CONTINUOUS SPATIAL SEMIGROUPS OF
COMPLETELY POSITIVE MAPS OF (%)

ROBERT T. POWERS

ABSTRACT. This paper concerns the structure of strongly continuous one parameter
semigroups of completely positive contractions of B($) = B(A® L?(0, c0)) which are
intertwined by translation. These are called C'P-flows over K Using Bhat’s dilation
result each unital C P-flow over R dilates to an E,-semigroup of B($1) where $; can
be considered to contain B(K® L?(0, 00)). Every spatial E,-semigroup is cocycle con-
jugate to one dilated from a C'P-flow. Each C P-flow is determined by its associated
boundary weight map which determines the generalized boundary representation.
The index of the E,-semigroup dilated from a C'P-flow is calculated. Machinery for
determining whether two C' P-flow dilate to cocycle conjugate E,-semigroups is de-
veloped. This paper is available via http://nyjm.albany.edu:8000/j/2003/9-13.html

I. INTRODUCTION.

The goal of this paper is the construction of new spatial E,-semigroups of B($)).
An E,-semigroup of B($)) is a strongly continuous one parameter semigroup of
x-endomorphisms of B(H). An F,-semigroup is spatial if there is a one parameter
semigroup of intertwining isometries. If there are enough intertwining semigroups
to reconstruct the E,-semigroup the semigroup is said to be completely spatial. The
first examples of spatial E,-semigroups were given in [P1] and later Arveson [Al]
defined and completely classified the completely spatial F,-semigroups. The index
first introduced and the additivity property suggested in [P1] and later correctly
defined and proved to be additive under tensoring by Arveson [A2] is a complete
cocycle conjugacy invariant for the completely spatial F,-semigroups. In [P2] an
example of a non spatial E,-semigroups was first constructed and recently Tsirelson
[T2] has constructed a one parameter family of non isomorphic product systems of
type III in the context of Arveson’s theory of continuous tensor products of Hilbert
spaces and from Arveson’s representation theorem this implies the existence of a
one parameter family of non cocycle conjugate non spatial E,-semigroups.

The first example of a spatial F,-semigroup which is not completely spatial was
constructed in [P4]. Now Tsirelson [T1] has constructed a one parameter family
of non isomorphic product systems of type Il and by Arveson’s theory of product
systems this implies the existence of a one parameter family of non cocycle conjugate
spatial F,-semigroups of B($)).

In this paper we develop a way of constructing spatial E,-semigroups of B($).
This method can in principle construct all spatial F,-semigroups (see Theorem
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4.0A). We use the new technology developed by Bhat. Bhat showed in [Bh] that
every unital C'P-semigroup of B(R) can be dilated to an E,-semigroup of B(5))
where $) can be thought of as a larger Hilbert space containing K. A C' P-semigroup
of B(R) is a strongly continuous one parameter semigroup of completely positive
contractions of B(RK). Since C P-semigroups are much easier to construct than E,-
semigroups Bhat’s result is extremely useful in constructing F,-semigroups. In this
paper we study CP-flows over a Hilbert space 8. A C' P-flow is C'P-semigroup of
A ® L?(0,00) which is intertwined by translation on L?(0,00). We believe this is
the simplest object from which one can construct via Bhat’s dilation all the spatial
E,-semigroups. We show how each C'P-flow over R is determined from a boundary
weight. We show how to calculate the index of the FE,-semigroup obtained by
dilation.

Although we construct no new examples of spatial E,-semigroups we consider
the results of this paper to be a big success. In a subsequent paper we will discuss
the classification of F,-semigroups obtained from CP-flows in the case where K
is one dimensional. In the case when K is two dimensional all sorts of new and
interesting problems arise. Since most of the basic problems reduce to questions
about completely positive maps of the two by two matrices into themselves we
believe these problems are tractable. The reason we have not given applications
of CP-flows to constructing F,-semigroups of B($)) in this paper is that so many
different approaches suggest themselves that we are not sure which direction is
best. We can assure the reader that C'P-flows lead to barrel loads of examples and
we believe that these examples will lead the way into developing a classification of
spatial E,-semigroups of B(9).

The author wishes to thank the referee for pointing out numerous misprints,
omissions and for helpful suggestions.

II. BACKGROUND, DEFINITIONS AND GENERATORS OF SEMIGROUPS

All Hilbert spaces which will be denoted by the characters such as £, 8 and 9
are assumed to be separable unless otherwise stated. On Hilbert spaces we use the
physicist’s inner product (f, g) which is linear in g and conjugate linear in f. If §
is a Hilbert space we denote by B($) the set of all bounded linear operators on $)
and by B(). the pre dual of B(5)). Every element p € B(9). can be represented
in the form p(A) = X2, (fi, Agi) where X2, || fill |lgi|] < oo. If H1 and $o are two
Hilbert spaces we denote by B(£)1, $2) the space of bounded linear operators from
9o to H1. Note if A€ %(531,57)2> then A*A € %(f)g) and AA* € %(57)1)

Definition 2.1. We say « is an E,-semigroup of a von Neumann algebra M with
unit [ if the following conditions are satisfied.

(i) a4 is a x-endomorphism of M for each ¢t > 0.
(ii) v, is the identity endomorphism and oy o ag = a4 for all s,¢ > 0.
(iii) For each f € M, (the pre dual of M) and A € M the function f(a;(A))
is a continuous function of ¢.
(iv) au(I) = I for each t > 0(ay preserves the unit of M).

