THE GROUP S_{n}. BASIC PROPERTIES.

A. A. Kirillov

Jan 2007

1. Definitions and notations.

The group $S_{n}, n \geq 1$, is usually defined as the group of all permutations of the set $X_{n}=\{1,2, \ldots, n\}$. So, an element $s \in S_{n}$ is a bijection (i.e., one-to-one map) from X_{n} to $X_{n}: k \mapsto s(k)$. The composition of two such map is denoted by $s_{1} \circ s_{2}: k \mapsto s_{1}\left(s_{2}(k)\right)$.

It is convenient to depict the permutation s as follows. Take two copy of X_{n} represented as column vectors and draw a system of n arrows joining element k of the first copy with the element $s(k)$ of the second copy.

To depict the composition $s_{1} \circ s_{2}$ we use three copies of X_{n}. Then we join elements of the first copy with elements of the second one according to map s_{1} and elements of the second copy with elements of the third one according to map s_{2}. Finally, we erase the second copy and "straighten" the broken lines joining elements of the first and third copies. We get the picture of $s_{1} \circ s_{2}$.

At this place it is convenient to define an important characteristic of a permutation s. Namely, the number of intersection points of all arrows $k \mapsto s(k), 1 \leq k \leq n$, is called the length of s and is denoted by $l(s)$.

Exercise 1. a) Describe all permutation of length 0; b) Describe all permutation of length 1 ; c) What is the maximal length of an $s \in S_{n}$?

Denote by $\sigma_{i}, 1 \leq i \leq n-1$, the permutation which exchanges i and $i+1$ and fixes all other elements of X_{n}.

Exercise 2. Show that elements $\sigma_{i}, 1 \leq i \leq n-1$, generate the group S_{n} and satisfy the relations

$$
\begin{equation*}
\sigma_{i}^{2}=e ; \quad \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} ; \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { for } \quad|i-j| \geq 2 \tag{1}
\end{equation*}
$$

Theorem 1. An element $s \in S_{n}$ has length $l(s) \leq k$ if and only if it can be written as a product of $\leq k$ generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$.

Proof. From the definition of $s_{1} \circ s_{2}$ we derive that

$$
\begin{equation*}
l\left(s_{1} \circ s_{2}\right)=l\left(s_{1}\right)+l\left(s_{2}\right)-2 m, m \geq 0 \tag{2}
\end{equation*}
$$

Indeed, if the arrows $i \mapsto s_{1} \circ s_{2}(i)$ and $j \mapsto s_{1} \circ s_{2}(j)$ have no intersections, then sign of $i-j$ equal to the sign of $s_{1} \circ s_{2}(i)-s_{1} \circ s_{2}(j)$. Then the broken lines $i \mapsto s_{1}(i) \mapsto s_{1} \circ s_{2}(i)$ and $j \mapsto s_{1}(j) \mapsto s_{1} \circ s_{2}(j)$ have zero or 2 intersections depending on the sign of $s_{1}(i)-s_{1}(j)$ (draw a picture).

If the arrows $i \mapsto s_{1} \circ s_{2}(i)$ and $j \mapsto s_{1} \circ s_{2}(j)$ have one intersection, then the broken lines $i \mapsto s_{1}(i) \mapsto s_{1} \circ s_{2}(i)$ and $j \mapsto s_{1}(j) \mapsto s_{1} \circ s_{2}(j)$ have also 1 intersection (prove it yourself, considering two possible signs of $s_{1}(i)-s_{1}(j)$).

Now, assume that $s=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}$. Then $l(s) \leq k$ because of (2). Conversely, if $l(s) \leq k$, consider the first intersection point (going from left to right). Let its height is between i and $i+1$, then $s^{\prime}=\sigma_{i} \circ s$ has the property $l\left(s^{\prime}\right)=l(s)-1$. So s^{\prime} is a product of $\leq k-1$ generators, hence, $s=\sigma_{i} \circ s^{\prime}$ is a product of $\leq k$ generators.

Another corollary from (2) is that the map

$$
\begin{equation*}
\operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\} ; \quad \operatorname{sgn}(s)=(-1)^{l(s)} \tag{3}
\end{equation*}
$$

is multiplicative:

$$
\begin{equation*}
\operatorname{sgn}\left(s_{1} \circ s_{2}\right)=\operatorname{sgn}\left(s_{1}\right) \cdot \operatorname{sgn}\left(s_{2}\right) \tag{4}
\end{equation*}
$$

A permutation s is called even (resp. odd) if $\operatorname{sgn} s=1($ resp. sgn $s=-1)$. The set of even permutations form a normal subgroup $A_{n} \subset S_{n}$ of index 2 .

2. Lagrange theorem and applications.

We say that a group G acts from the left on a set X if to each $g \in G$ there corresponds a transformation $T(g): x \mapsto g \cdot x$, so that $T\left(g_{1} g_{2}\right)=T\left(g_{1}\right) T\left(g_{2}\right)$, or $\left(g_{1} g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right)$. In this case X is called a left G-space.

The right G-space is defined analogously, but now for $g \in G$ we associate the transformation $T^{\prime}(g): x \mapsto x \cdot g$ so that $T^{\prime}\left(g_{1} g_{2}\right)=T^{\prime}\left(g_{2}\right) T^{\prime}\left(g_{1}\right)$.

Any left action can be transformed into right action via the following rule.
Exercise 3. Show that if $g \mapsto T(g)$ is a left action, then $g \mapsto T\left(g^{-1}\right)=T^{-1}(g)$ is a right action.

We say that G acts on X transitively, or, that X is an homogeneous G-space, if for any two points $x_{1}, x_{2} \in X$ there is a $g \in G$ such that $T(g) x_{1}=x_{2}$.

Suppose now that X is an homogeneous G-space with a marked point $x_{0} \in X$. Let

$$
\begin{equation*}
\operatorname{Stab}\left(x_{0}\right):=\left\{g \in G \mid T(g) x_{0}=x_{0}\right\} . \tag{5}
\end{equation*}
$$

Then $\operatorname{Stab}\left(x_{0}\right)$ is a subgroup of G. Conversely, for any subgroup $H \subset G$ there exists an homogeneous space X with a marked point $x_{0} \in X$ such that $\operatorname{Stab}\left(x_{0}\right)=H$.

To construct X explicitly, we assume that it exists and consider the set $G(x)$ of all elements $g \in G$ which send x_{0} to x. For definiteness we suppose that X is a left G-space. Let $g(x)$ be a representative of the set $G(x)$. Take any element $g \in G(x)$ and compare it with $g(x)$. Since $g \cdot x_{0}=x=g(x) \cdot x_{0}$, we get $\left(g(x)^{-1} g\right) x_{0}=x_{0}$, hence, $g(x)^{-1} g \in H$. Thus, $G(x)=g H=\{g h \mid h \in H\}$. The subsets of the form $g H$ are called left H-cosets in G. We see, that points of X are in a bijection with left H-cosets in G.

Now we can define our homogeneous space X as a collection of all left H-cosets in G. Usually this collection is denoted by G / H. There is a natural left action of G on $G / H: g_{1} \cdot\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H$. The role of a marked point is played by the H-coset $H \subset G$.

