + 1 to
m1 + m2 + · · ·+ mi and leave fixed all other numbers in Xn.

Any permutation s ∈ Sn is conjugate to a unique cµ, |µ| = n.

Proof. Take any permutation s ∈ Sn and consider the subgroup 〈g〉 generated
by g. It is a cyclic group of some order k, which is a divisor of n = |G|. But any
subgroup of the cyclic group is itself a cyclic group. Hence, orbits of 〈g〉 in Xn are
all of the form Ωi = 〈g〉/〈gmi〉 where mi is a divisor of k. We can assume that
m1 ≥ m2 ≥ · · · ≥ mk. This partition of n is called the cycle structure of g.

Now we observe that an inner automorphism of Sn can be interpreted as a renam-
ing of elements of Xn. We can denote the elements of Ω1 by numbers 1, 2, . . . , m1,
the elements of Ω2 by numbers m1 + 1, m1 + 2, . . . , m1 + m2 and so on. It follows
that up to inner automorphism, the element g is determined by its cycle structure.
Therefore, we have a natural labeling of Cl(G) by partitions of n.

¤
We denote by Cµ the cojugacy class which contains cµ.

1The name Ferrer diagram is historically more correct but Young diagram is more popular.
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4. Some computations.

Let us compute the specific cardinality of a conjugacy class Cα ⊂ Sn. For this,
because of Lagrange theorem, we have to now the cardinality of ZSn(s) for s ∈ Cα

If x ∈ ZSn
(s), then it can only permute the cycles of equal length and make a shift

in each cycle. Therefore, the total number of such elements is

Card ZSn
(s) =

n∏

k=1

(αk)!kαk

and the specific cardinality of the conjugacy class is

(10)
Card Cα

Card Sn
=

1
Card ZSn(s)

=
1∏n

k=1(αk)!kαk
.

We want to introduce a generating function for specific cardinalities of conjugacy
classes in Sn:

(11) Cn(t1, t2, . . . , tn) :=
∑

Pn
k=1 kαk=n

CardCα

CardSn
· tα1

1 tα2
2 · · · tαn

n .

It is more convenient to drop the restriction
∑n

k=1 kαk = n. For this we can consider
a more universal generating function

(12) C(t1, t2, . . . , tn; λ) :=
∑

n≥0

λn · Cn(t1, t2, . . . , tn).

To compute it, we multiply (10) by
∏

n≥0(λtk)kαk and sum up over all αk ≥ 0
without restrictions. The result is

(13)
∑

αk≥0

∏

k≥1

(λktk)αk

(αk)!kαk
=

∏

k≥1

∑

αk≥0

(λktk)αk

(αk)!kαk
=

∏

k≥1

exp
λktk

k
= exp

∑

k≥1

λktk
k

.

In particular, for t1 = t2 = · · · = 1 we obtain

C(1, 1, . . . ; λ) = exp
∑

k≥1

λk

k
= (1− λ)−1 = 1 + λ + λ2 + . . . .

We see that the coefficient by any power of λ is 1 which shows that sum of specific
cardinalities of conjugacy classes is 1, as it must be.

The same type of computation allows to solve explicitly many interesting prob-
lems about the structure of Sn.

We give an example: what is the number Inv (n) of involutions in the group Sn?
It is clear that involutions are characterized by the condition α3 = α4 = . . . = 0.
So, repeating the summation under this restriction, we get

(14)
∑

n≥0

Inv(n)
n!

λn = exp
∑

k=1,2

λk

k
= eλ+ λ2

2 .
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Thus, Inv (n) is equal to n!× coefficient by λn in et+ t2
2 , i.e.

[ n
2 ]∑

l=0

n!
l!(n− 2l)!2l

= 1 +
n(n− 1)

1 · 2 +
n(n− 1)(n− 2)(n− 3)

2 · 4 +

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
6 · 8 + . . . .

(15)

Exercise 6. Find the number of permutations in S2n which contain only circles
of even length.

Answer:
(
(2n− 1)!!

