Vector Spaces
Math 240
Definition
Properties
Set notation
Subspaces

Vector Spaces

Math 240 - Calculus III

Summer 2013, Session II
Wednesday, July 17, 2013

1. Definition
2. Properties of vector spaces
3. Set notation
4. Subspaces objects that behave like vectors in \mathbb{R}^{n}. What do all of these objects have in common?
Vector addition a way of combining two vectors, \mathbf{u} and \mathbf{v}, into the single vector $\mathbf{u}+\mathbf{v}$
Scalar multiplication a way of combining a scalar, k, with a vector, \mathbf{v}, to end up with the vector $k \mathbf{v}$
A vector space is any set of objects with a notion of addition and scalar multiplication that behave like vectors in \mathbb{R}^{n}.

Examples of vector spaces

Real vector spaces

- \mathbb{R}^{n} (the archetype of a vector space)
- \mathbb{R} - the set of real numbers
- $M_{m \times n}(\mathbb{R})$ - the set of all $m \times n$ matrices with real entries for fixed m and n. If $m=n$, just write $M_{n}(\mathbb{R})$.
- P_{n} - the set of polynomials with real coefficients of degree at most n
- P - the set of all polynomials with real coefficients
- $C^{k}(I)$ - the set of all real-valued functions on the interval I having k continuous derivatives

Complex vector spaces

- $\mathbb{C}, \mathbb{C}^{n}$
- $M_{m \times n}(\mathbb{C})$

Definition

Definition

A vector space consists of a set of scalars, a nonempty set, V, whose elements are called vectors, and the operations of vector addition and scalar multiplication satisfying

1. Closure under addition: For each pair of vectors \mathbf{u} and \mathbf{v}, the sum $\mathbf{u}+\mathbf{v}$ is an element of V.
2. Closure under scalar multiplication: For each vector \mathbf{v} and scalar k, the scalar multiple $k \mathbf{v}$ is an element of V.
3. Commutativity of addition: For all $\mathbf{u}, \mathbf{v} \in V$, we have $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
4. Associativity of addition: For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, we have $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
5. Existence of a zero vector: There is a vector $\mathbf{0} \in V$ satisfying $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all $\mathbf{v} \in V$.

Definition

10. Disributive property of scalar multiplication over scalar addition: For all vectors \mathbf{v} and scalars r and s, we have $(r+s) \mathbf{v}=r \mathbf{v}+s \mathbf{v}$.

Example

Let's verify that $M_{2}(\mathbb{R})$ is a vector space.

1. From the definition of matrix addition, we know that the sum of two 2×2 matrices is also a 2×2 matrix.
2. From the definition of scalar-matrix multiplication, we know that multiplying a 2×2 matrix by a scalar results in a 2×2 matrix.
3. Given two 2×2 matrices

$$
A=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]
$$

their sum is

$$
\begin{aligned}
A+B & =\left[\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right] \\
& =\left[\begin{array}{ll}
b_{1}+a_{1} & b_{2}+a_{2} \\
b_{3}+a_{3} & b_{4}+a_{4}
\end{array}\right]=B+A .
\end{aligned}
$$

Let's verify that $M_{2}(\mathbb{R})$ is a vector space.
4. Given three 2×2 matrices

$$
A=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right], \quad B=\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right], \quad C=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right],
$$

we have

$$
\begin{aligned}
(A+B)+C & =\left[\begin{array}{ll}
\left(a_{1}+b_{1}\right)+c_{1} & \left(a_{2}+b_{2}\right)+c_{2} \\
\left(a_{3}+b_{3}\right)+c_{3} & \left(a_{4}+b_{4}\right)+c_{4}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{1}+\left(b_{1}+c_{1}\right) & a_{2}+\left(b_{2}+c_{2}\right) \\
a_{3}+\left(b_{3}+c_{3}\right) & a_{4}+\left(b_{4}+c_{4}\right)
\end{array}\right] \\
& =A+(B+C) .
\end{aligned}
$$

5. If $A \in M_{2}(\mathbb{R})$ then $A+\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=A$, so the zero vector in

$$
M_{2}(\mathbb{R}) \text { is } \mathbf{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Example

Let's verify that $M_{2}(\mathbb{R})$ is a vector space.
6. The additive inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $-A=\left[\begin{array}{ll}-a & -b \\ -c & -d\end{array}\right]$ because

$$
A+(-A)=\left[\begin{array}{ll}
a+(-a) & b+(-b) \\
c+(-c) & d+(-d)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\mathbf{0}
$$

7. If A is any matrix, then obviously $1 A=A$.
8. Given a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and scalars r and s, we have

$$
\begin{aligned}
(r s) A & =\left[\begin{array}{ll}
(r s) a & (r s) b \\
(r s) c & (r s) d
\end{array}\right]=\left[\begin{array}{ll}
r(s a) & r(s b) \\
r(s c) & r(s d)
\end{array}\right] \\
& =r\left[\begin{array}{ll}
s a & s b \\
s c & s d
\end{array}\right]=r(s A) .
\end{aligned}
$$

Example

Definition

$$
\begin{aligned}
(r+s) A & =\left[\begin{array}{ll}
(r+s) a & (r+s) b \\
(r+s) c & (r+s) d
\end{array}\right] \\
& =\left[\begin{array}{ll}
r a+s a & r b+s b \\
r c+s c & r d+s d
\end{array}\right]=r A+s A
\end{aligned}
$$

10. Given a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and scalars r and s, we have

Additional properties of vector spaces

The following properties are consequences of the vector space axioms.