In the case when G is a finite group, we have the following equality

$$
\begin{equation*}
|G|=|H| \cdot|G / H| \tag{6}
\end{equation*}
$$

where $|X|$ denote the number of points in a finite set X.
Corollary (Lagrange Theorem). The order of a subgroup is a divisor of the order of a group.

Exercise 4. Compute orders of the groups:
$S_{n}, A_{n}, \operatorname{Rot}(P), I s o(P)$
where P is a regular polytope in $\mathbb{R}^{3}, R o t$ is the group of rotation and $I s o$ is the group of all isometries (rotations and reflections).

3. Conjugacy classes of S_{n}.

A map $\varphi: G \rightarrow G$ is called an automorphism if it is a bijection and preserves the multiplication law: $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)$. The collection of all automorphisms form a group denoted by $\operatorname{Aut}(G)$.

For any $x \in G$ the $\operatorname{map} \varphi_{x}(g):=x g x^{-1}$ is an automorphism of G. Such automorphisms are called inner and form a subgroup $\operatorname{Inn}(G) \subset \operatorname{Aut}(G)$.

Exercise 5. Show that $\operatorname{Inn}(G)$ is a normal subgroup in $\operatorname{Aut}(G)$.
The quotient group $\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is denoted $\operatorname{Out}(G)$ and its elements are called outer automorphisms. If G is abelian, all automorphisms are outer. For some groups, e.g. for all $S_{n}, n \neq 6$, all automorphisms are inner.

We say that two elements $g_{1}, g_{2} \in G$ are conjugate and write $g_{1} \sim g_{2}$ if there exists an $x \in G$ such that $\varphi_{x}\left(g_{1}\right)=g_{2}$. In this case $g_{2}=x^{-1} g_{1} x$ and, denoting $x^{-1} g_{1}$ by y, we can write $g_{1}=x y, g_{2}=y x$. Conversely, for any $x, y \in G$ we have $x y \sim y x$.

A non-formal meaning of the conjugacy relation: two transformations are conjugate in G if they look the same for two observers, one of which is obtained from other by a transformation from G.

Thus, any group G splits into conjugacy classes $C_{0}=\{e\}, C_{1}, C_{2}, \ldots, C_{k}$. The set of conjugacy classes we denote by $C l(G)$.

Each conjugacy class $C \subset G$ is an homogeneous G-space where G acts by inner automorphisms. The stabilizer of a point $g \in C$ is the centralizer of g in G, denoted by $Z_{G}(g)$ and defined by:

$$
\begin{equation*}
Z_{G}(g)=\{x \in G \mid x g=g x\} . \tag{7}
\end{equation*}
$$

So, the cardinality of a conjugacy class $C \subset G$ is always a divisor of the order of the group G.

To go further we need a notion of a partition. Consider a sequence

$$
\lambda=\left\{\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0\right\} \quad \text { with } \quad \sum_{k=1}^{r} \lambda_{k}=n .
$$

Such a sequence is called a partition of n. Usually a partition of n is depicted by a Young diagram ${ }^{1}$ with n boxes, arranged in r rows so that $k^{\text {th }}$ row contains λ_{r} boxes.

If we count boxes not by rows but by columns, we get another partition of n, $\mu=\left\{\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{s}>0\right\}$ which is called conjugate or dual to λ. The explicit formula is

$$
\begin{equation*}
\mu_{k}=\operatorname{Card}\left\{\lambda_{i} \mid \lambda_{i} \geq k\right\} \tag{8}
\end{equation*}
$$

Finally, we can count the number α_{k} of cycles of size k and denote partition λ by $1^{\alpha_{1}} 2^{\alpha_{2}} \cdots n^{\alpha_{n}}$. Here $\alpha_{k}=\mu_{k}-\mu_{k+1}$.

Theorem 2. Let μ be a partition of n. Denote by c_{μ} the permutation

$$
\begin{equation*}
c_{\mu}=c_{\mu_{1}} c_{\mu_{2}} \cdots c_{\mu_{k}} \tag{9}
\end{equation*}
$$

where $c_{\mu_{i}} \in S_{n}$ permutes cyclically numbers from $m_{1}+m_{2}+\cdots+m_{i-1}+1$ to $m_{1}+m_{2}+\cdots+m_{i}$ and leave fixed all other numbers in X_{n}.

Any permutation $s \in S_{n}$ is conjugate to a unique $c_{\mu},|\mu|=n$.
Proof. Take any permutation $s \in S_{n}$ and consider the subgroup $\langle g\rangle$ generated by g. It is a cyclic group of some order k, which is a divisor of $n=|G|$. But any subgroup of the cyclic group is itself a cyclic group. Hence, orbits of $\langle g\rangle$ in X_{n} are all of the form $\Omega_{i}=\langle g\rangle /\left\langle g^{m_{i}}\right\rangle$ where m_{i} is a divisor of k. We can assume that $m_{1} \geq m_{2} \geq \cdots \geq m_{k}$. This partition of n is called the cycle structure of g.

Now we observe that an inner automorphism of S_{n} can be interpreted as a renaming of elements of X_{n}. We can denote the elements of Ω_{1} by numbers $1,2, \ldots, m_{1}$, the elements of Ω_{2} by numbers $m_{1}+1, m_{1}+2, \ldots, m_{1}+m_{2}$ and so on. It follows that up to inner automorphism, the element g is determined by its cycle structure. Therefore, we have a natural labeling of $C l(G)$ by partitions of n.

We denote by C_{μ} the cojugacy class which contains c_{μ}.

[^0]
4. Some computations.

Let us compute the specific cardinality of a conjugacy class $C^{\alpha} \subset S_{n}$. For this, because of Lagrange theorem, we have to now the cardinality of $Z_{S_{n}}(s)$ for $s \in C^{\alpha}$ If $x \in Z_{S_{n}}(s)$, then it can only permute the cycles of equal length and make a shift in each cycle. Therefore, the total number of such elements is

$$
\operatorname{Card} Z_{S_{n}}(s)=\prod_{k=1}^{n}\left(\alpha_{k}\right)!k^{\alpha_{k}}
$$

and the specific cardinality of the conjugacy class is

$$
\begin{equation*}
\frac{\operatorname{Card} C^{\alpha}}{\operatorname{Card} S_{n}}=\frac{1}{\operatorname{Card} Z_{S_{n}}(s)}=\frac{1}{\prod_{k=1}^{n}\left(\alpha_{k}\right)!k^{\alpha_{k}}} . \tag{10}
\end{equation*}
$$

We want to introduce a generating function for specific cardinalities of conjugacy classes in S_{n} :

$$
\begin{equation*}
C_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right):=\sum_{\sum_{k=1}^{n} k \alpha_{k}=n} \frac{\operatorname{Card} C^{\alpha}}{\operatorname{Card} S_{n}} \cdot t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \cdots t_{n}^{\alpha_{n}} \tag{11}
\end{equation*}
$$

