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A self-dual algebra is an associative or Lie algebra A together with an
A bimodule isomorphism A → A∨op, where A∨ = Homk(A, k), the dual
bimodule to A (considered as an A bimodule), and A∨op is the the same
underlying k module as A∨ but is an A bimodule whose left operation
by an element a ∈ A is the same as the right operation by a on A∨, and
similarly with left and right interchanged. This induces an isomorphism
H∗(A,A) ∼= H∗(A,A∨ op); algebras with such an isomorphism are quasi
self-dual. For these algebras H∗(A,A) is a contravariant functor of A.
They form a full subcategory of the category of the category of associative
or Lie algebras, respectively. Finite dimensional associative self-dual alge-
bras over a field are identical with symmetric Frobenius algebras (which
are closely connected to 1+1 dimensional topological quantum field the-
ory). Finite poset algebras are quasi self-dual.

For an important class of algebras A the cohomology H∗(A,A) of A with
coefficients in itself is, remarkably, a contravariant functor of A. Many of these
algebras are related to geometric objects.

It is a familiar fact that for most categories of geometric objects cohomology
is a contravariant functor. The cohomology of algebras behaves somewhat per-
versely. If A is an associative algebra over a (commutative, associative, unital)
ring k and M an A-bimodule then the Hochschild cohomology H∗(A,M) is a
contravariant functor of A but a covariant functor of M , and similarly with
the Eilenberg-Chevalley cohomology of Lie algebras (but note that the first in-
stance of Lie cohomology with coefficients in a non-trivial module seems to be
due, again, to Hochschild). One of the most important A-bimodules is A itself,
for H∗(A,A) has a rich structure and governs in particular the deformations of
A, but in general H∗(A,A) is neither a covariant nor contravariant functor of A.
For an important class of algebras, however, H∗(A,A) is indeed a contravariant
functor of A. These are the quasi self-dual ones, those for which there is an iso-
morphism H∗(A,A) ∼= H∗(A,A∨ op). We consider here only algebras A which
are finite free modules over k, and likewise for A bimodules, but some of the
most interesting cases are likely to be infinite dimensional, requiring topological
considerations.

For categories of algebras where it is meaningful to consider the cohomology
H∗(A, k) of A with coefficients in k as a trivial module this cohomology, which
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frequently has a geometric interpretation, is generally contravariant. For exam-
ple, let G be a finite group and denote the group ring of a group G by kG; this
operates on k by setting g c = c = c g = c for every g ∈ G, c ∈ k. If S is any
contractible space on which G operates freely then the Hochschild cohomology
H∗(kG, k) is naturally isomorphic with the cohomology of the quotient space
S/G with coefficients in k, and the latter is contravariant. However, H∗(kG, kG)
does not have such a simple geometric interpretation, and while H∗(kG, kG) and
H∗(kG, k) are both in a natural way rings, there does not seem to be any simple
way to deduce the structure of the former from the latter. Nevertheless finite
group rings are self-dual ; these are the algebras A equipped with an isomor-
phism A → A∨op. (The isomorphism need not be unique but in some cases
there is a natural choice.) This raises the question of whether there is still an
underlying geometric explanation, and more generally, if there is an underlying
geometric interpretation for any quasi self-dual algebra. Another basic question
not considered here is, When does a morphism B → A of quasi self-dual alge-
bras induce a morphism H∗(A,A) → H∗(B,B) not merely of k modules but
one which preserves additional structures which H∗(A,A) may possess such as,
in the associative case, the Gerstenhaber algebra structure.

The following problem motivated this paper. To every finite poset (par-
tially ordered set) P, which we may view as a small category, one can associate
a k-algebra A such that H∗(A,A) is canonically isomorphic to the simplicial
cohomology of the nerve of P with coefficients in k; the proof will be revis-
ited below. If we start with a simplicial complex Σ then its faces, ordered
by setting σ � τ whenever σ is a face of τ , form a poset whose nerve is the
barycentric subdivision of Σ and which therefore has the same simplicial coho-
mology. (Amongst the faces of a simplex here one includes the simplex itself.)
To every finite simplicial complex Σ one can therefore associate a k-algebra
A = A(Σ) such that H∗(A,A) ∼= H∗(Σ, k), where the left side is Hochschild
cohomology and the right simplicial. (Simplicial cohomology is in fact a spe-
cial case of Hochschild cohomology independent of any finiteness assumption,
cf. [7].) Using the isomorphism with simplicial cohomology one sees that if
A and B are poset algebras then a poset morphism B → A in fact induces a
morphism H∗(A,A)→ H∗(B,B) just because it induces a simplicial morphism
of the associated simplicial complexes. The problem was to exhibit a purely
algebraic reason for this functoriality. We show (by a simple extension of the
proof of the preceding result) that poset algebras are in fact quasi self-dual. As
a consequence it is not necessary to restrict to algebra morphisms induced by
morphisms of the underlying posets. There are other morphisms between poset
algebras but they are probably very restricted in nature.