)2.

5. Intertwining operators.

Let (π1, V1) and (π2, V2) be two linear representations of a group G. An operator
A : V1 → V2 is called intertwining operator, or simply intertwiner. if the
following diagram is commutative:

V1 −−−−→
A

V2

π1(g)

y
yπ2(g)

V1 −−−−→
A

V2

The set of all intertwiners for π1, π2 forms a complex vector space I(π1, π2). Its
dimension is denoted by i(π1, π2) and is called intertwining number.

Note, that for unitary complex representations the hermitian conjugation sends
A ∈ I(π1, π2) to A∗ ∈ I(π2, π1). So, i(π1, π2) is symmetric.

Theorem (Schur Lemma) For two irreducible representations we have

i(π1, π2) =
{

1 if π1 ∼ π2

0 otherwise

We can consider intertwining number as a sort of inner product for representa-
tions for which the irreducible representations play the role of elements of an or-
thonormal basis. Indeed, if {π1, π2, . . . , πk} are all (up to equivalence) irreducible
representations of a finite group G, then any representation π is equivalent to the di-
rect sum of irreducible components where πj enters with multiplicity mj = i(π, πj).
We write it in the form π =

∑k
j=1 mjπj . If π′ =

∑k
j=1 m′

jπj is any other represen-

tation, then i(π, π′) =
∑k

j=1 mjm
′
j . In particular, i(π, π) = 1 iff π is irreducible.

The analogy between intertwining number and inner product becomes equality
if we pass from representations to their characters. Namely, let χj = tr πj be the
character of πj . Then in L2(G), the space of complex-valued functions on G with
inner product (f1, f2) = 1

|G|
∑

g∈G f1(g)f2(g), we have (χj , χj′) = δjj′ . It follows
from orthogonality relations between matrix elements of irreducible representations,
which we supposed to be known.
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6. Intertwining operators for geometric representations.

A geometric representation of a finite group G is related to any G-space X.
If X is a right G-space, it acts in the space VX of all complex-valued functions on
X by the formula

(16)
(
πX(g)f

)
(x) = f(x · g).

For a left G-space the formula is

(16′)
(
πX(g)f

)
(x) = f(g−1 · x).

Usually we use right G-space to avoid the inverse operation in (16′).
Sometimes, geometric representations are called permutation representations

because in the natural basis in VX (see below) the operators πX(g) just permute
basic vectors.

Let now X = G/H and Y = G/K be two right G-spaces. Consider geometric
representations (πX , VX) and (πY , VY ) and an intertwining operator A : VX → VY .
It can be written in the form

(17) (Af)(y) =
∑

x∈X

a(x, y)f(x)

where a is a complex-valued function on X × Y . It can be explicitly written as

a(x, y) = (Aδx)(y), where δx(x′) =
{

1 if x′ = x,

0 if x′ 6= x.

The condition AπX(g) = πY (g)A looks like

∑

x∈X

a(x, y)f(x · g) =
∑

x∈X

a(x, y · g)f(x)
x7→x·g

=
∑

x∈X

a(x · g, y · g)f(x · g),

or

(18) a(x, y) = a(x · g, y · g) for all x ∈ X, y ∈ Y, g ∈ G.

So, the function a is constant on G-orbits in X × Y .
Assume now that X and Y are right homogeneous spaces, so that X ∼ H\G,

and Y ∼ K\G.
Lemma 1. The following four sets are naturally isomorphic:

a) the set Y/H of H-orbits in Y ;

b) the set X/K of K-orbits in X;

c) the set (X × Y )/G of G-orbits in X × Y .

d) the set H\G/K of double (H, K)-cosets in G, i.e. subsets of the form HgK.
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Proof. For any g ∈ G we define the following four objects:
a) H-orbit Ω′(g) ∈ Y/H which contains the element Kg−1 ∈ Y ;
b) K-orbit Ω′′(g) ∈ X/K which contains the element Hg ∈ X;
c) G-orbit Ω(g) ∈ (X × Y )/G which contains the element (Hg, K) ∈ X × Y ;
d) the double class HgK.