It is more convenient to drop the restriction $\sum_{k=1}^{n} k \alpha_{k}=n$. For this we can consider a more universal generating function

$$
\begin{equation*}
\mathcal{C}\left(t_{1}, t_{2}, \ldots, t_{n} ; \lambda\right):=\sum_{n \geq 0} \lambda^{n} \cdot C_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \tag{12}
\end{equation*}
$$

To compute it, we multiply (10) by $\prod_{n \geq 0}\left(\lambda t_{k}\right)^{k \alpha_{k}}$ and sum up over all $\alpha_{k} \geq 0$ without restrictions. The result is

$$
\begin{equation*}
\sum_{\alpha_{k} \geq 0} \prod_{k \geq 1} \frac{\left(\lambda^{k} t_{k}\right)^{\alpha_{k}}}{\left(\alpha_{k}\right)!k^{\alpha_{k}}}=\prod_{k \geq 1} \sum_{\alpha_{k} \geq 0} \frac{\left(\lambda^{k} t_{k}\right)^{\alpha_{k}}}{\left(\alpha_{k}\right)!k^{\alpha_{k}}}=\prod_{k \geq 1} \exp \frac{\lambda^{k} t_{k}}{k}=\exp \sum_{k \geq 1} \frac{\lambda^{k} t_{k}}{k} \tag{13}
\end{equation*}
$$

In particular, for $t_{1}=t_{2}=\cdots=1$ we obtain

$$
\mathcal{C}(1,1, \ldots ; \lambda)=\exp \sum_{k \geq 1} \frac{\lambda^{k}}{k}=(1-\lambda)^{-1}=1+\lambda+\lambda^{2}+\ldots
$$

We see that the coefficient by any power of λ is 1 which shows that sum of specific cardinalities of conjugacy classes is 1 , as it must be.

The same type of computation allows to solve explicitly many interesting problems about the structure of S_{n}.

We give an example: what is the number $\operatorname{Inv}(n)$ of involutions in the group S_{n} ? It is clear that involutions are characterized by the condition $\alpha_{3}=\alpha_{4}=\ldots=0$. So, repeating the summation under this restriction, we get

$$
\begin{equation*}
\sum_{n \geq 0} \frac{\operatorname{Inv}(n)}{n!} \lambda^{n}=\exp \sum_{k=1,2} \frac{\lambda^{k}}{k}=e^{\lambda+\frac{\lambda^{2}}{2}} \tag{14}
\end{equation*}
$$

Thus, $\operatorname{Inv}(n)$ is equal to $n!\times$ coefficient by λ^{n} in $e^{t+\frac{t^{2}}{2}}$, i.e.

$$
\begin{align*}
& \sum_{l=0}^{\left[\frac{n}{2}\right]} \frac{n!}{l!(n-2 l)!2^{l}}=1+\frac{n(n-1)}{1 \cdot 2}+\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4}+ \tag{15}\\
& \quad \frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6 \cdot 8}+\ldots
\end{align*}
$$

Exercise 6. Find the number of permutations in $S_{2 n}$ which contain only circles of even length.

Answer: $((2 n-1)!!)^{2}$.

5. Intertwining operators.

Let $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ be two linear representations of a group G. An operator $A: V_{1} \rightarrow V_{2}$ is called intertwining operator, or simply intertwiner. if the following diagram is commutative:

$$
\begin{aligned}
& V_{1} \longrightarrow A \\
& \pi_{1}(g) \downarrow \\
& \\
& V_{2} \downarrow_{2} \\
& \pi_{2}(g) \\
& V_{2}
\end{aligned}
$$

The set of all intertwiners for π_{1}, π_{2} forms a complex vector space $I\left(\pi_{1}, \pi_{2}\right)$. Its dimension is denoted by $i\left(\pi_{1}, \pi_{2}\right)$ and is called intertwining number.

Note, that for unitary complex representations the hermitian conjugation sends $A \in I\left(\pi_{1}, \pi_{2}\right)$ to $A^{*} \in I\left(\pi_{2}, \pi_{1}\right)$. So, $i\left(\pi_{1}, \pi_{2}\right)$ is symmetric.

Theorem (Schur Lemma) For two irreducible representations we have

$$
i\left(\pi_{1}, \pi_{2}\right)= \begin{cases}1 & \text { if } \pi_{1} \sim \pi_{2} \\ 0 & \text { otherwise }\end{cases}
$$

We can consider intertwining number as a sort of inner product for representations for which the irreducible representations play the role of elements of an orthonormal basis. Indeed, if $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right\}$ are all (up to equivalence) irreducible representations of a finite group G, then any representation π is equivalent to the direct sum of irreducible components where π_{j} enters with multiplicity $m_{j}=i\left(\pi, \pi_{j}\right)$. We write it in the form $\pi=\sum_{j=1}^{k} m_{j} \pi_{j}$. If $\pi^{\prime}=\sum_{j=1}^{k} m_{j}^{\prime} \pi_{j}$ is any other representation, then $i\left(\pi, \pi^{\prime}\right)=\sum_{j=1}^{k} m_{j} m_{j}^{\prime}$. In particular, $i(\pi, \pi)=1 \mathrm{iff} \pi$ is irreducible.

The analogy between intertwining number and inner product becomes equality if we pass from representations to their characters. Namely, let $\chi_{j}=\operatorname{tr} \pi_{j}$ be the character of π_{j}. Then in $L_{2}(G)$, the space of complex-valued functions on G with inner product $\left(f_{1}, f_{2}\right)=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}$, we have $\left(\chi_{j}, \chi_{j^{\prime}}\right)=\delta_{j j^{\prime}}$. It follows from orthogonality relations between matrix elements of irreducible representations, which we supposed to be known.

6. Intertwining operators for geometric representations.

A geometric representation of a finite group G is related to any G-space X. If X is a right G-space, it acts in the space V_{X} of all complex-valued functions on X by the formula

$$
\begin{equation*}
\left(\pi_{X}(g) f\right)(x)=f(x \cdot g) \tag{16}
\end{equation*}
$$

For a left G-space the formula is

$$
\left(\pi_{X}(g) f\right)(x)=f\left(g^{-1} \cdot x\right)
$$

Usually we use right G-space to avoid the inverse operation in (16^{\prime}).
Sometimes, geometric representations are called permutation representations because in the natural basis in V_{X} (see below) the operators $\pi_{X}(g)$ just permute basic vectors.