1 Opposite algebras and modules.

The opposite of an associative k algebra A, denoted Aop, is the same underlying
k-module but with reversed multiplication: a ◦ b ∈ Aop is defined to be the ele-
ment ba ∈ A. (We will generally use “◦” to denote an opposite multiplication.)
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Left modules over A are right modules over Aop and an A-bimodule may be
viewed as a left module over the universal enveloping algebra Ae = A ⊗ Aop.
An algebra morphism of the form φ : B → Aop is sometimes called an antimor-
phism; it is a k-module mapping such that φ(ab) = φb · φa (and is the same
thing as a morphism from Bop to A). If φ : B → A is an antimorphism and
M an A-bimodule then the underlying k-module of M becomes a Bop-bimodule
by setting b ◦ m ◦ b′ = φb′ · m · φb. The universal enveloping algebra Ae has
an antiautomorphism interchanging the tensor factors. If G is a group, then its
group algebra kG has an antiautomorphism σ sending g ∈ G to g−1, extended
linearly. The infinitesimal version of this is that every Lie algebra g has an
antiautomorphism sending a ∈ g to −a.

The opposite of an A-bimodule M is the Aop bimoduleMop which is the same
underlying k module but where we set a◦m◦b ∈Mop equal to bma ∈M . Note
that Mop is an Aop bimodule. Although a commutative algebra A is identical
with its opposite, a bimodule M over A is generally distinct from its opposite
since the left and right operations of A may be distinct, as in e.g. Ae considered
as an A-bimodule. If they are identical then M is called symmetric. Left
modules over a commutative algebra may be viewed as symmetric bimodules.

Theorem 1 Let M be an A bimodule and F ∈ Cn(A,M) be a Hochschild n-
cochain. Define F op ∈ Cn(Aop,Mop) by F op(a1, . . . , an) = F (an, . . . , a1). The

map C∗(A,M)→ C∗(Aop,Mop) defined by F 7→ (−1)b
n+1
2 cF op is a cochain iso-

morphism inducing an isomorphism of cohomology H∗(A,M) ∼= H∗(Aop,Mop).

Proof. One has

δ(F op)(a1, . . . , an+1) =

a1◦F op(a2, . . . , an+1)−F op(a1◦a2, . . . , an+1)+· · ·+(−1)n+1F op(a1, . . . , an)◦an+1

= F (an+1, . . . , a2)a1−F (an+1, . . . , a3, a2a1) + · · ·+ (−1)n+1an+1F (an, . . . , a1)

= (−1)n+1(δF )op(a1, . . . , an+1).

The introduction of the sign (−1)b
n+1
2 c just corrects for the sign (−1)n+1 in the

foregoing. �

Similarly, if φ : B → A is an antimorphism and if M is an A bimodule then
the k-module morphism φ∗ : C∗(A,M) → C∗(Bop,M) sending F ∈ Cn(A,M)
to φnF ∈ Cn(Bop,M) defined by

(φnF )(b1, . . . , bn) = (−1)b
n+1
2 cφ(F (φbn, . . . , φb1)

is a cochain morphism. Likewise, if M,N are A bimodules and T : M → Nop

is an antimorphism then the k-module morphism T ∗ : C∗(A,M)→ C∗(Aop, N)
sending F ∈ Cn(A,M) to TnF ∈ Cn(Aop, N) defined by

(TnF )(a1, . . . , an) = T (F (an, . . . a1))
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is a cochain morphism. Therefore, with the preceding notation an antimorphism
φ : B → A induces a morphism of cohomology H∗(A,M) → H∗(Bop,M) ∼=
H∗(B,Mop) and an antimorphism T : M → Nop induces a morphism H∗(A,M)
→ H∗(Aop, Nop)∼= H∗(A,N).

The next section introduces the dual, M∨ of an A module M , which is an
Aop module in a natural way, and the foregoing will imply that H∗(Aop,M∨) ∼=
H∗(A,M∨ op). However, even when A is commutative and M a symmetric
bimodule, H∗(A,M) is generally not isomorphic to H∗(A,M∨), as an example
in the next section will show.

The dual of a Lie algebra g is similarly defined by g∨ = Hom(g, k) but in
this case we may simply view g∨ as a g module: if c ∈ g and f ∈ g∨ then [c, f ] is
defined by setting [c, f ](a) = −f([c, a]) for all a ∈ g. (If V,W are modules over
a Lie algebra g then Homk(V,W ) becomes a g module as follows: if φ : V →W
and c ∈ g then [c, φ] is defined by setting [c, φ](a) = [c, φa]−φ([c, a]) for all a ∈ g.
The preceding is the special case where V = g,W = k; note that the coefficient
ring k is a Lie module over any Lie algebra g but the operation is trivial, so
the first term on the right, which would be [c, f(a)], vanishes.) Theorem 1 is
not really necessary in the Lie case where cocycles are alternating. Sending a
cocycle to its opposite leaves it unchanged if the dimension is even and just
reverses the sign if it is odd.