It remains to check that Ω(g), Ω′(g), Ω′′(g) actually depend only on the double
class HgK (i.e. do not change if we shift g by an element h ∈ H from the left or
by an element k ∈ K from the right). We leave it to the reader.

It follows that

(19) i(πX , πY ) = Card (H\G/K).

In particular, this number is always ≥ 1.

7. Young subgroups in Sn.

For any partition λ of n we define the abstract group Yλ as the product

Yλ = Sλ1 × Sλ2 × · · · × Sλr .

Let Pλ be the set of all partitions p of Xn onto r parts p1, p2, . . . , pr of size
λ1, λ2, . . . , λr. The group Sn acts naturally on Pλ and for the convenience of
notations we choose the right action. So, a partition p goes to the partition
p · s. If a part pi consists of numbers k1, . . . , kλi , then the part (p · s)i consists
of s−1(k1), . . . , s−1(kλi).

It must be clear (think it through!) that Pλ is an homogeneous space and the
stabilizer Stab p of any point p ∈ Pλ is isomorphic to Yλ.

Let Vλ be the space of all complex-valued functions on Pλ. We define two linear
representations π±λ of the group Sn in Vλ by the formulas

(20)
(
π+

λ (s)f
)
(p) = f(p · s) (

π−λ (s)f
)
(p) = sgn (s)f(p · s).

So, π+
λ is a geometric representation associated with the homogeneous G-space Pλ

and π−λ = π+
λ ⊗ sgn.

The dimension of π±λ is

|Pλ| = |Sn|
|Yλ| =

n!∏r
k=1(λk)!

=
n!∏n

k=1(k!)αk
.

To visualize elements of Pλ we can consider a Young diagram of shape λ and fill
it up by numbers from 1 to n. The resulting object is called a Young tableau t.
Let us call two tableaux t1, t2 row equivalent if one of them can be obtained from
the other by permutation of numbers inside rows. An equivalence class of tableaux
is called a tabloid and is denoted by bold letter t. To write a tabloid, we erase the
boundaries between boxes situated in the same raw in t. It gives us a partition pt

of Xn into parts consisting of numbers situated in the same row. Since the relation
t←→ pt between tabloids and partitions of the same shape is one-to-one, we shall
identify them, so that the set Pla is the same as the set Tλ of all tabloids of the
shape λ.



THE GROUP Sn. BASIC PROPERTIES. 9

8. Intertwining operators for π+
λ and π−µ .

Come back to the group Sn and apply the technique above to intertwiner A
between a geometric representation π+

λ and a “twisted” geometric representation
π−µ . It corresponds to a function a on Pλ×Pµ which satisfies the “twisted” condition
(18):

(18′) a(p · s, q · s) = sgn (s)a(p, q) for all p ∈ Pλ, q ∈ Pµ, g ∈ G.

Let us realize points p ∈ Pλ, filling a Young diagram of shape λ by numbers
1, 2, . . . , n so that numbers increase in each row from left to right. The points
g ∈ Pµ we realize, filling a Young diagram µ′, which is conjugate to µ, so that
numbers increase in each column from top to bottom.

To go further we need a two new notions: a full and a partial orders on the
set of all partitions of n. The full order is called lexicographical and is used in
dictionaries. Namely, we say that a partition λ is bigger than µ and write λ > µ, if
one of the following is true:

λ1 > µ1;
λ1 = µ1, λ2 > µ2;
λ1 = µ1, λ2 = µ2, λ3 > µ3;
. . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1 = µ1, λ2 = µ2, . . . , λr−1 > µr−1.

(21)

A partial order is called dominance. Namely, we say that a partition λ domi-
nates µ and write λ Â µ if λ 6= µ and for any k ≥ 1 we have

(22) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk.

We use also the notations λ ≥ µ and λ º µ in the obvious sense.

Exercise 7. Show that λ Â µ implies λ > µ, but the converse is not always
true.