Let now $X=G / H$ and $Y=G / K$ be two right G-spaces. Consider geometric representations $\left(\pi_{X}, V_{X}\right)$ and $\left(\pi_{Y}, V_{Y}\right)$ and an intertwining operator $A: V_{X} \rightarrow V_{Y}$. It can be written in the form

$$
\begin{equation*}
(A f)(y)=\sum_{x \in X} a(x, y) f(x) \tag{17}
\end{equation*}
$$

where a is a complex-valued function on $X \times Y$. It can be explicitly written as

$$
a(x, y)=\left(A \delta_{x}\right)(y), \quad \text { where } \quad \delta_{x}\left(x^{\prime}\right)=\left\{\begin{array}{lll}
1 & \text { if } & x^{\prime}=x \\
0 & \text { if } & x^{\prime} \neq x
\end{array}\right.
$$

The condition $A \pi_{X}(g)=\pi_{Y}(g) A$ looks like

$$
\sum_{x \in X} a(x, y) f(x \cdot g)=\sum_{x \in X} a(x, y \cdot g) f(x) \stackrel{x \mapsto x \cdot g}{=} \sum_{x \in X} a(x \cdot g, y \cdot g) f(x \cdot g),
$$

or

$$
\begin{equation*}
a(x, y)=a(x \cdot g, y \cdot g) \quad \text { for all } \quad x \in X, y \in Y, g \in G \tag{18}
\end{equation*}
$$

So, the function a is constant on G-orbits in $X \times Y$.
Assume now that X and Y are right homogeneous spaces, so that $X \sim H \backslash G$, and $Y \sim K \backslash G$.

Lemma 1. The following four sets are naturally isomorphic:
a) the set Y / H of H-orbits in Y;
b) the set X / K of K-orbits in X;
c) the set $(X \times Y) / G$ of G-orbits in $X \times Y$.
d) the set $H \backslash G / K$ of double (H, K)-cosets in G, i.e. subsets of the form $H g K$.

Proof. For any $g \in G$ we define the following four objects:
a) H-orbit $\Omega^{\prime}(g) \in Y / H$ which contains the element $K g^{-1} \in Y$;
b) K-orbit $\Omega^{\prime \prime}(g) \in X / K$ which contains the element $H g \in X$;
c) G-orbit $\Omega(g) \in(X \times Y) / G$ which contains the element $(H g, K) \in X \times Y$;
d) the double class $H g K$.

It remains to check that $\Omega(g), \Omega^{\prime}(g), \Omega^{\prime \prime}(g)$ actually depend only on the double class $H g K$ (i.e. do not change if we shift g by an element $h \in H$ from the left or by an element $k \in K$ from the right). We leave it to the reader.

It follows that

$$
\begin{equation*}
i\left(\pi_{X}, \pi_{Y}\right)=\operatorname{Card}(H \backslash G / K) \tag{19}
\end{equation*}
$$

In particular, this number is always ≥ 1.

7. Young subgroups in S_{n}.

For any partition λ of n we define the abstract group Y_{λ} as the product

$$
Y_{\lambda}=S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{r}}
$$

Let P_{λ} be the set of all partitions p of X_{n} onto r parts $p_{1}, p_{2}, \ldots, p_{r}$ of size $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$. The group S_{n} acts naturally on P_{λ} and for the convenience of notations we choose the right action. So, a partition p goes to the partition $p \cdot s$. If a part p_{i} consists of numbers $k_{1}, \ldots, k_{\lambda_{i}}$, then the part $(p \cdot s)_{i}$ consists of $s^{-1}\left(k_{1}\right), \ldots, s^{-1}\left(k_{\lambda_{i}}\right)$.

It must be clear (think it through!) that P_{λ} is an homogeneous space and the stabilizer $\operatorname{Stab} p$ of any point $p \in P_{\lambda}$ is isomorphic to Y_{λ}.

Let V_{λ} be the space of all complex-valued functions on P_{λ}. We define two linear representations $\pi_{\lambda}^{ \pm}$of the group S_{n} in V_{λ} by the formulas

$$
\begin{equation*}
\left(\pi_{\lambda}^{+}(s) f\right)(p)=f(p \cdot s) \quad\left(\pi_{\lambda}^{-}(s) f\right)(p)=\operatorname{sgn}(s) f(p \cdot s) \tag{20}
\end{equation*}
$$

So, π_{λ}^{+}is a geometric representation associated with the homogeneous G-space P_{λ} and $\pi_{\lambda}^{-}=\pi_{\lambda}^{+} \otimes \operatorname{sgn}$.

The dimension of $\pi_{\lambda}^{ \pm}$is

$$
\left|P_{\lambda}\right|=\frac{\left|S_{n}\right|}{\left|Y_{\lambda}\right|}=\frac{n!}{\prod_{k=1}^{r}\left(\lambda_{k}\right)!}=\frac{n!}{\prod_{k=1}^{n}(k!)^{\alpha_{k}}} .
$$

To visualize elements of P_{λ} we can consider a Young diagram of shape λ and fill it up by numbers from 1 to n. The resulting object is called a Young tableau t. Let us call two tableaux t_{1}, t_{2} row equivalent if one of them can be obtained from the other by permutation of numbers inside rows. An equivalence class of tableaux is called a tabloid and is denoted by bold letter \mathbf{t}. To write a tabloid, we erase the boundaries between boxes situated in the same raw in t. It gives us a partition p_{t} of X_{n} into parts consisting of numbers situated in the same row. Since the relation $\mathbf{t} \longleftrightarrow p_{\mathbf{t}}$ between tabloids and partitions of the same shape is one-to-one, we shall identify them, so that the set $P_{l} a$ is the same as the set T_{λ} of all tabloids of the shape λ.

8. Intertwining operators for π_{λ}^{+}and π_{μ}^{-}.

Come back to the group S_{n} and apply the technique above to intertwiner A between a geometric representation π_{λ}^{+}and a "twisted" geometric representation π_{μ}^{-}. It corresponds to a function a on $P_{\lambda} \times P_{\mu}$ which satisfies the "twisted" condition (18):

$$
\begin{equation*}
a(p \cdot s, q \cdot s)=\operatorname{sgn}(s) a(p, q) \quad \text { for all } \quad p \in P_{\lambda}, \quad q \in P_{\mu}, \quad g \in G \tag{18'}
\end{equation*}
$$

Let us realize points $p \in P_{\lambda}$, filling a Young diagram of shape λ by numbers $1,2, \ldots, n$ so that numbers increase in each row from left to right. The points $g \in P_{\mu}$ we realize, filling a Young diagram μ^{\prime}, which is conjugate to μ, so that numbers increase in each column from top to bottom.

To go further we need a two new notions: a full and a partial orders on the set of all partitions of n. The full order is called lexicographical and is used in dictionaries. Namely, we say that a partition λ is bigger than μ and write $\lambda>\mu$, if one of the following is true:

$$
\begin{align*}
& \lambda_{1}>\mu_{1} \tag{21}\\
& \lambda_{1}=\mu_{1}, \lambda_{2}>\mu_{2} \\
& \lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}, \lambda_{3}>\mu_{3} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}, \ldots, \lambda_{r-1}>\mu_{r-1} .
\end{align*}
$$

A partial order is called dominance. Namely, we say that a partition λ dominates μ and write $\lambda \succ \mu$ if $\lambda \neq \mu$ and for any $k \geq 1$ we have

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{k} . \tag{22}
\end{equation*}
$$

We use also the notations $\lambda \geq \mu$ and $\lambda \succeq \mu$ in the obvious sense.
Exercise 7. Show that $\lambda \succ \mu$ implies $\lambda>\mu$, but the converse is not always true.