2 Self-dual and Frobenius algebras

Suppose that A is an associative k-algebra and let M be an A-bimodule which
(like A) will always be assumed to be free and of finite rank as a k module.
Its dual, M∨ = Homk(M,k) is then again a free k module and of the same
rank as M but should be viewed as an Aop-bimodule since the action of A is
reversed: If f ∈M∨ and a, b, x ∈ A then (a · f · b)(x) = f(bxa). Thus M∨ op is
again an A bimodule. Note that an A bimodule morphism M → N induces an
Aop module morphism N∨ → M∨. A self-dual A bimodule M is one with an
A bimodule isomorphism ρ : M → M∨op or equivalently an antiisomorphism
ρop : M → M∨. The latter then gives rise to a non-degenerate bilinear form
< −,− >: M ×M → k by setting < m,m′ >= (ρm)(m′). However, while
the existence of a non-degenerate form < −,− >: M ×M → k gives rise to
a k module monomorphism ρ : M → M∨ by sending m to < m,− >, it is a
bimodule morphism if and only if < abm,m′ >=< m, bm′a > for all a, b ∈ A.
In general this induced ρ need not be an epimorphism unless k is a field and
M is finite-dimensional. For simplicity we will always tacitly assume that M is
free and of finite rank over the coefficient ring k. A sufficient condition that ρ
be onto is then that we have a basis {m1, . . . ,mk} such that det < mi,mj > is
invertible in k, or equivalently, that we have a pair of dual bases {m1, . . . ,mk}
and {m′1, . . . ,m′k} for M , i.e., with < mi,m

′
j >= δij . (The problem when k is

not a field can be illustrated by taking k = Z = M . With the bilinear form
< m,n >= mn the module is actually self dual; {1} is a basis and is self dual.
However, with the form < m,n >= 2mn there no longer exist dual bases – one
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would like to take 1∨ = 1/2 but that is not in Z.)
Viewing A as a bimodule over itself, we may in particular consider A∨ op and

call A quasi self-dual if there is a canonical isomorphism of graded cohomology
modules H∗(A,A) ∼= H∗(A,A∨op). If we have a morphism B → A of such
algebras then the sequence

H∗(A,A) ∼= H∗(A,A∨ op)→ H∗(B,A∨ op) ∼= H∗(Bop, A∨)

→ H∗(Bop, B∨) ∼= H∗(B,B∨op) ∼= H∗(B,B)

exhibitsH∗(A,A) as a contravariant functor ofA. This principle is not restricted
to associative algebras but clearly holds equally well, e.g., for Lie algebras. The
direct sum of quasi self-dual algebras is again such. Since we are considering
only algebras of finite rank (partly to avoid topological problems) we have (A1⊗
A2)∨ = A∨1 ⊗ A∨2 . This, together with the fact that in general if M1,M2 are
A1, A2 bimodules, respectively, then H∗(A1 ⊗ A2,M1 ⊗M2) = H∗(A1,M1) ⊗
H∗(A2,M2) shows that the category of quasi self-dual algebras is closed under
tensor products. It is clearly also closed under direct sums but is not closed
under taking quotients, as will be seen.

Suppose now that we have a k module morphism φ : A→ A∨ which for the
moment need be neither a monomorphism nor epimorphism. Then we can define
a bilinear form < −,− >: A × A → A by < a, b >= (φa)(b), and conversely.
The condition that φ be an antimorphism from A viewed as an A bimodule to
Aop viewed as an Aop bimodule then is equivalent to having both

< ac, b >=< a, cb > and < ca, b >=< a, bc > . (1)

If the algebra is unital (which we generally assume) then the form must be
symmetric for we have

< c, b >=< 1 · c, b >=< 1, cb >=< b · 1, c >=< bc, 1 >=< b, c > .

The conditions (1) are equivalent if the form is symmetric, and that in turn
will be the case whenever the algebra is commutative, but a non-commutative
algebra may still have a symmetric form, e.g. the finite group rings below. If
a bilinear form for which the associated k linear mapping A → A∨ is an iso-
morphism satisfies the conditions (1) then that form will be called dualizing
and an algebra with a dualizing form will be called self-dual since these are
precisely the ones with an A bimodule isomorphism A → A∨op; they are in
particular quasi self-dual. When A is graded then by “commutative” we will
always mean commutative in the graded sense (sometimes called “supercommu-
tative”). In that case, if deg a = r, deg b = s then a ‘symmetric’ form must have
< a, b >= (−1)rs < b, a >.

The classical definition of a Frobenius algebra A (cf. Nakayam, [10]) is one
which is a finite dimensional associative algebra over a field k together with a
linear functional f : A→ k satisfying any of the following conditions which are
equivalent in the presence of finite dimensionality: (i) the kernel of f contains no
left ideal, (ii) the kernel of f contains no right ideal, (iii) the bilinear “Frobenius
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form” < −,− >: A×A→ k defined by < a, b >= f(ab) is non-degenerate. The
form < −,− > then has the property that < a, bc >=< ab, c >, and conversely,
the existence of a non-degenerate bilinear form with this property implies that
A is Frobenius by setting f(a) =< a, 1 >. A symmetric Frobenius algebra is
one for which the form is symmetric.