- The zero vector is unique.
- $0 \mathbf{u}=\mathbf{0}$ for all $\mathbf{u} \in V$.
- $k \mathbf{0}=\mathbf{0}$ for all scalar k.
- The additive inverse of a vector is unique.
- For all $\mathbf{u} \in V$, its additive inverse is given by $-\mathbf{u}=(-1) \mathbf{u}$.
- If k is a scalar and $\mathbf{u} \in V$ such that $k \mathbf{u}=\mathbf{0}$ then either $k=0$ or $\mathbf{u}=\mathbf{0}$.

Aside: set notation

Definition

Let V be a set. We write the subset of V satisfying some conditions as

$$
S=\{\mathbf{v} \in V: \text { conditions on } \mathbf{v}\}
$$

Examples

1. The plane $-3 x+2 y+z=4$ can be written

$$
\left\{(x, y, z) \in \mathbb{R}^{3}:-3 x+2 y+z=4\right\} .
$$

2. The line perpendicular to this plane passing through the point $(1,0,0)$ can be written

$$
\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x}=(1-3 r, 2 r, r), r \in \mathbb{R}\right\}
$$

or

$$
\left\{(1-3 r, 2 r, r) \in \mathbb{R}^{3}: r \in \mathbb{R}\right\}
$$

Practice problem

Definition
Properties
Set notation
Subspaces

If A is an $m \times n$ matrix, verify that

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

is a vector space.
\mathbb{R}^{n} is a vector space. V is a subset of \mathbb{R}^{n} and also a vector space. One vector space inside another?!?

What about

$$
W=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{b}\right\}
$$

where $\mathbf{b} \neq \mathbf{0}$?

Definition

Definition

Suppose V is a vector space and S is a nonempty subset of V. We say that S is a subspace of V if S is a vector space under the same addition and scalar multiplication as V.

Examples

1. Any vector space has two improper subspaces: $\{\mathbf{0}\}$ and the vector space itself. Other subspaces are called proper.
2. The solution set of a homogeneous linear system is a subspace of \mathbb{R}^{n}. This includes all lines, planes, and hyperplanes through the origin.
3. The set of polynomials in P_{2} with no linear term forms a subspace of P_{2}. In turn, P_{2} is a subspace of P.
4. $C^{k}(I)$ is a subspace of $C^{\ell}(I)$ for all intervals I and all $k \geq \ell$.

Criteria for subspaces

Checking all 10 axioms for a subspace is a lot of work. Fortunately, it's not necessary.

Theorem
If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and only if S is closed under the addition and scalar multiplication in V.

Remark
Don't forget the "nonempty." It's often quicker and easier to just check that $\mathbf{0} \in S$.

Let S denote the set of real symmetric $n \times n$ matrices. Let's check that S is a subspace of $M_{n}(\mathbb{R})$.

First, write S as

$$
S=\left\{A \in M_{n}(\mathbb{R}): A^{T}=A\right\}
$$

Now, check three things:

1. $\mathbf{0} \in S$: Obvious.
2. If $A, B \in S$ then $A+B \in S$:

$$
(A+B)^{T}=A^{T}+B^{T}=A+B
$$

3. If $A \in S$ and k is a scalar then $k A \in S$:

$$
(k A)^{T}=k A^{T}=k A
$$

It's a subspace!

The null space of a matrix

Definition

If A is an $m \times n$ matrix, the solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ is called the null space of A.

$$
\text { nullspace }(A)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Remarks

- The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^{n}.
- The null space of a matrix with complex entries is defined analogously, replacing \mathbb{R} with \mathbb{C}.
- As noted before, the solution set of a nonhomogeneous equation ($A \mathbf{x}=\mathbf{b}$ with $\mathbf{b} \neq \mathbf{0}$) is not a subspace since it does not contain $\mathbf{0}$.

Differential equation example

Show that the set of all solutions to the differential equation

$$
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

on an interval I is a subspace of $C^{2}(I)$.

The set of solutions to a homogeneous linear differential equation is called the solution space.

Span

Here's another way to construct subspaces:

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ a set of vectors in a vector space V. A linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an expression of the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

where c_{1}, \ldots, c_{n} are scalars. The span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is the set of all linear combinations of them.
$\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \in V: c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$

Example

The span of a single, nonzero vector is a line through the origin.

$$
\operatorname{span}\{\mathbf{v}\}=\{t \mathbf{v} \in V: t \in \mathbb{R}\}
$$

Theorem
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V. The span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a subspace of V.

Question
What's the span of $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(2,-1)$ in \mathbb{R}^{2} ?