Main Theorem. The intertwining number $i_{\lambda, \mu}:=i\left(\pi_{\lambda}^{+}, \pi_{\mu}^{-}\right)$has the properties:
a) $i_{\lambda, \mu}=0 \quad$ if $\quad \lambda^{\prime} \nsucc \mu \quad$ (in particular, if $\lambda<\mu$);
b) $i_{\lambda, \lambda^{\prime}}=1$ for all λ.

Proof. Consider an intertwiner $A \in I\left(\pi_{\lambda}^{+}, \pi_{\mu}^{-}\right)$. It is given by a function $a(p, q), p \in P_{\lambda}, q \in P_{\mu}$, such that

$$
\begin{equation*}
a(p \cdot s, q \cdot s)=\operatorname{sgn}(s) a(p, q) . \tag{23}
\end{equation*}
$$

Assume that $a\left(p_{0}, q_{0}\right) \neq 0$. Then if two different numbers k, l occurs in the same element of partition q_{0}, they must belong to the different elements of partition p_{0}. Otherwise, the transposition $(k l)$ belongs simultaneously to stabilizers of p_{0} and of q_{0} and from (21) we obtain $a\left(p_{0}, q_{0}\right)=\operatorname{sgn}(k l) a\left(p_{0}, q_{0}\right)=-a\left(p_{0}, q_{0}\right)$. A contradiction.

It follows that number of parts in p_{0} can not be less than the maximal part of q_{0}. In other words we have $\lambda_{1}^{\prime} \geq \mu_{1}$.

Further, the elements of the second part of q_{0} also must belong to different part of p_{0}. Therefore, the $\mu_{1}+\mu_{2}$ numbers from two biggest parts of μ are distributed between parts of p_{0} so, that no part gets more than two elements. It means that $\lambda_{1}^{\prime}+\lambda_{2}^{\prime} \geq \mu_{1}+\mu_{2}$.

Continue this argument, we see that the necessary condition for $a\left(p_{0}, q_{0}\right) \neq 0$ is $\lambda^{\prime} \succeq \mu$. I leave you to verify that it is also a sufficient condition.

To consider now the case $\lambda^{\prime}=\mu$, we introduce some more terminology.
If we fill a Young diagram D_{λ} of shape λ by numbers from X_{n}, we get a tableau T of shape λ. Two tableaux are called row equivalent if one can be obtained from another by a permutations in every row.

Any partition p of X_{n} of shape λ is a partition into the rows of some tableau T of shape λ. The tableau T is defined by p up to row equivalence. Since $\lambda=\mu^{\prime}$, the partition q is a partition into rows of some tableau T^{\prime} of shape $\mu=\lambda^{\prime}$.

We know that $a(p, q) \neq 0$, if only all elements of the first row in T^{\prime} belong to different rows in T. Using the row equivalence, we can replace T by some tableau T_{1} so that elements of the first row in T^{\prime} occupy exactly the first column of T_{1}.

Now, elements of the second row of T^{\prime} are also belong to different rows of T and of T_{1}. Passing from t_{1} to a row equivalent tableau T_{2}, we can assume that these elements belong to the second column of T_{2}.

Continuing this procedure, we come to a tableau $\widetilde{T}:=T_{\lambda_{1}}$ such that p is the partition of X_{n} into the rows of \widetilde{T} and q is a partition of X_{n} into the columns of \widetilde{T}.

Note, that the action of $s \in S_{n}$ on the pair $(p, q) \in P_{\lambda} \times P_{\lambda^{\prime}}$ sends the tableau \widetilde{T} to another tableau $\widetilde{T} \cdot s$ which is obtained from \widetilde{T} by replacing k by $s^{-1}(k), 1 \leq k \leq n$. We see that the function $a(p, q)$ is different from zero only on one S_{n}-orbit in $P_{\lambda} \times P_{\lambda^{\prime}}$. It proves the second statement of the theorem.

9. Big subgroups.

We call a subgroup $H \subset G$ big subgroup if any unirrep (π, V) of G being restricted to H has a simple spectrum, i.e. splits into non-equivalent unirreps of H.

Theorem 3. For any $n \geq 1$ the group S_{n} is a big subgroup in S_{n+1}.
Lemma 2. Let G be a finite group and let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be the whole list of unirreps of G up to equivalence. Assume that a unirep π of G has a decomposition

$$
\begin{equation*}
\pi=m_{1} \cdot \pi_{1}+m_{2} \cdot \pi_{2}+\ldots+m_{k} \cdot \pi_{k} \tag{24}
\end{equation*}
$$

Then the algebra $I(\pi, \pi)$ of intertwining operators is isomorphic to the algebra

$$
\begin{equation*}
\operatorname{Mat}_{m_{1}}(\mathbb{C}) \oplus \operatorname{Mat}_{m_{2}}(\mathbb{C}) \oplus \ldots \oplus \operatorname{Mat}_{m_{k}}(\mathbb{C}) \tag{25}
\end{equation*}
$$

Proof. In an appropriate basis the matrix of $\pi(g)$ have a bloc-diagonal form with $m_{i} \times m_{i}$ blocks like

$$
\left(\begin{array}{cccccc}
\pi_{i}(g) & 0 & 0 & \ldots & 0 & 0 \\
0 & \pi_{i}(g) & 0 & \ldots & 0 & 0 \\
0 & 0 & \pi_{i}(g) & \ldots & 0 & 0 \\
\cdots & \cdots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \pi_{i}(g)
\end{array}\right)
$$

Let A be an intertwiner, written in the same basis. From Schur lemma we know that $I\left(\pi_{i}, \pi_{j}\right)=\left\{\begin{array}{lll}\mathbb{C} & \text { for } & i=j \\ 0 & \text { for } & i \neq j\end{array}\right.$

It follows that A is also a block-diagonal matrix whose i-th block has the form

$$
\left(\begin{array}{cccc}
a_{1,1}^{i} \cdot 1 & a_{1,2}^{i} \cdot 1 & \ldots & a_{1, m_{i}}^{i} \cdot 1 \\
a_{2,1}^{i} \cdot 1 & a_{2,2}^{i} \cdot 1 & \ldots & a_{2, m_{i}}^{i} \cdot 1 \\
\ldots & \ldots & \ldots & \cdots \\
a_{m_{i}, 1}^{i} \cdot 1 & a_{m_{i}, 2}^{i} \cdot 1 & \ldots & a_{m_{i}, m_{i}}^{i} \cdot 1
\end{array}\right)
$$

where $a_{j k}^{i}$ are arbitrary complex numbers. So, the intertwiners, corresponding to this block form an algebra isomorphic to $\operatorname{Mat}_{m_{i}}(\mathbb{C})$.

Corollary. The algebra $I(\pi, \pi)$ is commutative if and only if π has a simple spectrum (i.e. all multiplicities m_{i} are ≤ 1).

