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Green’s theorem

Theorem
Let D be a closed, bounded region in R2 whose boundary
C = ∂D consists of finitely many simple, closed C1 curves.
Orient C so that D is on the left as you traverse C. If
F =M i+N j is a C1 vector field on D then∮

C
M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.
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6.2 Green’s Theorem
Green’s theorem relates the vector line integral around a closed curve C in R2

to an appropriate double integral over the plane region D bounded by C . The
fact that there is such an elegant connection between one- and two-dimensional
integrals is at once surprising, satisfying, and powerful. Green’s theorem, stated
generally, is as follows:

THEOREM 2.1 (GREEN’S THEOREM) Let D be a closed, bounded region in R2

whose boundary C = ∂ D consists of finitely many simple, closed, piecewise C1

curves. Orient the curves of C so that D is on the left as one traverses C . (See
Figure 6.18.) Let F(x, y) = M(x, y) i + N (x, y) j be a vector field of class C1

throughout D. Then

∮
C

Mdx + Ndy =
∫ ∫

D

(
∂ N

∂x
− ∂ M

∂y

)
dx dy.

(The symbol
∮

C indicates that the line integral is taken over one or more closed
curves.)

D

C =   D

Figure 6.18 The shaded region D
has a boundary consisting of two
simple, closed curves, each of class
C1, whose union we call C .

EXAMPLE 1 Let F = xy i + y2 j and let D be the first quadrant region bounded
by the line y = x and the parabola y = x2. We verify Green’s theorem in this case.

x

y (1, 1)

C1
y = x2

C2
y = x D

Figure 6.19 The region
D of Example 1.

The region D and its boundary are shown in Figure 6.19. ∂ D is oriented
counterclockwise, the orientation stipulated by the statement of Green’s theorem.
To calculate ∮

∂ D
F · ds =

∮
∂ D

xy dx + y2dy,

we need to parametrize the two C1 pieces of ∂ D separately:

C1 :

{
x = t

y = t2
0 ≤ t ≤ 1 and C2 :

{
x = 1 − t

y = 1 − t
0 ≤ t ≤ 1.

(Note the orientations of C1 and C2.) Hence,

∮
∂ D

xy dx + y2dy =
∫

C1

xy dx + y2dy +
∫

C2

xy dx + y2dy

=
∫ 1

0

(
t · t2 + t4 · 2t

)
dt +

∫ 1

0

((1 − t)2 + (1 − t)2)(−dt)

=
∫ 1

0

(t3 + 2t5) dt +
∫ 1

0

2(1 − t)2(−dt)

= (
1
4
t4 + 2

6
t6

)∣∣1

0
+ (

2
3
(1 − t)3

)∣∣1

0

= 1
4

+ 2
6

− 2
3

= − 1
12

.
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Example

Let F = xy i+ y2j and let D be the first quadrant region
bounded by the line y = x and the parabola y = x2. Let’s
calculate

∮
∂D F · ds in two ways.

First, we can calculate it directly.
Parameterize ∂D using two pieces:

C1 :

{
x = t

y = t2
and C2 :

{
x = 1− t
y = 1− t

with t varying from 0 to 1 for each.
The integral is∮

∂D
F · ds =

∫
C1

xy dx+ y2dy +

∫
C2

xy dx+ y2dy

=

∫ 1

0

(
t3 + 2t5

)
dt+

∫ 1

0
2(1− t)2(−dt) = − 1

12 .
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Example

Let F = xy i+ y2j and let D be the first quadrant region
bounded by the line y = x and the parabola y = x2. Let’s
calculate

∮
∂D F · ds in two ways.

∮
∂D

F · ds =
∫
C1

xy dx+ y2dy +

∫
C2

xy dx+ y2dy

=

∫ 1

0

(
t3 + 2t5

)
dt+

∫ 1

0
2(1− t)2(−dt) = − 1

12 .

Now, let’s do the calculation using Green’s theorem.∮
∂D

F · ds =
∫∫

D

[
∂

∂x
y2 − ∂

∂y
(xy)

]
dx dy

=

∫ 1

0

∫ x

x2
−x dy dx =

∫ 1

0
x3 − x2 dx = − 1

12 .
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Using Green’s theorem to calculate area

Recall that, if D is any plane region, then

Area of D =

∫
D
1 dx dy.

Thus, if we can find a vector field, F =M i+N j, such that
∂N
∂x −

∂M
∂y = 1, then we can use∮

∂D
M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy

=

∫∫
D
1 dx dy = area of D

to calculate the area of D via a line integral!

Here are three such (of many):

F = x j, F = −y i, or F = 1
2 (−y i+ x j) .
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Using Green’s theorem to calculate area

Theorem
Suppose D is a plane region to which Green’s theorem applies
and F =M i+N j is a C1 vector field such that ∂N

∂x −
∂M
∂y is

identically 1 on D. Then the area of D is given by∮
∂D

F · ds

where ∂D is oriented as in Green’s theorem.

Our three examples from the previous slide yield

Area of D =


∮
∂D x dy∮
∂D −y dx∮
∂D

1
2 (−y dx+ x dy)

.
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Using Green’s theorem to calculate area

Example

We can calculate the area of
an ellipse using this method.

P1: OSO
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430 Chapter 6 Line Integrals

On the other hand,∫ ∫
D

[
∂

∂x
(y2) − ∂

∂y
(xy)

]
dx dy =

∫ 1

0

∫ x

x2

−x dy dx =
∫ 1

0

−x(x − x2) dx

=
∫ 1

0

(x3 − x2) dx = (
1
4
x4 − 1

3
x3

)∣∣1

0

= 1
4

− 1
3

= − 1
12

.

