Stokes' and Gauss' Theorems

Math 240

Stokes' theorer

Gauss' theorem Calculating volume

Stokes' and Gauss' Theorems

Math 240 — Calculus III

Summer 2013, Session II

Monday, July 8, 2013

Stokes

Gauss' theorem

Calculatir volume

1. Stokes' theorem

2. Gauss' theorem
Calculating volume w

Calculating volume with Gauss' theorem

Stokes'

Gauss' theorem Calculatin volume

Theorem (Green's theorem)

Let D be a closed, bounded region in \mathbb{R}^2 with boundary $C = \partial D$. If $\mathbf{F} = M \mathbf{i} + N \mathbf{j}$ is a C^1 vector field on D then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Notice that
$$\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k} = \nabla \times \mathbf{F}$$
.

Theorem (Stokes' theorem)

Let S be a smooth, bounded, oriented surface in \mathbb{R}^3 and suppose that ∂S consists of finitely many C^1 simple, closed curves. If \mathbf{F} is a C^1 vector field whose domain includes S, then

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}.$$

Stokes' theorem and orientation

Math 240

Stokes'

Definition

A smooth, connected surface, S is **orientable** if a nonzero normal vector can be chosen continuously at each point.

Examples

Orientable planes, spheres, cylinders, most familiar surfaces Nonorientable Möbius band

To apply Stokes' theorem, ∂S must be correctly oriented.

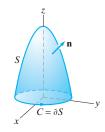
Right hand rule: thumb points in chosen normal direction, fingers curl in direction of orientation of ∂S .

Alternatively, when looking down from the normal direction, ∂S should be oriented so that S is on the *left*.

Stokes' theorem

Example

Let S be the paraboloid $z = 9 - x^2 - y^2$ defined over the disk in the xy-plane with radius 3 (i.e. for $z \ge 0$). Verify Stokes' theorem for the vector field



$$\mathbf{F} = (2z - y)\mathbf{i} + (x + z)\mathbf{j} + (3x - 2y)\mathbf{k}.$$

We calculate

$$\nabla \times \mathbf{F} = -3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
 and $\mathbf{N} = 2x\mathbf{i} + 2y\mathbf{j} + \mathbf{k}$.

Therefore,

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (-6x - 2y + 2) \, dx \, dy = 18\pi.$$

Stokes' theorem

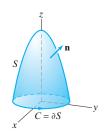
Math 240

Stokes'

Gauss' theorem

Example

Let S be the paraboloid $z=9-x^2-y^2$ defined over the disk in the xy-plane with radius 3 (i.e. for $z\geq 0$). Verify Stokes' theorem for the vector field



$$\mathbf{F} = (2z - y)\mathbf{i} + (x + z)\mathbf{j} + (3x - 2y)\mathbf{k}.$$

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (-6x - 2y + 2) \, dx \, dy = 18\pi.$$

Using Stokes' theorem, we can do instead

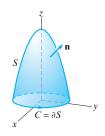
$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \oint_C -y \, dx + x \, dy$$
$$= \int_0^{2\pi} (-3\sin t)^2 + (3\cos t)^2 \, dt = 18\pi.$$

Stokes'

Gauss' theorem Calculatin

Example

Let S be the paraboloid $z=9-x^2-y^2$ defined over the disk in the xy-plane with radius 3 (i.e. for $z\geq 0$). Verify Stokes' theorem for the vector field



$$\mathbf{F} = (2z - y)\mathbf{i} + (x + z)\mathbf{j} + (3x - 2y)\mathbf{k}.$$

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (-6x - 2y + 2) \, dx \, dy = 18\pi.$$

Applying Stokes' theorem a second time yields

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$
$$= \iint_{D} 2 \, d\mathbf{S} = 2 \, (\text{area of } D) = 18\pi.$$

Stokes

Gauss' theorem

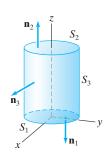
Theorem (Gauss' theorem, divergence theorem)

Let D be a solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many smooth, closed, orientable surfaces. Orient these surfaces with the normal pointing away from D. If \mathbf{F} is a C^1 vector field whose domain includes D then

Stokes' theorem Gauss'

Example

Let ${f F}$ be the radial vector field $x\,{f i}+y\,{f j}+z\,{f k}$ and let D the be solid cylinder of radius a and height b with axis on the z-axis and faces at z=0 and z=b. Let's verify Gauss' theorem. Let S_1 and S_2 be the bottom and top faces, respectively, and let S_3 be the lateral face.



To orient ∂D for Gauss' theorem, choose normals

$$\mathbf{n}_1 = -\mathbf{k}$$
 for S_1 , $\mathbf{n}_2 = \mathbf{k}$ for S_2 , and $\mathbf{n}_3 = \frac{1}{a}(x\,\mathbf{i} + y\,\mathbf{j})$ for S_3 .

Now we integrate over the surface

$$\oint \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = b \iint_{S_2} dS + a \iint_{S_3} dS = 3\pi a^2 b.$$

Stokes' theorem Gauss'

Example

Let ${f F}$ be the radial vector field $x\,{f i}+y\,{f j}+z\,{f k}$ and let D the be solid cylinder of radius a and height b with axis on the z-axis and faces at z=0 and z=b. Let's verify Gauss' theorem. Let S_1 and S_2 be the bottom and top faces, respectively, and let S_3 be the lateral face.



$$\oint \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = b \iint_{S_2} dS + a \iint_{S_3} dS = 3\pi a^2 b.$$

On the other hand, $\nabla \cdot \mathbf{F} = 3$.

Then

Recall how we used Green's theorem to calculate the area of a plane region via a line integral around its boundary.

Theorem

Suppose D is a solid region in \mathbb{R}^3 to which Gauss' theorem applies and \mathbf{F} is a C^1 vector field such that $\nabla \cdot \mathbf{F}$ is identically 1 on D. Then the volume of D is given by

where ∂D is oriented as in Gauss' theorem.

Some examples are

Volume of
$$D = \begin{cases} \oiint_{\partial D}(x \, \mathbf{i}) \cdot d\mathbf{S} \\ \oiint_{\partial D}(y \, \mathbf{j}) \cdot d\mathbf{S} \\ \oiint_{\partial D}(z \, \mathbf{k}) \cdot d\mathbf{S} \end{cases}$$
.

Example

Let's calculate the volume of a truncated cone via an integral over its surface. Let ${\cal D}$ be the solid bounded by the cone

$$x^2 + y^2 = (2 - z)^2$$

and the planes z=1 and z=0. Let's use the vector field $\mathbf{F}=x\,\mathbf{i}$, so that $\iint_S \mathbf{F}\cdot d\mathbf{S}=0$ when S is the top or bottom face. Then we just need to calculate

$$\mathbf{N} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & -1 \\ -r \sin \theta & r \cos \theta & 0 \end{vmatrix} = x \mathbf{i} + y \mathbf{j} + r \mathbf{k}$$

and the volume of D is

$$\iint_{S} (x \mathbf{i}) \cdot d\mathbf{S} = \int_{0}^{2\pi} \int_{1}^{2} (r \cos \theta)^{2} dr d\theta = \frac{7}{3}\pi.$$

