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First order linear systems

Definition
A first order system of differential equations is of the form

x′(t) = A(t)x(t) + b(t),

where A(t) is an n× n matrix function and x(t) and b(t) are
n-vector functions. Also called a vector differential
equation.

Example
The linear system

x′1(t) = cos(t)x1(t) − sin(t)x2(t) + e−t

x′2(t) = sin(t)x1(t) + cos(t)x2(t) − e−t

can also be written as the vector differential equation

x′(t) = A(t)x(t) + b(t)

where

A(t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
, x(t) =

[
x1(t)
x2(t)

]
, and b(t) =

[
e−t

−e−t
]
.
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The vector space Vn(I)

A solution to a vector differential equation will be an element
of the vector space Vn(I) consisting of column n-vector
functions defined on the interval I.

Definition
Suppose x1(t),x2(t), . . . ,xn(t) ∈ Vn(I). The Wronskian of
these vectors is

W [x1, . . . ,xn](t) =

∣∣∣∣∣∣
| | |

x1(t) x2(t) · · · xn(t)
| | |

∣∣∣∣∣∣ .
Theorem
If W [x1, . . . ,xn](t) is nonzero for at least one t ∈ I, then
{x1(t), . . . ,xn(t)} is a linearly independent subset of Vn(I).
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Solutions to homogeneous linear systems

As with linear systems, a homogeneous linear system of
differential equations is one in which b(t) = 0.

Theorem
If A(t) is an n× n matrix function that is continuous on the
interval I, then the set of all solutions to x′(t) = A(t)x(t) is a
subspace of Vn(I) of dimension n.

Proof.
Up to you. Proof of dim = n later, if there’s time. Q.E .D.
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The general solution: homogeneous case

If the solution set is a vector space of dimension n, it has a
basis.

Definition
Any set {x1,x2, . . . ,xn} of n solutions to x′ = Ax that is
linearly independent on I is called a fundamental set of
solutions on I. Any solution may be written in the form

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t),

which is called the general solution.

Theorem
If A(t) is an n× n matrix function that is continuous on an
interval I, and {x1,x2, . . . ,xn} is a linearly independent set of
solutions to x′ = Ax on I, then

W [x1,x2, . . . ,xn](t) 6= 0

for every t ∈ I.
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The general solution: nonhomogeneous case

The case of nonhomogeneous systems is also familiar.

Theorem
Suppose A(t) is an n× n matrix function continuous on an
interval I and {x1, . . . ,xn} is a fundamental set of solutions to
the equation x′ = Ax. If x = xp(t) is any particular solution to
the nonhomogeneous vector differential equation

x′(t) = A(t)x(t) + b(t)

on I, then every solution to this equation on I is in the form of
the general solution

x′(t) = ︸ ︷︷ ︸c1x1(t) + c2x2(t) + · · ·+ cnxn(t) + xp(t),

= xc(t) + xp(t)

where xp(t) is any particular solution.

The two pieces of the general solution are the particular
solution, xp(t), and the complementary solution, xc(t).
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Initial value problems

Sometimes, we are interested in one particular solution to a
vector differential equation.

Definition
An initial value problem consists of a vector differential
equation

x′(t) = A(t)x(t) + b(t)

and an initial condition

x(t0) = x0

with known, fixed values for t0 ∈ R and x0 ∈ Rn.

Theorem
When A(t) and b(t) are continuous on an interval I, the above
initial value problem has a unique solution on I.
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Turning higher order linear systems into first order

Aren’t we a little limited if all we can solve are first order
differential equations? No.

Example

Consider the linear second order system

x′′(t) − 4y(t) = et,
y′′(t) + t2x′(t) = sin t.

Introduce new variables

x1(t) = x(t), x2(t) = x′(t), x3(t) = y(t), x4(t) = y′(t).

Then the above equations can be replaced with

x′2(t) − 4x3(t) = et,
x′4(t) + t2x2(t) = sin t,

and we must supplement them with the equations

x′1(t) = x2(t), x′3(t) = x4(t).
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