Theorem 2 A finite dimensional associative algebra over a field is self-dual
if and only if it is a symmetric Frobenius algebras. In particular commutative
Frobenius algebra, are self-dual.

Proof. With the above notation we now have both < a, cb >=< ac, b >
(automatic from the definition) and < a, bc >=< bc, a >=< b, ca >=< ca, b >,
using the symmetry, so the Frobenius form is dualizing. 2

A sufficient condition for symmetry of a Frobenius algebra A is that it possess
an involution σ (i.e., antiautomorphism whose square is the identity) preserving
the Frobenius form i.e., with < σa, σb >=< a, b > (or equivalently, if the form
is defined by the functional f : A→ k, with f(σa) = f(a)). For then we have

< a, bc >=< σa, σ(bc) >=< σa, σc · σb >
=< σa · σc, σb >=< σ(ca), σb >=< ca, b > .

There are important examples of symmetric Frobenius algebras. The group
algebra kG of a finite group G is Frobenius: define < a, b > to be the coefficient
of the identity 1 = 1G in the product ab. This, however, is the same as the
coefficient of 1 in ba, so kG is symmetric. In fact, here we do not have to
assume that k is field, for if we take as a basis for kG the elements of G then the
dual basis consists of their inverses. Thus the group ring kG of a finite group G
over any (commutative, associate, unital) ring k is self-dual. The map sending g
to g−1, extended linearly, is an involution preserving the form. Another example
is the de Rham cohomology ring of a compact manifold M where, if a, b are
cocycles then one sets

< a, b >=

∫
M
a ∧ b .

We should like to be able to do the same for cohomology with integer coefficients,
defining < a, b > to be the evaluation of a ^ b on the fundamental cycle, but
in addition to the general problem when the coefficient ring is not a field there
may now be torsion. In some favorable cases, however, this is still possible

Commutative Frobenius algebras have recently been shown to play an im-
portant role in the algebraic treatment and axiomatic foundation of topological
quantum field theory since such an algebra determines uniquely (up to isomor-
phism) a (1+1)-dimensional TQFT. More precisely, the category of commutative
Frobenius k algebras is equivalent to the category of symmetric strong monoidal
functors from the category of 2-dimensional cobordisms between 1-dimensional
manifolds to the category of vector spaces over k.

Closely related to the group algebras of finite commutative groups are the
algebras of the form k[t]/tn+1 and their tensor products. For let Cq denote the
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(multiplicative) cyclic group of order q, let a be a generator, p be a prime, and
set q = pr. If k has characteristic p, then kCq ∼= k[t]/tq, the isomorphism being
given by 1− a 7→ t. (Since for finite groups G1 and G2 we have k(G1 ×G2) =
kG1 ⊗ kG2, when dealing with commutative groups one need only consider the
cyclic case.)

Algebras of the form k[t]/tn+1 are Frobenius. For letting u0, . . . , un be the
dual basis to 1, t, . . . , tn we have t · ui = ui−1, i = 1, . . . , n; t · u0 = 0, so we
can set < ti, tj >= 1 if i + j = n, and set it equal to 0 otherwise. It follows,
e.g., that k[x]/xr ⊗ k[x]/xs is Frobenius for all r and s, hence self-dual. Taking
r = s = 2 it follows that k[x, y]/(x2, y2) is Frobenius. This is free of rank 4 over
k, therefore of dimension 4 when k is a field. However, its 3-dimensional quotient
A = k[x, y]/(x2, y2, xy) is not self-dual, for one can check that H1(A,A) has
dimension 4 but H1(A,A∨) has dimension 3. (Note here that A = Aop and that
A∨ is symmetric.) It follows that H∗(A,A∨op) is not isomorphic to H∗(A,A) so
A is not quasi self-dual, and in particular not Frobenius. This example shows
that a quotient of a quasi self-dual algebra need not be quasi self-dual.

That k[t]/tn+1 is Frobenius may be viewed as one of the “favorable cases ”
mentioned above: The cohomology of complex projective n-space CPn is iso-
morphic to k[t]/tn+1 where t is the cohomology class of dimension 2 defined by
any hyperplane. (Since the dimension is even the algebra is actually commuta-
tive in the ordinary sense.) In this case the form mentioned above, evaluation
of the cup product on the fundamental cycle, is indeed dualizing.

If G is a group whose order is invertible in k then Hn(kG,M) = 0 for all n >
0 and all kG modules M (a form of Maschke’s theorem, cf. the next section) but
for k = Z these cohomology groups are generally not trivial although they are all
necessarily torsion modules. (Computing the cohomology groups Hn(ZCn,Z)
is greatly simplified by the fact that that Z, viewed as a trivial ZCn module,
has a particularly simple projective resolution which is periodic of order 2 and
in which every projective module is just ZCn itself. This property is shared by
all k[t]/n+1. We have for all k

. . . k[t]/tn+1 ∂i−−−−→ k[t]/n+1 ∂i−1−−−−→ . . .
∂1−−−−→ k[t]/n+1 ε−−−−→ k

where ε is reduction mod t and ∂i is multiplication by t for i odd and multipli-
cation by tn for i even.)