Let G be a finite group. Recall that the group algebra $\mathbb{C}[G]$ consists of all complex-valued functions on G with the ordinary structure of a complex vector space and with a non-standard multiplication, denoted by $*$ and called convolution. By definition,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(g)=\sum_{h \in G} f_{1}(h) f_{2}\left(h^{-1} g\right) \tag{26}
\end{equation*}
$$

Let us denote by δ_{g} a function on G given by $\delta_{g}(h)= \begin{cases}1 & \text { for } h=g \\ 0 & \text { otherwise } .\end{cases}$
Exercise 8. Show that $\delta_{g_{1}} * \delta_{g_{2}}=\delta_{g_{1} g_{2}}$.
We define an operation ${ }^{\vee}$ on $\mathbb{C}[G]$ by $f^{\vee}(g):=f\left(g^{-1}\right)$.
Exercise 9. Show that $\left(f_{1} * f_{2}\right)^{\vee}=f_{2}^{\vee} * f_{1}^{\vee}$ so that $*$ is an antiinvolution.
We denote by $\mathcal{A}(G)$ the subspace in $\mathbb{C}[G]$ consisting of functions satisfying the equation $f=f^{\vee}$. From Exercise 9 we derive

Lemma 3. Any subalgebra of $\mathbb{C}[G]$ which is contained in $\mathcal{A}(G)$ is commutative.

Denote by $\mathbb{C}\left[S_{n+1}\right]^{S_{n}}$ the centralizer of S_{n} in $\mathbb{C}\left[S_{n+1}\right]$, i.e. collection of functions satisfying

$$
\begin{equation*}
f\left(x^{-1} g x\right)=f(s) \quad \text { for all } \quad s \in S_{n+1}, x \in S_{n} \tag{27}
\end{equation*}
$$

Lemma 4. The algebra $\mathbb{C}\left[S_{n+1}\right]^{S_{n}}$ is contained in $\mathcal{A}\left(S_{n+1}\right)$, hence, by Lemma 3 , is commutative.

Proof. We derive the property $f=f^{\vee}$ from (27). For this end we consider a given element $s \in S_{n+1}$ as a product of cycles. We want to find an element $x \in S_{n}$ such that $x^{-1} s x=s^{-1}$. Such an element must reverse the order for each cycle and fix the number $n+1 \in X_{n+1}$. Let us draw all cycles of s as regular polygons with centers on one line L; moreover, we can arrange that the number $n+1$ is also on the same lane. Then the reflection in L gives the desired element x.

Exercise 10. a) Prove that the algebra $\mathbb{C}\left[S_{n+2}\right]^{S_{n} \times S_{2}}$ is commutative for all n.
b) Check that the algebra $\mathbb{C}\left[S_{6}\right]^{S_{3} \times S_{3}}$ is not commutative.

We return to the proof of the theorem. We want to show that for any unirrep (π, V) of S_{n+1} the restriction $\pi^{\prime}:=\operatorname{Res}_{S_{n}}^{S_{n+1}} \pi$ has a simple spectrum, or, according to the Lemma 1, that the algebra $I\left(\pi^{\prime}, \pi^{\prime}\right)$ is commutative.

First, we extend the representation (π, V) from S_{n+1} to the group algebra $\mathbb{C}\left[S_{n+1}\right]$. Then we use the Wedderburn theorem which claims that the only irreducible subalgebra in End $V \simeq \operatorname{Mat}_{n}(\mathbb{C})$ is the whole algebra. The conclusion is that any linear operator $A \in \operatorname{End} V$ has the form $\pi(f)$ for some function $f \in \mathbb{C}\left[S_{n+1}\right]$.

Lemma 5. If $A \in I\left(\pi^{\prime}, \pi^{\prime}\right)$, then the function f above can be chosen from $\mathbb{C}\left[S_{n+1}\right]^{S_{n}}$.

Indeed, consider the operator P which sends $f \in \mathbb{C}\left[S_{n+1}\right]$ to the function

$$
(P f)(s)=\frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} f\left(x^{-1} s x\right)
$$

It is easy to check that P is a projection of $\mathbb{C}\left[S_{n+1}\right]$ onto $\mathbb{C}\left[S_{n+1}\right]^{S_{n}}$. On the other hand, for an intertwiner $A=\pi(f)$ we have

$$
\pi(P f)=\frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \pi(x) \pi(f) \pi\left(x^{-1}\right)=\frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \pi(x) A \pi\left(x^{-1}\right)=A
$$

and we can replace f by $P f$.
Now, we can finish the proof of the theorem. Indeed the algebra $I\left(\pi^{\prime}, \pi^{\prime}\right)$ is a homomorphic image of the commutative algebra $\mathbb{C}\left[S_{n+1}\right]^{S_{n}}$, hence, is commutative.

10. Structure of $\widehat{S_{n}}$.

From the Main Theorem of section 8 we derive now the classification and some properties of unirreps ${ }^{2}$ of S_{n}. First, we have that the set $\widehat{S_{n}}$ of equivalence classes of all unirreps is naturally labelled by partitions of n. Indeed, let π_{λ} denote the class of the only common irreducible component for π_{λ}^{+}and $\pi_{\lambda^{\prime}}^{-}$.

Theorem 4. $\widehat{S_{n}}=\left\{\pi_{\lambda},|\lambda|=n\right\}$.
First, we show that π_{λ} are pairwise distinct. Suppose the contrary: $\pi_{\lambda} \sim \pi_{\mu}$ and $\lambda \neq \mu$. Then $\lambda^{\prime} \neq \mu^{\prime}$ and we can assume that $\lambda^{\prime}<\mu^{\prime}$. On the other hand, the representations π_{λ}^{+}and π_{μ}^{-}have common component $\pi_{\lambda} \sim \pi_{\mu}$. It can be only if $\mu^{\prime} \prec \lambda^{\prime}$, hence, $\mu^{\prime}<\lambda^{\prime}$. A contradiction.

It remains to observe that $\left|\widehat{S_{n}}\right|$, the number of non-equivalent unirreps, is equal to $\left|C l\left(S_{n}\right)\right|$, the number of conjugacy classes. But we have seen that the latter is equal to the number $p(n)$ of partitions of n. So, the representations π_{λ} exhaust $\left|\widehat{S_{n}}\right|$.

[^1]More detailed analysis of the proof of the Main Theorem in section 8 shows that the partition λ can be determined by π_{λ} in two ways:
a) λ is the maximal element of the set $\left\{\mu\left||\mu|=n \quad \& \quad i\left(\pi_{\mu}^{+}, \pi_{\lambda}\right) \neq 0\right\}\right.$;
b) λ^{\prime} is the minimal element of the set $\left\{\mu\left||\mu|=n \quad \& \quad i\left(\pi_{\mu}^{-}, \pi_{\lambda}\right) \neq 0\right\}\right.$.

The case $n=4$ is illustrated below.
Table of intertwining numbers

$\lambda \backslash \mu$	π_{4}^{+}	π_{31}^{+}	π_{22}^{+}	$\pi_{21^{2}}^{+}$	π_{14}^{+}	π_{4}^{-}	π_{31}^{-}	π_{22}^{-}	$\pi_{21^{2}}^{-}$	π_{14}^{-}
π_{4}	1	1	1	1	1	1	0	0	0	0
π_{31}	3	2	1	1	0	3	1	0	0	0
π_{22}	2	1	1	0	0	2	1	1	0	0
$\pi_{21^{2}}$	3	1	0	0	0	3	2	1	1	0
$\pi_{1^{4}}$	1	0	0	0	0	1	1	1	1	1

Note that π_{λ}^{+}, being geometric representations, have integer-valued characters. The characters of representations π_{λ}^{-}are obtained by multiplication by sgn, hence, also take integer values. On the other hand, representations π_{λ}^{+}and π_{λ} are related by unitriangular matrix of intertwining numbers whose inverse is also unitriangular. We obtain

Theorem 5. All representations of S_{n} have integer-valued characters.
Moreover, any representation in an appropriate basis can be written by matrices with integer entries.

