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Crean's Theorem
e Let D be a closed, bounded region in R?> whose boundary

Calculating area

C = 0D consists of finitely many simple, closed C! curves.
e Orient C so that D is on the left as you traverse C. If
U L F=Mi+ NjisaC?! vector field on D then

?{Md:v—i—Ndy:// (aN—W>dazdy.
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Let F = zyi+ y?j and let D be the first quadrant region
S bounded by the line y = 2 and the parabola y = 22. Let's
calculate §,,, F - ds in two ways.

First, we can calculate it directly.
Parameterize 0D using two pieces:

=t =1t
C {7 and o {”
y=t y=1—1

with ¢ varying from 0 to 1 for each.
The integral is

f F-ds:/ xyda:—i—y2dy+/ zy dz + y2dy
oD Cl C'2

1 1
@ :/ (£ +2t%) dt+/ 2(1 — t)(—dt) = —
\ 0 0
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Let F = zyi+ y?j and let D be the first quadrant region
S bounded by the line y = 2 and the parabola y = 22. Let's
calculate §,,, F - ds in two ways.

7{ F-dS:/ :Eydx+y2dy—|—/ zy dz + y2dy
oD C1 Ca
1 1
—/ (t* +2t%) dt+/ 2(1 —t)?(—dt) = —55.
0 0

Now, let’s do the calculation using Green's theorem.

0 0
F-dS:// [2—95 ]d:zd
ng S ay( Y) Y
1 rzx 1
:// —xdydx:/ :L’3—a:2dx:—%.
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Calculating area

Using Green's theorem to calculate area
Recall that, if D is any plane region, then

Area of D = / 1dz dy.
D

Thus, if we can find a vector field, F = M i+ N j, such that

ON _ oM _ 1, then we can use
ox oy

Md:r—l—Ndy—// (W—W>dacdy
oD Ox

://ldxdy:area of D
D

to calculate the area of D via a line integral!
Here are three such (of many):

F=2j, F=—yi, oo F=3(—yi+zj).
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Using Green's theorem to calculate area

Theorem

Suppose D is a plane region to which Green's theorem applies

and F = Mi+ NjisaC' vector field such that 2 — %—J‘; is

identically 1 on D. Then the area of D is given by

% F-ds
oD

where 0D is oriented as in Green's theorem.
Our three examples from the previous slide yield

$op @ dy
Area of D= < §, —ydx

faD % (—ydx + z dy)
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Example
y
Calculating area (0, b)
We can calculate the area of //-‘ (,0)
Normal vectors X

Tangent planes an ellipse using this method. &/

The ellipse can be parameterize by

x(t) = (acost,bsint), with 0 <t < 2.

Now our theorem tells us that the area of the ellipse is

2w
5/—ydaj+mdy=§/0 (absin2t+abcos2t)dt

2
:%/ abdt = mwab.
0
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Parameterized surfaces

Definition

Let D be a plane region that consists of an open set together
with some or all of its boundary. A parameterized surface in
R3 is a continuous map X : D C R? — R3 that is one-to-one
on D, except possible along 0D.

There is a subtle difference between the mapping, X, and its
image X (D), which is just a set of points.

Definition

We refer to X(D) as the underlying surface of X, or the
surface parameterized by X.

We use bold letters (e.g. X, Y) to represent parameterized
surfaces and unbold, upper-case letters (e.g. S, T') to represent
the underlying surfaces.
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Examples
Calculating area 1. The parameterization X : R? — R? defined by
Parameterized
Surfaces X(s, t) —= S(i — j) —|— t(i + 2k) + 3j

Norm. ctors
Tangent planes

determines a plane.

2. Let D = [0,27) x [0, 7] and consider X : D — R3 given by
X(s,t) = (cos s)(sint)i+ (sins)(sint)j+ (cost) k.

3. The equations

satisfy 22 + y? = 1, so they parameterize a cylinder.
K= 5P
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Normal vectors

Tangent and normal vectors

Definition
Given a parameterization X(s,t) = (z(s,t),y(s,t),2(s,t)), the
tangent vector with respect to s is

_0X  Ox, Oy, 0z
= s s a5 T asT

Similarly, the tangent vector with respect to ? is
oX  Oxr, 0Oy, Oz
T = —i+ =j+ —k
A T T T R

The standard normal vector is

N =T, xT,.
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Tangent and normal vectors

Example

The equation 22 = 22 + y2 defines a cone in R3.

It can be parameterized by
X = s(cost)i+ s(sint)j+ sk,
with ¢ varying from 0 to 2m. We have
Ty = (cost)i+ (sint)j+ k and T; = —s(sint) i+ s(cost)j.
Therefore,
i j k
N=T;xT;=| cost sint 1
—ssint scost 0

= —s(cost)i— s(sint)j+ sk.
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Definition
We say that a parameterized surface is smooth if the
parameterization is C'! and if it has a nonzero normal vector at
every point.

Tangent planes P
Definition

Let X be a parameterized surface smooth at the point
X(s0,to). The tangent plane to the surface parameterized by
X is the plane that passes through X(sg,to) and has normal

vector IN(sg, tg). It is given by the equation
N(So, to) . (X - X(So, to)) =0.

If X(So, tg) = (mo, Yo, ZQ) and N(SQ, t()) = Ai+ Bj+ Ck then
the equation can also be written

@ Az —x0) + B(y —yo) + C(z — 20) = 0.
St
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Example
Recall the parameterized cone

Calculating area

Normal vectors X(s,t) = s(cost)i+ s(sint)j+ sk

Tangent planes

from the previous example. At the point (0,1,1) = X(l7 g)
our previous calculation gives us

T, = (0,1,1), T; = (—1,0,0), and N = (0, —1,1).
Hence, the equation for the tangent plane is
Oz—0)—1(y—1)+1(z—1)=0,

which simplifies to
z=uy.
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