Main Theorem. The intertwining number iλ,µ := i(π+
λ , π−µ ) has the properties:

a) iλ,µ = 0 if λ′ � µ (in particular, if λ < µ);

b) iλ,λ′ = 1 for all λ.

Proof. Consider an intertwiner A ∈ I(π+
λ , π−µ ). It is given by a function

a(p, q), p ∈ Pλ, q ∈ Pµ, such that

(23) a(p · s, q · s) = sgn(s)a(p, q).

Assume that a(p0, q0) 6= 0. Then if two different numbers k, l occurs in the same
element of partition q0, they must belong to the different elements of partition
p0. Otherwise, the transposition (k l) belongs simultaneously to stabilizers of p0

and of q0 and from (21) we obtain a(p0, q0) = sgn(k l) a(p0, q0) = −a(p0, q0). A
contradiction.

It follows that number of parts in p0 can not be less than the maximal part of
q0. In other words we have λ′1 ≥ µ1.
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Further, the elements of the second part of q0 also must belong to different part
of p0. Therefore, the µ1 + µ2 numbers from two biggest parts of µ are distributed
between parts of p0 so, that no part gets more than two elements. It means that
λ′1 + λ′2 ≥ µ1 + µ2.

Continue this argument, we see that the necessary condition for a(p0, q0) 6= 0 is
λ′ º µ. I leave you to verify that it is also a sufficient condition.

To consider now the case λ′ = µ, we introduce some more terminology.

If we fill a Young diagram Dλ of shape λ by numbers from Xn, we get a tableau
T of shape λ. Two tableaux are called row equivalent if one can be obtained from
another by a permutations in every row.

Any partition p of Xn of shape λ is a partition into the rows of some tableau T
of shape λ. The tableau T is defined by p up to row equivalence. Since λ = µ′, the
partition q is a partition into rows of some tableau T ′ of shape µ = λ′.

We know that a(p, q) 6= 0, if only all elements of the first row in T ′ belong to
different rows in T . Using the row equivalence, we can replace T by some tableau
T1 so that elements of the first row in T ′ occupy exactly the first column of T1.

Now, elements of the second row of T ′ are also belong to different rows of T and
of T1. Passing from t1 to a row equivalent tableau T2, we can assume that these
elements belong to the second column of T2.

Continuing this procedure, we come to a tableau T̃ := Tλ1 such that p is the
partition of Xn into the rows of T̃ and q is a partition of Xn into the columns of T̃ .

Note, that the action of s ∈ Sn on the pair (p, q) ∈ Pλ×Pλ′ sends the tableau T̃ to
another tableau T̃ ·s which is obtained from T̃ by replacing k by s−1(k), 1 ≤ k ≤ n.
We see that the function a(p, q) is different from zero only on one Sn-orbit in
Pλ × Pλ′ . It proves the second statement of the theorem.

¤
9. Big subgroups.

We call a subgroup H ⊂ G big subgroup if any unirrep (π, V ) of G being
restricted to H has a simple spectrum, i.e. splits into non-equivalent unirreps of H.

Theorem 3. For any n ≥ 1 the group Sn is a big subgroup in Sn+1.

Lemma 2. Let G be a finite group and let π1, π2, . . . , πk be the whole list of
unirreps of G up to equivalence. Assume that a unirep π of G has a decomposition

(24) π = m1 · π1 + m2 · π2 + . . . + mk · πk.

Then the algebra I(π, π) of intertwining operators is isomorphic to the algebra

(25) Matm1(C)⊕Matm2(C)⊕ . . . ⊕Matmk
(C).

