Math 240

Definition

Properties

Set notation

Subspaces

# Vector Spaces

## Math 240 — Calculus III

Summer 2013, Session II

Wednesday, July 17, 2013





Properties

Set notation

Subspaces



2. Properties of vector spaces

- 3. Set notation
- 4. Subspaces



Math 240

### Definition

### Properties

- Set notation
- Subspaces

We know a lot about Euclidean space. There is a larger class of objects that behave like vectors in  $\mathbb{R}^n$ . What do all of these objects have in common?

Vector addition a way of combining two vectors,  ${\bf u}$  and  ${\bf v},$  into the single vector  ${\bf u}+{\bf v}$ 

Scalar multiplication a way of combining a scalar, k, with a vector,  $\mathbf{v}$ , to end up with the vector  $k\mathbf{v}$ 

A **vector space** is any set of objects with a notion of addition and scalar multiplication that behave like vectors in  $\mathbb{R}^n$ .



Math 240

### Definition

Properties Set notation

# Real vector spaces

- $\mathbb{R}^n$  (the archetype of a vector space)
- $\mathbb{R}$  the set of real numbers
- M<sub>m×n</sub>(ℝ) the set of all m × n matrices with real entries for fixed m and n. If m = n, just write M<sub>n</sub>(ℝ).
- ▶ P<sub>n</sub> the set of polynomials with real coefficients of degree at most n
- P the set of all polynomials with real coefficients
- C<sup>k</sup>(I) the set of all real-valued functions on the interval I having k continuous derivatives

# Complex vector spaces



- $\blacktriangleright$   $\mathbb{C}$ ,  $\mathbb{C}^n$
- $M_{m \times n}(\mathbb{C})$

# Examples of vector spaces

Math 240

### Definition

Properties Set notation

# Definition

# Definition

A **vector space** consists of a set of scalars, a nonempty set, V, whose elements are called **vectors**, and the operations of vector addition and scalar multiplication satisfying

- 1. Closure under addition: For each pair of vectors  $\mathbf{u}$  and  $\mathbf{v}$ , the sum  $\mathbf{u} + \mathbf{v}$  is an element of V.
- 2. Closure under scalar multiplication: For each vector  $\mathbf{v}$  and scalar k, the scalar multiple  $k\mathbf{v}$  is an element of V.
- 3. Commutativity of addition: For all  $\mathbf{u}, \mathbf{v} \in V$ , we have  $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ .
- 4. Associativity of addition: For all  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ , we have  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 5. Existence of a zero vector: There is a vector  $\mathbf{0} \in V$ satisfying  $\mathbf{v} + \mathbf{0} = \mathbf{v}$  for all  $\mathbf{v} \in V$ .



Math 240

### Definition

Properties Set notation Subspaces

# Definition

# Definition

A **vector space** consists of a set of scalars, a nonempty set, V, whose elements are called **vectors**, and the operations of vector addition and scalar multiplication satisfying

- 6. Existence of additive inverses: For each  $\mathbf{v} \in V$ , there is a vector  $-\mathbf{v} \in V$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ .
- 7. Unit property: For all vectors  $\mathbf{v}$ , we have  $1\mathbf{v} = \mathbf{v}$ .
- 8. Associativity of scalar multiplication: For all vectors  $\mathbf{v}$  and scalars r, s, we have  $(rs)\mathbf{v} = r(s\mathbf{v})$ .
- Distributive property of scalar multiplication over vector addition: For all vectors u and v and scalars r, we have r(u + v) = ru + rv.
- 10. Disributive property of scalar multiplication over scalar addition: For all vectors  $\mathbf{v}$  and scalars r and s, we have  $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$ .



### Math 240

### Definition

Properties Set notation

## Let's verify that $M_2(\mathbb{R})$ is a vector space.

1. From the definition of matrix addition, we know that the sum of two  $2 \times 2$  matrices is also a  $2 \times 2$  matrix.