The line integral and the double integral agree, just as Green’s theorem says they
must. ◆

x

y

a

C

D

Figure 6.20 The disk of
radius a with boundary
oriented so that Green’s
theorem applies.

EXAMPLE 2 Consider
∮

C −y dx + x dy, where C is the circle of radius a (i.e.,
the boundary of the disk D of radius a), oriented counterclockwise as shown in
Figure 6.20. Although we can readily parametrize C and thus evaluate the line
integral, let us employ Green’s theorem instead:∮

C
−y dx + x dy =

∫ ∫
D

[
∂

∂x
(x) − ∂

∂y
(−y)

]
dx dy

=
∫ ∫

D
2 dx dy = 2(area of D) = 2πa2.

The rightmost expression is twice the area of a disk of radius a. In this case, the
double integral is much easier to consider than the line integral. ◆

The use of Green’s theorem in Example 2 can be put in a much more general
setting: Indeed, if D is any region to which Green’s theorem can be applied, then,
orienting ∂ D appropriately, we have

1
2

∮
∂ D

−y dx + x dy = 1
2

∫ ∫
D

2 dx dy = area of D. (1)

Thus, we can calculate the area of a region (a two-dimensional notion) by using
line integrals (a one-dimensional construction)!

x

y

(0, b)

(a, 0)

D

Figure 6.21 The region
inside the ellipse
x2/a2 + y2/b2 = 1.

EXAMPLE 3 Using formula (1), we compute the area inside the ellipse
x2/a2 + y2/b2 = 1 (Figure 6.21).

The ellipse itself may be parametrized counterclockwise by{
x = a cos t

y = b sin t
0 ≤ t ≤ 2π.

Once again, using formula (1), we find that the area inside the ellipse is

1
2

∮
∂ D

−y dx + x dy = 1
2

∫ 2π

0

−b sin t(−a sin t dt) + a cos t(b cos t dt)

= 1
2

∫ 2π

0

(ab sin2 t + ab cos2 t) dt

= 1
2

∫ 2π

0

ab dt = πab.
◆

The ellipse can be parameterize by

x(t) = (a cos t, b sin t), with 0 ≤ t ≤ 2π.

Now our theorem tells us that the area of the ellipse is

1
2

∫
x
−y dx+ x dy = 1

2

∫ 2π

0

(
ab sin2 t+ ab cos2 t

)
dt

= 1
2

∫ 2π

0
ab dt = πab.
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Parameterized surfaces

Definition
Let D be a plane region that consists of an open set together
with some or all of its boundary. A parameterized surface in
R3 is a continuous map X : D ⊆ R2 → R3 that is one-to-one
on D, except possible along ∂D.

There is a subtle difference between the mapping, X, and its
image X(D), which is just a set of points.

Definition
We refer to X(D) as the underlying surface of X, or the
surface parameterized by X.

We use bold letters (e.g. X, Y) to represent parameterized
surfaces and unbold, upper-case letters (e.g. S, T ) to represent
the underlying surfaces.
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Parameterized surfaces

Examples

1. The parameterization X : R2 → R3 defined by

X(s, t) = s(i− j) + t(i+ 2k) + 3j

determines a plane.

2. Let D = [0, 2π)× [0, π] and consider X : D → R3 given by

X(s, t) = (cos s)(sin t) i+ (sin s)(sin t) j+ (cos t)k.

3. The equations 
x = cos s

y = sin s

z = t

0 ≤ s ≤ 2π

satisfy x2 + y2 = 1, so they parameterize a cylinder.
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Tangent and normal vectors

Definition
Given a parameterization X(s, t) = (x(s, t), y(s, t), z(s, t)) , the
tangent vector with respect to s is

Ts =
∂X

∂s
=
∂x

∂s
i+

∂y

∂s
j+

∂z

∂s
k.

Similarly, the tangent vector with respect to t is

Tt =
∂X

∂t
=
∂x

∂t
i+

∂y

∂t
j+

∂z

∂t
k.

The standard normal vector is

N = Ts ×Tt.
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Tangent and normal vectors

Example

The equation z2 = x2 + y2 defines a cone in R3.
It can be parameterized by

X = s(cos t) i+ s(sin t) j+ sk,

with t varying from 0 to 2π. We have

Ts = (cos t) i+ (sin t) j+ k and Tt = −s(sin t) i+ s(cos t) j.

Therefore,

N = Ts ×Tt =

∣∣∣∣∣∣
i j k

cos t sin t 1
−s sin t s cos t 0

∣∣∣∣∣∣
= −s(cos t) i− s(sin t) j+ sk.
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Tangent planes

Definition
We say that a parameterized surface is smooth if the
parameterization is C1 and if it has a nonzero normal vector at
every point.

Definition
Let X be a parameterized surface smooth at the point
X(s0, t0). The tangent plane to the surface parameterized by
X is the plane that passes through X(s0, t0) and has normal
vector N(s0, t0). It is given by the equation

N(s0, t0) · (x−X(s0, t0)) = 0.

If X(s0, t0) = (x0, y0, z0) and N(s0, t0) = A i+B j+C k then
the equation can also be written

A(x− x0) +B(y − y0) + C(z − z0) = 0.
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Tangent planes

Example

Recall the parameterized cone

X(s, t) = s(cos t) i+ s(sin t) j+ sk

from the previous example. At the point (0, 1, 1) = X
(
1, π2

)
,

our previous calculation gives us

Ts = (0, 1, 1), Tt = (−1, 0, 0), and N = (0,−1, 1).

Hence, the equation for the tangent plane is

0(x− 0)− 1(y − 1) + 1(z − 1) = 0,

which simplifies to
z = y.
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