Proof. In an appropriate basis the matrix of π(g) have a bloc-diagonal form with
mi ×mi blocks like




πi(g) 0 0 . . . 0 0
0 πi(g) 0 . . . 0 0
0 0 πi(g) . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 0 πi(g)


 .
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Let A be an intertwiner, written in the same basis. From Schur lemma we know

that I(πi, πj) =
{ C for i = j

0 for i 6= j.
It follows that A is also a block-diagonal matrix whose i-th block has the form




ai
1,1 · 1 ai

1,2 · 1 . . . ai
1,mi
· 1

ai
2,1 · 1 ai

2,2 · 1 . . . ai
2,mi
· 1

. . . . . . . . . . . .
ai

mi,1 · 1 ai
mi,2 · 1 . . . ai

mi,mi
· 1




where ai
jk are arbitrary complex numbers. So, the intertwiners, corresponding to

this block form an algebra isomorphic to Matmi(C).
¤

Corollary. The algebra I(π, π) is commutative if and only if π has a simple
spectrum (i.e. all multiplicities mi are ≤ 1).

Let G be a finite group. Recall that the group algebra C[G] consists of all
complex-valued functions on G with the ordinary structure of a complex vector space
and with a non-standard multiplication, denoted by ∗ and called convolution. By
definition,

(26) (f1 ∗ f2)(g) =
∑

h∈G

f1(h)f2(h−1g).

Let us denote by δg a function on G given by δg(h) =
{

1 for h = g

0 otherwise.

Exercise 8. Show that δg1 ∗ δg2 = δg1g2 .

We define an operation ∨ on C[G] by f∨(g) := f(g−1).

Exercise 9. Show that (f1 ∗ f2)∨ = f∨2 ∗ f∨1 so that ∗ is an antiinvolution.

We denote by A(G) the subspace in C[G] consisting of functions satisfying the
equation f = f∨. From Exercise 9 we derive

Lemma 3. Any subalgebra of C[G] which is contained in A(G) is commutative.
¤

Denote by C[Sn+1]Sn the centralizer of Sn in C[Sn+1], i.e. collection of functions
satisfying

(27) f(x−1gx) = f(s) for all s ∈ Sn+1, x ∈ Sn.

Lemma 4. The algebra C[Sn+1]Sn is contained in A(Sn+1), hence, by Lemma
3, is commutative.

Proof. We derive the property f = f∨ from (27). For this end we consider a
given element s ∈ Sn+1 as a product of cycles. We want to find an element x ∈ Sn

such that x−1sx = s−1. Such an element must reverse the order for each cycle and
fix the number n + 1 ∈ Xn+1. Let us draw all cycles of s as regular polygons with
centers on one line L; moreover, we can arrange that the number n + 1 is also on
the same lane. Then the reflection in L gives the desired element x.
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Exercise 10. a) Prove that the algebra C[Sn+2]Sn×S2 is commutative for all n.
b) Check that the algebra C[S6]S3×S3 is not commutative.

We return to the proof of the theorem. We want to show that for any unirrep
(π, V ) of Sn+1 the restriction π′ := ResSn+1

Sn
π has a simple spectrum, or, according

to the Lemma 1, that the algebra I(π′, π′) is commutative.
First, we extend the representation (π, V ) from Sn+1 to the group algebra

C[Sn+1]. Then we use the Wedderburn theorem which claims that the only irre-
ducible subalgebra in End V ' Matn(C) is the whole algebra. The conclusion is that
any linear operator A ∈ End V has the form π(f) for some function f ∈ C[Sn+1].

Lemma 5. If A ∈ I(π′, π′), then the function f above can be chosen from
C[Sn+1]Sn .

Indeed, consider the operator P which sends f ∈ C[Sn+1] to the function

(Pf)(s) =
1
|Sn|

∑

x∈Sn

f(x−1sx).

It is easy to check that P is a projection of C[Sn+1] onto C[Sn+1]Sn . On the other
hand, for an intertwiner A = π(f) we have

π(Pf) =
1
|Sn|

∑

x∈Sn

π(x)π(f)π(x−1) =
1
|Sn|

∑

x∈Sn

π(x)Aπ(x−1) = A

and we can replace f by Pf .

Now, we can finish the proof of the theorem. Indeed the algebra I(π′, π′) is a
homomorphic image of the commutative algebra C[Sn+1]Sn , hence, is commutative.

