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Definition
Let X : D C R? — R? be a smooth parameterized surface. Let
f be a continuous scalar function whose domain includes

S =X(D)

. The scalar surface integral of f along X is

// fas = //f (5,8) | T x Tyl ds dt
= //D f(X(s,1)) [IN(s,t)]| ds dt.
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Example sz
Let S be the closed cylinder of radius 3 with
axis along the z-axis, top face at z = 15, and
bottom face at z = 0. Let’s calculate [[q zdS.
Denote the lateral cylindrical face of S by S}
and the bottom and top faces by S5 and S3, X?E’:&I”
respectively.

Spx?+y?=9

We compute

// zdS = 675, // zdS =0, and// zdS = 135m.
S1 Sa2 Ss3

Therefore,

//zdS:// zdS+// zd5’—|—// zdS = 8107.
S S1 Sa S3
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Surface area

Figure: The quantity
ITs x Ty is the
area of the gray

square on the right.

Fact
If S is a smooth surface parameterized by X : D C R? — R3

then the surface area of S is given by

// HNHdsdt:// HTSXTt\dsdt:// 148,
D D X
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Example
Recall our parameterization of a sphere:

X(s,t) = r(cos s)(sint)i+ r(sins)(sint)j+ r(cost) k.
We calculate

Ty = —rsinssinti+ rcosssintj,
T; =rcosscosti+ rsinscostj—rsintk,
N = —r?cosssin?ti—r?sinssin?tj — r2sint costk,

and ||N|| = r?sint.

Therefore, the surface area of the sphere is

s 27 T
/ / r’sintdsdt = / 2nr?sint dt = 4rwr?.
0o Jo 0
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integrals Let X : D C R? — R? be a smooth parameterized surface. Let
F be a continuous vector field whose domain includes
S = X(D). The vector surface integral of F along X is

//XF.dsz//DF(X(s,t))-N(s,t)dsdt.

In physical terms, we can interpret F' as the flow of some kind
of fluid. Then the vector surface integral measures the volume
of fluid that flows through S per unit time. This is called the
flux of F across S.
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. \X‘ X Figure: X.and Y
e parameterize the
Changing K - same surface with
orientation ¢ )

INY = X(D) =YDy o-ppos-lte normal
/ directions.
Y

fl a5 s
//YF-dS:—//XF-dS

This can be achieved by exchanging s and ¢:

T, x Ty = — (T x Ty).
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