Example

- 2. From the definition of scalar-matrix multiplication, we know that multiplying a  $2\times 2$  matrix by a scalar results in a  $2\times 2$  matrix.
- 3. Given two  $2 \times 2$  matrices

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix},$$

their sum is

$$A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix}$$
$$= \begin{bmatrix} b_1 + a_1 & b_2 + a_2 \\ b_3 + a_3 & b_4 + a_4 \end{bmatrix} = B + A.$$



### Math 240

### Definition

Properties Set notation Let's verify that  $M_2(\mathbb{R})$  is a vector space. 4. Given three  $2 \times 2$  matrices

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}, \quad B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}, \quad C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix},$$

Example

we have

$$(A+B) + C = \begin{bmatrix} (a_1+b_1) + c_1 & (a_2+b_2) + c_2 \\ (a_3+b_3) + c_3 & (a_4+b_4) + c_4 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + (b_1+c_1) & a_2 + (b_2+c_2) \\ a_3 + (b_3+c_3) & a_4 + (b_4+c_4) \end{bmatrix}$$
$$= A + (B+C).$$

5. If  $A \in M_2(\mathbb{R})$  then  $A + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = A$ , so the zero vector in  $M_2(\mathbb{R})$  is  $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ .



### Math 240

Definition

Properties Set notation Let's verify that  $M_2(\mathbb{R})$  is a vector space.

6. The additive inverse of  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  is  $-A = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$  because

$$A + (-A) = \begin{bmatrix} a + (-a) & b + (-b) \\ c + (-c) & d + (-d) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}.$$

Example

7. If A is any matrix, then obviously 1A = A. 8. Given a matrix  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and scalars r and s, we have

$$\begin{aligned} (rs)A &= \begin{bmatrix} (rs)a & (rs)b\\ (rs)c & (rs)d \end{bmatrix} = \begin{bmatrix} r(sa) & r(sb)\\ r(sc) & r(sd) \end{bmatrix} \\ &= r \begin{bmatrix} sa & sb\\ sc & sd \end{bmatrix} = r(sA). \end{aligned}$$



### Math 240

Definition

Properties

Set notation

9. Given matrices  $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$  and  $B = \begin{bmatrix} b_1 & b_2 \\ b_2 & b_4 \end{bmatrix}$  and a scalar r, we have  $r(A+B) = \begin{vmatrix} r(a_1+b_1) & r(a_2+b_2) \\ r(a_3+b_3) & r(a_4+b_4) \end{vmatrix}$  $= \begin{vmatrix} ra_1 + rb_1 & ra_2 + rb_2 \\ ra_2 + rb_2 & ra_4 + rb_4 \end{vmatrix} = rA + rB.$ 10. Given a matrix  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and scalars r and s, we have  $(r+s)A = \begin{vmatrix} (r+s)a & (r+s)b \\ (r+s)c & (r+s)d \end{vmatrix}$  $= \begin{bmatrix} ra + sa & rb + sb \\ rc + sc & rd + sd \end{bmatrix} = rA + sA.$ 

Let's verify that  $M_2(\mathbb{R})$  is a vector space.

Example



Math 240

### Definition

### Properties

Set notatior

Additional properties of vector spaces

The following properties are consequences of the vector space axioms.

- The zero vector is unique.
- $0\mathbf{u} = \mathbf{0}$  for all  $\mathbf{u} \in V$ .
- $k\mathbf{0} = \mathbf{0}$  for all scalar k.
- The additive inverse of a vector is unique.
- For all  $\mathbf{u} \in V$ , its additive inverse is given by  $-\mathbf{u} = (-1)\mathbf{u}$ .
- If k is a scalar and  $\mathbf{u} \in V$  such that  $k\mathbf{u} = \mathbf{0}$  then either k = 0 or  $\mathbf{u} = \mathbf{0}$ .



Math 240

Definition Properties Set notation Subspaces

# Definition

Let V be a set. We write the subset of V satisfying some conditions as

 $S = \{ \mathbf{v} \in V : \text{conditions on } \mathbf{v} \}.$ 

Aside: set notation

### Examples

- 1. The plane -3x+2y+z=4 can be written  $\left\{(x,y,z)\in \mathbb{R}^3: -3x+2y+z=4\right\}.$
- 2. The line perpendicular to this plane passing through the point  $\left(1,0,0\right)$  can be written

$$\left\{\mathbf{x}\in\mathbb{R}^3:\mathbf{x}=(1-3r,2r,r),r\in\mathbb{R}\right\}$$

or

$$\left\{ (1-3r,2r,r) \in \mathbb{R}^3 : r \in \mathbb{R} \right\}.$$



### Math 240

### Definition

Properties

Set notation

Subspaces

If A is an  $m \times n$  matrix, verify that

$$V = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

Practice problem

is a vector space.