¤
10. Structure of Ŝn.

From the Main Theorem of section 8 we derive now the classification and some
properties of unirreps2 of Sn. First, we have that the set Ŝn of equivalence classes
of all unirreps is naturally labelled by partitions of n. Indeed, let πλ denote the
class of the only common irreducible component for π+

λ and π−λ′ .

Theorem 4. Ŝn = {πλ, |λ| = n}.
First, we show that πλ are pairwise distinct. Suppose the contrary: πλ ∼ πµ and

λ 6= µ. Then λ′ 6= µ′ and we can assume that λ′ < µ′. On the other hand, the
representations π+

λ and π−µ have common component πλ ∼ πµ. It can be only if
µ′ ≺ λ′, hence, µ′ < λ′. A contradiction.

It remains to observe that |Ŝn|, the number of non-equivalent unirreps, is equal
to |Cl(Sn)|, the number of conjugacy classes. But we have seen that the latter is
equal to the number p(n) of partitions of n. So, the representations πλ exhaust
|Ŝn|.

¤
2This abbreviation means “unitary irreducible representation”.
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More detailed analysis of the proof of the Main Theorem in section 8 shows that
the partition λ can be determined by πλ in two ways:

a) λ is the maximal element of the set {µ ∣∣ |µ| = n & i(π+
µ , πλ) 6= 0};

b) λ′ is the minimal element of the set {µ
∣∣ |µ| = n & i(π−µ , πλ) 6= 0}.

The case n = 4 is illustrated below.

Table of intertwining numbers

(28)

λ\µ π+
4 π+

31 π+
22 π+

212 π+
14 π−4 π−31 π−22 π−212 π−14

π4 1 1 1 1 1 1 0 0 0 0
π31 3 2 1 1 0 3 1 0 0 0
π22 2 1 1 0 0 2 1 1 0 0
π212 3 1 0 0 0 3 2 1 1 0
π14 1 0 0 0 0 1 1 1 1 1

Note that π+
λ , being geometric representations, have integer-valued characters.

The characters of representations π−λ are obtained by multiplication by sgn, hence,
also take integer values. On the other hand, representations π+

λ and πλ are related
by unitriangular matrix of intertwining numbers whose inverse is also unitriangular.
We obtain

Theorem 5. All representations of Sn have integer-valued characters.

Moreover, any representation in an appropriate basis can be written by matrices
with integer entries.

11. Representation of Sn in the space C[x1, x2, . . . , xn].

Another source of interesting representations of Sn is the polynomial algebra
C[x1, . . . , xn]. It is infinite dimensional space but admits a Z+-grading with finite
dimensional homogeneous components.

Exercise 11. Show that dim Ck[x1, . . . , xn] =
(
n+k−1

k

)
= (−1)k

(−1
k

)
.

The analysis of intertwining numbers i(Vλ, Ck[x1, . . . , xn]) and their generating
functions

Pλ(t) :=
∑

k≥0

i(Vλ, Ck[x1, . . . , xn])tk

is a very deep and beautiful problem. For initial values n = 1, 2, 3 we get

P1(t) =
1

1− t
;

P2(t) =
1

(1− t)(1− t2)
, P1,1(t) =

t

(1− t)(1− t2)
;

(29)

P3 = 1
(1−t)(1−t2)(1−t3) , P2,1(t) = t

(1−t)2(1−t3) , P1,1,1(t) = t3

(1−t)(1−t2)(1−t3) .
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To formulate the general fact, we introduce some notation. Consider a box ¤ in
a Young diagram Dλ of shape λ. We numerate the boxes by pairs of non-negative
integers

(
i(¤), j(¤)

)
where i(¤) denotes the number of the row, and j(¤) denotes

the number of the column which contain our box. For some reason, explained below,
we start the numeration with zero.

The collection of boxes situated to the right or below of ¤, including the box
itself, we call a hook of ¤ and the number of boxes in it is denoted by h(¤). We
have h(¤) = λi − i(¤) + λ′j − j(¤)− 1.