11. Representation of S_{n} in the space $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Another source of interesting representations of S_{n} is the polynomial algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. It is infinite dimensional space but admits a \mathbb{Z}_{+}-grading with finite dimensional homogeneous components.

Exercise 11. Show that $\operatorname{dim} \mathbb{C}^{k}\left[x_{1}, \ldots, x_{n}\right]=\binom{n+k-1}{k}=(-1)^{k}\binom{-1}{k}$.
The analysis of intertwining numbers $i\left(V_{\lambda}, \mathbb{C}^{k}\left[x_{1}, \ldots, x_{n}\right]\right)$ and their generating functions

$$
P_{\lambda}(t):=\sum_{k \geq 0} i\left(V_{\lambda}, \mathbb{C}^{k}\left[x_{1}, \ldots, x_{n}\right]\right) t^{k}
$$

is a very deep and beautiful problem. For initial values $n=1,2,3$ we get

$$
\begin{gather*}
P_{1}(t)=\frac{1}{1-t} ; \tag{29}\\
P_{2}(t)=\frac{1}{(1-t)\left(1-t^{2}\right)}, \quad P_{1,1}(t)=\frac{t}{(1-t)\left(1-t^{2}\right)} ; \\
P_{3}=\frac{1}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)}, \quad P_{2,1}(t)=\frac{t}{(1-t)^{2}\left(1-t^{3}\right)}, \quad P_{1,1,1}(t)=\frac{t^{3}}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)} .
\end{gather*}
$$

To formulate the general fact, we introduce some notation. Consider a box \square in a Young diagram D_{λ} of shape λ. We numerate the boxes by pairs of non-negative integers $(i(\square), j(\square))$ where $i(\square)$ denotes the number of the row, and $j(\square)$ denotes the number of the column which contain our box. For some reason, explained below, we start the numeration with zero.

The collection of boxes situated to the right or below of \square, including the box itself, we call a hook of \square and the number of boxes in it is denoted by $h(\square)$. We have $h(\square)=\lambda_{i}-i(\square)+\lambda_{j}^{\prime}-j(\square)-1$.

Theorem 6. In terms of notations introduced above, we have

$$
\begin{equation*}
P_{\lambda}(t)=\prod_{\square \in D} \frac{t^{i(\square)}}{1-t^{h(\square)}} . \tag{30}
\end{equation*}
$$

A small disadvantage of this beautiful formula is the absence of symmetry between $i(\square)$ and $j(\square)$. It turns out that the symmetry can be achieved if we consider more general problem in the next section.

Here we want to introduce one more notion. Let G be a subgroup of $O(n, \mathbb{R})$. Denote by P the algebra of all polynomial functions on \mathbb{R}^{n} with real coefficients and by I the subalgebra of G-invariant polynomials. Denote by ∂_{i} the operator of partial derivation $\partial / \partial x_{i}$. The formula

$$
\begin{equation*}
\left(p_{1}, p_{2}\right):=\left.p_{1}\left(\partial_{1}, \partial_{2}, \ldots, \partial_{n}\right) p_{2}\right|_{x_{1}=x_{2}=\cdots=x_{n}=0} \tag{31}
\end{equation*}
$$

defines on P a structure of a Euclidean space.
The set of monomials $\left\{x^{k}:=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}\right\}$ forms an orthogonal basis in P with relations $\left(x^{k}, x^{l}\right)=\delta_{k, l} k!$ where $k!:=\left(k_{1}\right)!\left(k_{2}\right)!\cdots\left(k_{n}\right)!$.

Let I_{+}denote the ideal in I consisting of polynomials vanishing at the origin and let J denote the ideal in P generated by I_{+}. We denote by H the set of harmonic polynomials h satisfying

$$
\begin{equation*}
p(\partial) h=0 \quad \text { for all } \quad p \in I_{+} . \tag{32}
\end{equation*}
$$

Lemma 6. The orthogonal complement to J in P coincide with H.
Theorem 7. We have $P=I \cdot H$, i.e. every polynomial $p \in P$ can be written in the form

$$
\begin{equation*}
p=\sum_{k=1}^{N} p_{k} \cdot h_{k} \quad \text { where } \quad p_{k} \in I, h_{k} \in H \tag{33}
\end{equation*}
$$

Proof. Apply the induction on the degree d of p. For $d=0$ we have $p=$ const \in I. Assume that the theorem is true for all $d<d_{0}$ and consider a polynomial p of degree d_{0}. From the Lemma 6 we conclude that $p=q+h$ where $q \in J$ and $h \in H$. Hence, $q=\sum_{k} p_{k} \cdot q_{k}$ where $p_{k} \in I, q_{k} \in P$. Since degrees of q_{k} are less than degree of p, we can write $q_{i}=\sum_{j} p_{i, j} \cdot h_{i, j}$ with $p_{i, j} \in I$ and $h_{i, j} \in H$. Then $p=h+\sum_{i, j} p_{k} \cdot p_{i, j} \cdot h_{i, j}$ and we are done.

For the symmetric group S_{n} which is embedded in $O(n, \mathbb{R})$ as the group of permutation matrices, the stronger result holds:

Chevalley Theorem. The presentation (33) is unique. Hence, $P=I \otimes H$.

12. Supersymmeric generalization.

Besides the polynomial algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ we can consider its odd analogue, the Grassmann algebra $\wedge\left[\xi_{1}, \ldots, \xi_{n}\right]$ with generators satisfying the anticommutation relations:

$$
\begin{equation*}
\xi_{k} \xi_{j}+\xi_{j} \xi_{k}=0 \quad \text { for all } \quad j, k \tag{34}
\end{equation*}
$$

It is a finite-dimensional graded algebra and $\operatorname{dim} \wedge^{k}\left[\xi_{1}, \ldots, \xi_{n}\right]=\binom{n}{k}$.
Together with the polynomial algebra they generate so-called Weil algebra

$$
\begin{equation*}
E_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \otimes \wedge\left[\xi_{1}, \ldots, \xi_{n}\right] . \tag{35}
\end{equation*}
$$

The symmetric group S_{n} acts on $\wedge\left[\xi_{1}, \ldots, \xi_{n}\right]$ by permutation of generators and on E by simultaneous permutations of x_{k} and ξ_{k}. Sometimes, one identifies the variables ξ_{k} with differentials $d x_{k}$ and obtains an isomorphism of E with an algebra of differential forms on \mathbb{R}^{n} with polynomial coefficients.