 $\mathbb{R}^n$  is a vector space. V is a subset of  $\mathbb{R}^n$  and also a vector space. One vector space inside another?!?

What about

$$W = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b} \}$$

where  $\mathbf{b} \neq \mathbf{0}$ ?



### Math 240

Definition Properties Set notation Subspaces

# Definition

## Definition

Suppose V is a vector space and S is a nonempty subset of V. We say that S is a **subspace** of V if S is a vector space under the same addition and scalar multiplication as V.

## Examples

- 1. Any vector space has two **improper** subspaces:  $\{0\}$  and the vector space itself. Other subspaces are called **proper**.
- 2. The solution set of a homogeneous linear system is a subspace of  $\mathbb{R}^n$ . This includes all lines, planes, and hyperplanes through the origin.
- 3. The set of polynomials in  $P_2$  with no linear term forms a subspace of  $P_2$ . In turn,  $P_2$  is a subspace of P.





Math 240

### Definition

Properties

### Set notation

### Subspaces

Checking all 10 axioms for a subspace is a lot of work. Fortunately, it's not necessary.

### Theorem

If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and only if S is closed under the addition and scalar multiplication in V.

Criteria for subspaces

### Remark

Don't forget the "nonempty." It's often quicker and easier to just check that  $\mathbf{0} \in S.$ 



### Math 240

Definition Propertie

Set notation

Subspaces

Let S denote the set of real symmetric  $n \times n$  matrices. Let's check that S is a subspace of  $M_n(\mathbb{R})$ .

First, write S as

$$S = \left\{ A \in M_n(\mathbb{R}) : A^T = A \right\}.$$

Now, check three things:

1.  $\mathbf{0} \in S$ : Obvious.

2. If  $A, B \in S$  then  $A + B \in S$ :

$$(A+B)^T = A^T + B^T = A + B$$

3. If  $A \in S$  and k is a scalar then  $kA \in S$ :

$$(kA)^T = kA^T = kA$$



It's a subspace!

Example

Math 240

Definition

Properties

### Set notation

Subspaces

# The null space of a matrix

## Definition

If A is an  $m \times n$  matrix, the solution space of the homogeneous linear system  $A\mathbf{x} = \mathbf{0}$  is called the **null space** of A.

$$\operatorname{nullspace}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

# Remarks

- The null space of an  $m \times n$  matrix is a subspace of  $\mathbb{R}^n$ .
- ► The null space of a matrix with complex entries is defined analogously, replacing R with C.
- As noted before, the solution set of a nonhomogeneous equation (Ax = b with b ≠ 0) is not a subspace since it does not contain 0.



### Vector Spaces Math 240

# Differential equation example

Definition

Properties

Set notation

Subspaces

Show that the set of all solutions to the differential equation

$$y'' + a_1(x)y' + a_2(x)y = 0$$

on an interval I is a subspace of  $C^2(I)$ .

The set of solutions to a homogeneous linear differential equation is called the **solution space**.



### Math 240

Definition Properties Set notation Subspaces

Here's another way to construct subspaces:

## Definition

Let  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  a set of vectors in a vector space V. A linear combination of  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  is an expression of the form

Span

 $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n,$ 

where  $c_1, \ldots, c_n$  are scalars. The **span** of  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  is the set of all linear combinations of them.

 $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}=\{c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n\in V:c_1,\ldots,c_n\in\mathbb{R}\}$ 

### Example

The span of a single, nonzero vector is a line through the origin.

$$\operatorname{span}\{\mathbf{v}\} = \{t\mathbf{v} \in V : t \in \mathbb{R}\}\$$



Math 240

Span

Definition

Properties

Set notation

Subspaces

# Theorem

Let  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  be vectors in a vector space V. The span of  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  is a subspace of V.

## Question

What's the span of  $\mathbf{v}_1 = (1,1)$  and  $\mathbf{v}_2 = (2,-1)$  in  $\mathbb{R}^2$ ?