The graded Lie structure on A = kG or A = k[t]/n+1 H∗(A,A) is generally
not trivial as one can see already by considering the commutator of derivations.
In the case of k[t]/tn+1, for example, if D1t = tr and D2t = ts then D1D2 =
str+s−1, so [D1, D2]t = (s − r)tr+s−1, which is generally not 0. (We must
assume that 1 ≤ r, s ≤ n except, e.g. in characteristic p where for example
in A = k[t]/tp

r

one can allow Dt = 1.) Both H∗(kG, kG) and H∗(kG, k) are
rings with multiplications induced by those in the respective coefficient modules
kG and k, and the module morphism kG → k is in fact a ring morphism; it
induces a ring morphism H∗(kG, kG)→ H∗(kG, k), but the graded Lie part of
the Gerstenhaber algebra structure on H∗(kG, kG) is lost.
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3 The Lie case

The basic result for Lie algebras is the following

Theorem 3 Lett g be a Lie algebra with a bilinear form < −,− > for which
the associated mapping φ : a→ a∨ is a k linear isomorphism. Then the form is
dualizing if and only if it is invariant, i.e., that < [c, a], b > + < a, [c, b] >= 0
for all a, b, c ∈ g.

Proof. Suppose that φ : g→ g∨ is a k module isomorphism giving rise to the
form < a, b >= (φa)(b). To be a module morphism we must have (φ([c, a])(b) =
[c, φa](b) for all a, b, c. The left side is < [c, a], b >; the right (recalling that φa
is a k module map from g to the trivial k module) is − < a, [c, b] >. �

In the Lie case a dualizing form need not be symmetric, as we shall see by
example. However, we have

Lemma 1 If a Lie algebra g of characteristic 6= 2 has a skew dualizing form
then g is Abelian

Proof. Suppose that< −,− > is a skew dualizing form on g. Then< [c, b], a > =
− < b, [c, a] >=< [c, a], b >, but the left term equals < c, [b, a] > and the right
equals < c, [a, b] >. Assuming that the characteristic is not 2 this implies that
< c, [a, b] >= 0 for all a, b, c ; since the form is non-degenerate one has [a, b] = 0
for all a and b, so the Lie algebra is Abelian. �

The close relationship between associative self-dual and Frobenius algebras
no longer holds in the Lie case. A Frobenius Lie algebra g is one which is
finite dimensional over a field and has a functional f : L → k such that the
skew bilinear Kirillov form < a, b >= f([a, b]) is non-degenerate. The Kirillov
form is by definition a coboundary in the Chevalley-Eilenberg theory; a quasi-
Frobenius Lie algebra is one with a skew non-degenerate ‘Kirillov’ form which
is just a 2-cocycle. By the foregoing the Kirillov form can not be dualizing.
Conceivably a Frobenius or quasi-Frobenius Lie algebra could still be self-dual,
but relative to some form other than the Kirillov form.

The Killing form of a finite dimensional semisimple real or complex Lie
algebra is non-degenerate and invariant so these algebras are self-dual. However,
the cohomology of any such algebra with coefficients in any finite dimensional
module other than the trivial module vanishes. For an example where this is
not the case, let V be a real vector space with an inner product < −,− >V , G
be its orthogonal group and g be the Lie algebra of G. Then V is a g module
and < −,− >V is invariant. Now consider the semi-direct product g n V (a
split extension of g by V ); its Lie multiplication is given by [(a, v), (b, w)] =
([a, b], [a,w] − [b, v]). The cohomology of such a Lie algebra with coefficients
in itself is generally not zero cf. e.g. [11]. Denoting the Killing form on g
by < −,− >K , the symmetric form on g n V defined by < (a, v), (b, w) >=
< a, b >K+ < v,w >V is non-degenerate and invariant, hence dualizing. For an
example of a case where the dualizing form is neither symmetric nor skew, let
V be of even dimension with a non-degenerate skew form, G be its symplectic
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group, and perform the same construction. It should be noted that a finite
dimensional real or complex Lie algebra with a non-degenerate invariant form
and no one-dimensional ideal is in fact just a semi-direct product of a semisimple
Lie algebra with some module over that algebra having no irreducible component
of dimension one. This is a consequence of [9, Theorem 3, p.71] and the fact
that the cohomology of a semisimple Lie algebra with coefficients in a module
whose decomposition into simple components has no component of dimension 1
vanishes in every positive dimension, and in particular, in dimension 2.