Theorem 6. In terms of notations introduced above, we have

(30) Pλ(t) =
∏

¤∈D

ti(¤)

1− th(¤)
.

A small disadvantage of this beautiful formula is the absence of symmetry between
i(¤) and j(¤). It turns out that the symmetry can be achieved if we consider more
general problem in the next section.

Here we want to introduce one more notion. Let G be a subgroup of O(n, R).
Denote by P the algebra of all polynomial functions on Rn with real coefficients
and by I the subalgebra of G-invariant polynomials. Denote by ∂i the operator of
partial derivation ∂/∂xi. The formula

(31) (p1, p2) := p1(∂1, ∂2, . . . , ∂n)p2

∣∣
x1=x2=···=xn=0

defines on P a structure of a Euclidean space.
The set of monomials {xk := xk1

1 xk2
2 · · ·xkn

n } forms an orthogonal basis in P with
relations (xk, xl) = δk,lk! where k! := (k1)!(k2)! · · · (kn)!.

Let I+ denote the ideal in I consisting of polynomials vanishing at the origin and
let J denote the ideal in P generated by I+. We denote by H the set of harmonic
polynomials h satisfying

(32) p(∂)h = 0 for all p ∈ I+.

Lemma 6. The orthogonal complement to J in P coincide with H.
¤

Theorem 7. We have P = I ·H, i.e. every polynomial p ∈ P can be written in
the form

(33) p =
N∑

k=1

pk · hk where pk ∈ I, hk ∈ H.

Proof. Apply the induction on the degree d of p. For d = 0 we have p = const ∈
I. Assume that the theorem is true for all d < d0 and consider a polynomial p
of degree d0. From the Lemma 6 we conclude that p = q + h where q ∈ J and
h ∈ H. Hence, q =

∑
k pk · qk where pk ∈ I, qk ∈ P . Since degrees of qk are less

than degree of p, we can write qi =
∑

j pi,j · hi,j with pi,j ∈ I and hi,j ∈ H. Then
p = h +

∑
i,j pk · pi,j · hi,j and we are done.

¤
For the symmetric group Sn which is embedded in O(n, R) as the group of

permutation matrices, the stronger result holds:
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Chevalley Theorem. The presentation (33) is unique. Hence, P = I ⊗H.
¤

12. Supersymmeric generalization.

Besides the polynomial algebra C[x1, . . . , xn] we can consider its odd analogue,
the Grassmann algebra ∧[ξ1, . . . , ξn] with generators satisfying the anticommu-
tation relations:

(34) ξkξj + ξjξk = 0 for all j, k.

It is a finite-dimensional graded algebra and dim ∧k[ξ1, . . . , ξn] =
(
n
k

)
.

Together with the polynomial algebra they generate so-called Weil algebra

(35) En = C[x1, . . . , xn]⊗ ∧[ξ1, . . . , ξn].

The symmetric group Sn acts on ∧[ξ1, . . . , ξn] by permutation of generators and
on E by simultaneous permutations of xk and ξk. Sometimes, one identifies the
variables ξk with differentials dxk and obtains an isomorphism of E with an algebra
of differential forms on Rn with polynomial coefficients.

The intertwining numbers i(πλ, ∧[ξ1, . . . , ξn]) and i(πλ, E are rather interesting.
Below we shall describe explicitly their generating functions.

It turns out that for the algebra ∧[ξ1, . . . , ξn] the analog of Chevalley theorem
holds: the whole algebra is isomorphic to the tensor product of the subalgebra of
invariants and the subspace of harmonic elements.

Moreover, the algebra of invariants has dimension 2 and spanned by a constant
1 and the element Ξ :=

∑
k ξk. The harmonic elements are those which satisfy∑

k ∂kp = 0 where ∂k is the derivative with respect to the odd variable ξk defined
by the formula

∂k (ξk1ξk2 · · · ξkm
) =

{
(−1)l−1ξk1 · · · ξ̂kl

· · · ξkm if kl = k

0 if no kl = k.