The intertwining numbers $i\left(\pi_{\lambda}, \wedge\left[\xi_{1}, \ldots, \xi_{n}\right]\right)$ and $i\left(\pi_{\lambda}, E\right.$ are rather interesting. Below we shall describe explicitly their generating functions.

It turns out that for the algebra $\wedge\left[\xi_{1}, \ldots, \xi_{n}\right]$ the analog of Chevalley theorem holds: the whole algebra is isomorphic to the tensor product of the subalgebra of invariants and the subspace of harmonic elements.

Moreover, the algebra of invariants has dimension 2 and spanned by a constant 1 and the element $\Xi:=\sum_{k} \xi_{k}$. The harmonic elements are those which satisfy $\sum_{k} \partial_{k} p=0$ where ∂_{k} is the derivative with respect to the odd variable ξ_{k} defined by the formula

$$
\partial_{k}\left(\xi_{k_{1}} \xi_{k_{2}} \cdots \xi_{k_{m}}\right)=\left\{\begin{array}{l}
(-1)^{l-1} \xi_{k_{1}} \cdots \widehat{\xi_{k}} \cdots \xi_{k_{m}} \quad \text { if } \quad k_{l}=k \\
0 \quad \text { if no } k_{l}=k .
\end{array}\right.
$$

Exercise 12. Show that
a) $\wedge^{k}\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle=\Xi \cdot \wedge^{k-1}\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle \oplus H^{k}$
b) The representation of S_{n} in H^{k} is irreducible and corresponds to a hook diagram $(n-k, k)$.

From this exercise and formula (30) one derive the explicit formula for the multiplicities of π_{λ} in the bi-homogeneous components of the Weil algebra. Namely, let $m_{k, l}$ be the multiplicity of π_{λ} in $\mathbb{R}\left[x_{1}, \ldots, x_{n} \otimes \wedge^{l}\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle\right.$. Then

$$
\begin{equation*}
P_{\lambda}(t, s):=\sum_{k, l} m_{k, l} \cdot t^{k} s^{l}=\prod_{\square \in D_{\lambda}} \frac{t^{i(\square)}+s t^{j(\square)}}{1-t^{h(\square)}} . \tag{36}
\end{equation*}
$$

This formula for $s=0$ coincides with (30). Substitution $t=0$ is a bit more delicate and we leave to a reader to obtain from (36) the odd analog of (30).

13. Partition types in $T_{n}\left(\mathbb{F}_{q}\right)$.

Consider the distribution Let $T_{n}\left(\mathbb{F}_{q}\right)$ be the set of strictly upper triangular matrices over a finite field \mathbb{F}_{q}. Consider the distribution of these matrices according to their partition types ($=$ Jordan normal forms). We say, that a matrix X has a partition type $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0\right)$ if it is conjugate in $G L\left(N, \mathbb{F}_{q}\right)$ to a direct sum $J_{\lambda_{1}} \oplus J_{\lambda_{1}} \oplus \cdots \oplus J_{\lambda_{r}}$ where J_{k} is a Jordan block of size k with the eigenvalue 0. Actually, it is more convenient to pass to the dual partition λ^{\prime} and write it in the form $1^{\alpha_{1}} 2^{\alpha_{2}} \cdots n^{\alpha_{n}}$ where $\alpha_{k}=\lambda_{k}^{\prime}-\lambda_{k+1}^{\prime}$.

Denote by $Q_{\alpha}(q)$ the number of matrices $X \in T_{n}\left(\mathbb{F}_{q}\right), n=\sum_{k=1}^{n} \alpha_{k}$, which have the dual partition type $1^{\alpha_{1}} 2^{\alpha_{2}} \cdots n^{\alpha_{n}}$. Writing the index $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ we omit all zeros in the end.

The initial polynomials look like

$$
\begin{gather*}
Q_{1}(q)=1 ; \tag{37}\\
Q_{2}(q)=1, \quad Q_{0,1}(q)=q-1 ; \\
Q_{3}(q)=1, \quad Q_{1,1}(q)=(q-1)(2 q+1), \quad Q_{0,0,1}(q)=q(q-1)^{2} ; \\
Q_{4}=1, \quad Q_{2,1}=(q-1)\left(3 q^{2}+2 q+1\right), \quad Q_{0,2}=q(q-1)^{2}(2 q+1) \\
Q_{1,0,1}(q)=q^{2}(q-1)^{2}(3 q+1), \quad Q_{0,0,0,1}=q^{3}(q-1)^{3} .
\end{gather*}
$$

It suggest that polynomials Q_{α} satisfy a recurrence relations of the form

$$
\begin{equation*}
Q_{\alpha}=\sum_{k} m(k, \alpha ; q) \cdot Q_{\alpha-\delta_{k}} \tag{38}
\end{equation*}
$$

where $\alpha-\delta_{k}=\left(\alpha_{1}, \ldots, \alpha_{k-1}+1, \alpha_{k}-1, \alpha_{k+1}, \ldots, \alpha_{n}\right)$ and k runs through the values for which $\alpha_{k}>0$.

The precise value of of coefficients in (38) was found recently by Aaron Smith

$$
m(k, \alpha ; q)=\left\{\begin{array}{l}
q^{n-1-\sum_{i \geq k} \alpha_{i}}-q^{n-1-\sum_{i \geq k-1} \alpha_{i}} \text { for } k>1 \tag{39}\\
q^{n-1-\sum_{i \geq 1} \alpha_{i}} \text { for } k=1 .
\end{array}\right.
$$

These relation open the way to explicit computation of all Q_{α} but now only partial results are know. E.g., for so-called hook diagrams when $\lambda=(m+1, \underbrace{1,1, \ldots, 1}_{k \text { times }})$ and $\lambda^{\prime}=(k+1, \underbrace{1,1, \ldots, 1}_{m \text { times }})$ with $\alpha_{1}=m, \alpha_{2}=\cdots=\alpha_{k}=0, \alpha_{k+1}=1$, we have

$$
\begin{equation*}
Q_{m, 0,0, \ldots, 0,1}=(q-1)^{k} q^{\frac{(k-1)(2 m+k)}{2}} \sum_{j=0}^{m}\binom{k+j}{j} q^{j} . \tag{40}
\end{equation*}
$$

Theorem 8. The polynomial Q_{α} has degree $\sum_{i<j} \lambda_{i}^{\prime} \lambda_{j}^{\prime}$ and the form

$$
Q_{\alpha}(q)=(q-1)^{n-\lambda_{1}^{\prime}} q^{a}(\alpha) Q_{\alpha}^{\prime}(q)
$$

where $Q^{\prime}(q)$ is some polynomial of degree $b(\alpha)$ such that $Q_{\alpha}^{\prime}(0) \neq 0$ and $Q_{\alpha}^{\prime}(1) \neq 0$.
14..

Department of Mathematics, The University of Pennsylvania, Philadelphia, PA 19104-6395 E-mail address: kirillov@math.upenn.edu

[^0]: ${ }^{1}$ The name Ferrer diagram is historically more correct but Young diagram is more popular.

[^1]: ${ }^{2}$ This abbreviation means "unitary irreducible representation".