4 Separable algebras and relative Hochschild co-
homology

A unital k-algebra S is is separable (over k) if it is projective in the category of
S bimodules. Viewing both S and S ⊗ Sop as S bimodules, the multiplication
map µ : S ⊗ Sop → S, which is an S bimodule morphism, then has a splitting
ν : S → S⊗Sop, i.e., an S bimodule morphism such that µνµ = µ. Since S⊗Sop

is a free bimodule of rank 1 over S, the existence of such a splitting is equivalent
to separability, since it exhibits S as a direct summand of a free module (for note
that S⊗Sop is a free S bimodule of rank 1 with basis 1⊗1), which is equivalent
to being projective. If we have such a bimodule splitting, for the moment write
ν(1S) =

∑
xi ⊗ yi = esep or simply e. Since sν(1) = ν(s · 1) = ν(1 · s) = ν(1)s

for all s ∈ S, this e has the remarkable property that∑
sxi ⊗ yi =

∑
xi ⊗ yis, all s ∈ S.

Since 1 = µ(e) =
∑

xiyi it follows that e is idempotent; it is called the separa-
bility idempotent of S. Using it we can show that any morphism f : M → N of
left S modules which a priori splits only as a morphism of k modules actually
splits as a morphism of left S modules. For if g : N →M is a k morphism such
that fgf = f then ḡ : N →M defined by ḡ(n) =

∑
i xig(yin) is a left S module

morphism such that fḡf = f . If g is already a left module morphism then ḡ will
be identical with g, so e projects k module splittings onto S module splittings.
The same holds for right modules and also for bimodules by similar arguments.
The last is equivalent to separability for µ always has a k slitting: send s ∈ S to
s ⊗ 1, and this can by hypothesis then be projected onto a bimodule splitting.
The one-sided conditions, however, are not strong enough, since if k is a field
and S an inseparable extension then a left S module is just a vector space, so
the left and right splitting properties both hold. But S ⊗ S, will then contain
a non-trivial radical and the bimodule splitting property will not hold. The
term “separable” derives ultimately from the fact that a finite field extension is
separable in the classical sense precisely when it is so in that above. (The latter
definition is due to M. Auslander and O. Goldman, [1], based on remarkable
previous work by Azumaya, [2].)

Using the definition of cohomology by projective resolutions, it follows im-
mediately from the two-sided splitting condition that if S is separable over k
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then Hn(S,M) = 0 for all n ≥ 1 and all S bimodules M . The latter is, in
fact, another equivalent criterion for separability. By dimension shifting tech-
niques one need in fact only assume that H1(A,M) = 0 for all M and it is this
latter that is equivalent to the two-sided splitting condition. The vanishing of
cohomology is the basic property of separability that we will need.

It is usually easiest to prove separability by exhibiting the separability idem-
potent. The algebra of n× n matrices over k is separable; its separabilty idem-
potent is Σi ei,1⊗e1,i. (The fixed internal index 1 can be replaced by any other;
the separability idempotent is generally not unique.) The group ring kG of a
finite group is separable over k if the order of G is invertible in k; if the or-
der is N then e = 1

N

∑
g∈G g ⊗ g−1. (This, in essence, is Maschke’s theorem.)

Tensor products and finite direct sums of separable algebras are separable. In
particular, k is separable over itself and therefore a finite direct sum of copies
of k is separable, a fact which we will need. A separable k algebra which is pro-
jective as a module over k must be finitely generated; in particular, an algebra
which is separable over a field is finite dimensional. (For a readable discussion
of separability, cf. [3].)

The use of separability can sometime simplify the computation of Hochschild
cohomology. First, call an n-cochain F in Cn(A,M) normalized if it van-
ishes whenever any of its arguments is the unit element of k. These cochains
form a subcomplex of the full Hochschild complex whose inclusion into the full
Hochschild complex induces an isomorphism of cohomology. Suppose now that
S is a k-subalgebra of A, arbitrary except that we will always assume that the
unit element of A is contained in S. An S-relative cochain F ∈ Cn(A,M) is
one such that for all a1, . . . , an ∈ A and s ∈ S we have

F (a1, . . . , ais, ai+1, . . . , an) = F (a1, . . . , ai, sai+1, . . . , an), i = 1, . . . , n− 1,

F (sa1, . . . , an) = sF (a1, . . . , an), and

F (a1, . . . , ans) = F (a1, . . . , an)s.

If, moreover, F is normalized then it must vanish whenever any argument is in
S. The relative cochain groups, denoted Cn(A,S;M), also form a subcomplex
of the Hochschild complex. The result we need is that when S is a separable
algebra over k the inclusion of the complex of S-relative cochains into the full
Hochschild complex induces an isomorphism of cohomology. This may be diffi-
cult to see from the original Hochschild definition of cohomology but is relatively
transparent from the point of view of projective resolutions since separability
actually allows one to take tensor products over S rather than k in the bar
resolution. Finally, the normalized relative cochain groups C

n
(A,S;M) form a

subcomplex of the relative groups and their inclusion into the full Hochschild
cochain complex again induces an isomorphism of cohomology. It is this last
subcomplex of normalized S-relative cochains which will be essential in the next
section.
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5 Poset algebras

Let P = {. . . , i, j, . . . } be a finite poset of order N with no cycles and partial
order denoted by �. Extending the partial order to a total order we may assume
that P = {1, . . . , n} where the partial order � is compatible with the natural
order. Associated to P is the algebra A = A(P) of upper triangular matrices
spanned by the matrix units eij with i � j; these are closed under multiplication.
The subalgebra S spanned by the eii, i = 1, . . . , N has the same unit as A and
is isomorphic to a direct sum of copies of k, hence is separable, so we may
compute the Hochschild cohomology of A with coefficients in any module, and
in particular H∗(A,A) and H∗(A,Aop), using S-relative cochains.