Exercise 12. Show that
a) ∧k〈ξ1, . . . , ξn〉 = Ξ · ∧k−1〈ξ1, . . . , ξn〉 ⊕Hk

b) The representation of Sn in Hk is irreducible and corresponds to a hook
diagram (n− k, k).

From this exercise and formula (30) one derive the explicit formula for the mul-
tiplicities of πλ in the bi-homogeneous components of the Weil algebra. Namely, let
mk,l be the multiplicity of πλ in R[x1, . . . , xn ⊗ ∧l〈ξ1, . . . , ξn〉. Then

(36) Pλ(t, s) :=
∑

k,l

mk,l · tksl =
∏

¤∈Dλ

ti(¤) + stj(¤)

1− th(¤)
.

This formula for s = 0 coincides with (30). Substitution t = 0 is a bit more
delicate and we leave to a reader to obtain from (36) the odd analog of (30).
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13. Partition types in Tn(Fq).

Consider the distribution Let Tn(Fq) be the set of strictly upper triangular ma-
trices over a finite field Fq. Consider the distribution of these matrices according
to their partition types (= Jordan normal forms). We say, that a matrix X has a
partition type λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0) if it is conjugate in GL(N,Fq) to
a direct sum Jλ1 ⊕ Jλ1 ⊕ · · · ⊕ Jλr where Jk is a Jordan block of size k with the
eigenvalue 0. Actually, it is more convenient to pass to the dual partition λ′ and
write it in the form 1α12α2 · · ·nαn where αk = λ′k − λ′k+1.

Denote by Qα(q) the number of matrices X ∈ Tn(Fq), n =
∑n

k=1 αk, which have
the dual partition type 1α12α2 · · ·nαn . Writing the index α = {α1, α2, . . . , αn} we
omit all zeros in the end.

The initial polynomials look like

Q1(q) = 1;

Q2(q) =1, Q0,1(q) = q − 1;

Q3(q) = 1, Q1,1(q) = (q − 1)(2q + 1), Q0,0,1(q) = q(q − 1)2;

Q4 = 1, Q2,1 = (q − 1)(3q2 + 2q + 1), Q0,2 = q(q − 1)2(2q + 1),

Q1,0,1(q) = q2(q − 1)2(3q + 1), Q0,0,0,1 = q3(q − 1)3.

(37)

It suggest that polynomials Qα satisfy a recurrence relations of the form

(38) Qα =
∑

k

m(k, α ; q) ·Qα−δk

where α − δk = (α1, . . . , αk−1 + 1, αk − 1, αk+1, . . . , αn) and k runs through the
values for which αk > 0.

The precise value of of coefficients in (38) was found recently by Aaron Smith

(39) m(k, α; q) =

{
qn−1−Pi≥k αi − qn−1−Pi≥k−1 αi for k > 1

qn−1−Pi≥1 αi for k = 1.

These relation open the way to explicit computation of all Qα but now only partial
results are know. E.g., for so-called hook diagrams when λ = (m + 1, 1, 1, . . . , 1︸ ︷︷ ︸

k times

)

and λ′ = (k + 1, 1, 1, . . . , 1︸ ︷︷ ︸
m times

) with α1 = m, α2 = · · · = αk = 0, αk+1 = 1, we have

(40) Qm,0, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

,1 = (q − 1)kq
(k−1)(2m+k)

2

m∑

j=0

(
k + j

j

)
qj .

Theorem 8. The polynomial Qα has degree
∑

i<j λ′iλ
′
j and the form

Qα(q) = (q − 1)n−λ′1qa(α)Q′α(q)

where Q′(q) is some polynomial of degree b(α) such that Q′
α(0) 6= 0 and Q′α(1) 6= 0.



THE GROUP Sn. BASIC PROPERTIES. 17

14..

Department of Mathematics, The University of Pennsylvania, Philadelphia, PA
19104-6395 E-mail address: kirillov@math.upenn.edu