Viewing P as a small category in which Hom(i, j) consists of a single mor-
phism i → j if i � j (the identity morphism when i = j) and is empty oth-
erwise, its nerve Σ = Σ(P) is the simplicial complex whose n-simplices σ are
the n tuples of composable morphisms i0 → i1 → · · · → in, whose module
Cn of n-chains consists of the linear combinations of these, and where ∂0σ just
omits the first morphism, ∂nσ omits the last and ∂rσ, 0 < r < n is obtained
by replacing ir−1 → ir → ir+1 by ir−1 → ir+1. (The 0-simplices or vertices
are just the elements of P and ∂0(i0 → i1) = i1, ∂1(i0 → i1) = i0.) One sets
∂σ = Σni=0(−1)r∂rσ. Denote the simplicial cohomology of Σ = Σ(P) with coef-
ficients in k by H∗(Σ, k). With these notations we can recapitulate the theorem
which is the basis of the more general result in [7].

Theorem 4 There is a canonical isomorphism H∗(A,A) ∼= H∗(Σ, k).

Proof. We can compute the left side using S-relative cochains F ∈ Cn(A,S;A).
A cochain is completely determined when its arguments are amongst the eij . If
F is S-relative then

F (. . . , eij , ekl, . . . ) = F (. . . , eijejj , ekl, . . . ) = F (. . . , eij , ejjekl, . . . ).

This vanishes if j 6= k so the only non-zero values of F are those of the form
F (ei0i1 , ei1i2 , . . . , ein−1in), where i0 � i1 � · · · � in. Also, since F is S-relative
these values must lie in ei0i0Aeinin . The latter is a free module of rank 1
spanned by ei0in so the value is λei0in for some λ ∈ k. Thus F assigns to
every σ = (i0 → i1 → · · · → in) an element λ ∈ k and so may be viewed
as an element of Cn(Σ, k). Conversely, every such simplicial cochain defines a
unique S-relative Hochschild cochain. It is easy to check that the simplicial and
Hochschild coboundaries then correspond. �

Any simplicial complex gives rise to a poset whose objects are its faces with
the relation “face of”. The nerve of this poset is just the barycentric subdivision
of the the original simplicial complex and hence has cohomology isomorphic to
that of the original.

Corollary 1 For every finite simplicial complex Σ and coefficient ring k there
is a poset k-algebra A such that H∗(A,A) ∼= H∗(Σ, k). �
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It is not difficult to see that the isomorphism respects the cup product, so
the fact that the cup product in simplicial cohomology is graded commutative
is actually a consequence of the more general fact that it is so in H∗(A,A) for
every associative algebra A, as first shown in [4].

Let{e∗ij} denote the dual basis to {eij}. For the operation of Aop on the dual
bimodule A∨ a simple computation shows that

e∗ikelj = 0 if i 6= l or j 6� k; e∗ikejk = e∗jk if i � j � k
eije

∗
hl = 0 if j 6= l or h 6� i; eije

∗
hj = e∗hk if h � i � j

Here for the moment we write simply e∗ikelj (and not e∗ik ◦ ejk) since in the
foregoing we have just the natural operation of Aop on A∨.

Theorem 5 If A is a poset algebra then there is a natural isomorphism

H∗(A,A) ∼= H∗(A,A∨ op);

poset algebras are quasi self-dual.

Proof. Using S-relative cochains as before we find that F (ei0i1 , ei1i2 , . . . , ein−1in)
lies in ei0i0 ◦A∨ op ◦ einin = eininA

∨ei0i0 which is again a free module of rank 1,
spanned by e∗i0in . The rest follows as before. �

Since poset algebras over a fixed ring k are quasi self-dual any algebra mor-
phism between them (or between one and any quasi self-dual algebra) induces
a morphism of cohomology. Not all morphisms between poset algebras need be
induced by morphisms between the underlying posets but we will not examine
here which others are possible. As mentioned, they are probably very restricted.

What has been proven here for poset algebras actually applies to a wider class
of algebras called “triangular” in [6]; these are deformations of poset algebras.
However, from the deformed algebra one can reconstruct the original poset, and
hence the original poset algebra. The cohomologies of the deformed algebra and
of the original algebra (each with coefficients in itself) are identical and these
are identical with the simplicial cohomology of the nerve of the poset. Thus in
the very special case of poset algebras deformation does not alter cohomology.
It follows that triangular algebras in the sense of [6] are also quasi self-dual. It
seems curious that we may view any space with a finite triangulation as having a
“hidden” algebra structure depending on which deformation of its poset algebra
we associate to it, but the family of these is already completely determined by
the cohomology of the space alone. Perhaps for these spaces the concept of
“space” should mean not just the topological object but a pair consisting of
that object together with the algebra associated to it.

Classifying self-dual algebras would seem to be a difficult question, partic-
ularly since in the associative case this would mean classifying 1+1 topological
quantum field theories; the Lie case might be more tractable. Classifying all
quasi self-dual algebras would, of course be even more difficult. However, even
without classification it might be possible to say when a quasi self-dual algebra
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is related in some sense to a geometric object, perhaps closely as with a poset
algebra and the nerve of its poset, or in a more extended way as in the relation
between symmetric Frobenius algebras and field theories.

6 Deformation of C[t]/tn+1 as a Frobenius alge-
bra.

A natural question concerning each of the structures we have encountered is,
What are their deformation theories? In particular, is a deformation of a self-
dual algebra again self-dual and a deformation of a Frobenius algebra again
Frobenius? This is the case for the commutative Frobenius algebraA = C[t]/tn+1

encountered earlier. The only deformations of this algebra are equivalent to ones
of the form A~,p = C[t]/(tn+1− ~p(t)) where p(t) is a polynomial of degree ≤ n
and ~ is the deformation parameter. (A quotient of a fixed algebra by a varying
ideal depending on some parameter ~ can not always be exhibited as a deforma-
tion in the sense of [5] of the quotient obtained when ~ is set equal to zero since
the dimension of that algebra may may be different from that for a generic value
of ~. In a note in preparation I show that most of the difficulties can be resolved
with the use of Gröbner bases but in the present case there is certainly no prob-
lem since there is a fixed basis for the quotient algebra, namely {1, t, t2, . . . , tn}
independent of the value of ~.)

In some sense the simplest Frobenius form on C[t]/tn+1 is that given earlier,
in which < ti, tj >= 1 if i + j = n and is 0 otherwise; the form is not unique.
For For Ah, however, one can show that the values of < 1, ti >, i = 0, . . . , n
completely determine the form. For simplicity, write < ti, tj >= ci,j and set
p(t) = a0 + a1t+ . . . ant

n. Note that

< ti, tj >=< t · ti−1, tj >=< ti−1, t · tj >=< ti−1, tj+1 >

so the value of ci,j depends only on i+j. Then from < ti, tn >=< ti−1, tn+1 >=
< ti−1, ~p(t) > we get the recursion

ci,n = ~(ci−1,0a0 + ci−1,1a1 + . . . , ci−1,nan).

The values of c0,0, c0,1, . . . , c0,n−1, c0,n therefore determine all the ci,j . Setting
these equal to 0, 0, . . . , 0, 1, respectively, the matrix ||ci,j || of the resulting form
has 1 everywhere on the main antidiagonal, zero entries above the main antidi-
agonal and polynomials in ~ without constant term below the main antidiagonal.

Its determinant is therefore (−1)b
n+1
2 c, so the resulting form is non-degenerate

(and would be with any coefficient ring). The form on A~ varies continuously
with ~ and reduces to the original simple form on A when ~ = 0, So the algebra
deformation from A to A~ has “dragged along” a deformation of the Frobenius
form on A to one on A~.

Now suppose that P (t) is a monic polynomial in C[t] of degree n + 1 and
that it factors into P (t) = (t−r1)n1(t−r2)n2 · · · (t−rk)nk . Then by the Chinese
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Remainder Theorem,

C[t]/P (T ) ∼= C[t]/(t− r1)n1 ⊕ C[t]/(t− r2)n2 · · · ⊕ C[t]/(t− rk)nk

∼= C[t]/(t)n1 ⊕ C[t]/(t)n2 · · · ⊕ C[t]/(t)nk .

The structure of C[t]/P (T ) therefore depends only on the partition {n1, n2, . . . , nk}
of n + 1 (where we may assume, without loss of generality, that n1 ≥ n2 ≥
. . . , nk). Since for small non-zero values of ~ the partition associated with the
factorization of P (t) = tn+1 − ~p(t) is constant, the deformation A~ is in fact
a jump deformation; all sufficiently small non-zero values of ~ give isomorphic
algebras. There is a natural partial order to partitions of an integer n+ 1, with
{n+ 1} the largest and {1n+1} (meaning 1 repeated n+ 1 times) the smallest,
and this partial order determines a partial order on the possible deformations
of C[t]/tn+1, which is itself the highest in the partial order. The lowest is any
C[t]/(tn+1 − a) with a any non-zero complex number; these are all isomorphic
to a direct sum of n+ 1 copies of C.

Referring back to the associated TQFTs, they deform, but the deformations
are jumps; one can not “see” any intermediate stages. This raises the questions
of whether there is any intrinsic way to parameterize 1+1 dimensional TQFTs
without referring to their associated algebras, and whether, unlike those asso-
ciated with the deformations of C[t]/tn+1, there are any families which do not
consist exclusively of jump deformations.
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