Definition 2.2. Suppose a and 3 are E,-semigroups B($1) and B($2). We say
a and (3 are conjugate denoted @ ~ (3 if there is *-isomorphism ¢ of B($1) onto
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B($2) so that ¢poay = [y o ¢ for all t > 0. We say o and [ are cocycle conjugate
denoted oy ~ (B if o/ and [ are conjugate where o and o’ differ by a unitary
cocycle (i.e., there is a strongly continuous one parameter family of unitaries U (t)
on B(H1) for t > 0 satisfying the cocycle condition U (t)ay(U(s)) = U(t+ s) for all
t,s > 0 so that a}(A) = U(t)ay(A)U(t)~! for all A € B($H;) and t > 0).

Definition 2.3. Suppose « is an E,-semigroup of B($)). We say « is spatial if there
exists a strongly continuous one parameter semigroup of isometries U(t) € B($))
which intertwine ay, i.e., U(t)A = a,(A)U(t) for all A € B($H) and ¢t > 0.

The property of being spatial is a cocycle conjugacy invariant. If there are enough
intertwining semigroups to reconstruct the F,-semigroup we say the semigroup is
completely spatial. In [A1] Arveson classified the completely spatial E,-semigroups
of B(%)). He showed that each completely spatial E,-semigroup is cocycle conjugate
to a CAR flow of rank n for n = 1,2,--- and n = oco. The CAR flows are F,-
semigroups of B(§)) constructed using representations of the CAR algebra.

The E,-semigroups of 9B(%)) themselves form a semigroup and the appropriate
group operation is tensoring. If a and 3 are F,-semigroups of B()) and B(RK),
respectively, then one can form a new semigroup v = a®  which acts on the tensor
product space $) ®@ K. Specifically, we define 7:(A ® B) = ay(A) ® G¢(B). In [A2]
Arveson showed the index is additive (i.e., the index of 7 is the sum of the index of
a and the index of [3). One of the important results of the theory of E,-semigroups
obtained by Arveson is that if ¢ is a one parameter group of *-automorphisms of
B(9) (ie., o1(A) = Ut)AU(t)! with U(t) a strongly continuous one parameter
unitary group) then o acts like the unit under tensoring. This means that if «
is an F,-semigroup and o is one parameter group of x-automorphisms then « is
cocycle conjugate to a ® 0. Another result we state as a theorem (see Theorem
2.9 of [P4]) so we can refer to it later is that the restriction of an FE,-semigroup
to an invariant subspace yields an E,-semigroup which is cocycle conjugate to the
original F,-semigroup.

Theorem 2.4. Suppose « is a proper E,-semigroup of B($) (so o (B(H)) # B(H)
for t > 0) and E € B($) is an hermitian projection which is invariant under oy
(i.e., ay(E) = E for all t > 0). Let 9 be the range of E and let Qg be the set of
all operators A € B(9) so that A = EAE. Note Qg is *-isomorphic with B(9)
the algebra of all bounded operators on 9t and note if A € Qg then oy(A) € Qp
for all t > 0. Let B be the restriction of a to Qg so Bi(A) = a(A) for all A € Q.
Then (3 is an E,-semigroup of B(9M) which is cocycle conjugate to .

We assemble some of the standard facts about the semigroups of contractions.
Suppose X is a Banach space and t — S(t) is a strongly continuous one parameter
semigroup of contractions of X into itself where by strong continuity we mean
|S(t)z — x| — 0 as t — 0+ for each x € X. The generator T of S is the linear
operator from the domain ®(7') into X given by

— 1 -1 _
T:L'—xl_l)r&t (S(t)x — x)

and the domain is the set of x € X so that the limit exists in the sense of norm
convergence. The domain ©(7') is norm dense in X and the generator T is closed
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which means that if z,, € ©(T) forn =1,2,---- , ||, —z|| — 0 and || Tz, —y| — 0
as n — oo then x € ®(T') and Tz = y.

Definition 2.5. A densely defined operator T" on a Banach space X is said to be
dissipative if for each f in the domain of T" there is a linear functional F' in the unit
ball of the dual of X (so that |F(h)| < ||| for all h € X) so that F(f) = ||f| and
Re(F(Tf)) <0).

Lemma 2.6. If T is densely defined dissipative operator on a Banach space X
then T is closable and its closure is dissipative.

For the proof see Lemma 3.1.14 of Bratteli and Robinson [BR].

Theorem 2.7. (Lumer-Phillips) If T is a closed densely defined dissipative oper-
ator on a Banach space X and the range of (AI — T') is dense in X for some real
A > 0 then T is the generator of a strongly continuous one parameter semigroup
of contractions. Conversely, if T is the generator of a strongly continuous one pa-
rameter semigroup of contractions then T is a closed dissipative operator and the
range of (A —T) is all of X for every real A > 0.

For the proof see Theorem 3.1.16 of [BR].

If T is the generator of a strongly continuous one parameter semigroup of con-
tractions we often refer to (I — 7)1 as the resolvent of T. Note the resolvent is a
one to one mapping of X onto the domain ®(7T").

Theorem 2.8. Suppose T is the generator of a strongly continuous one parameter
semigroup S(t) of contractions of a Banach space X andt — x(t) is a differentiable
map of [0, s] into the domain ®(T) and

Then x(t) = S(t)x(0) for t € [0, s].

Proof. Assume the hypothesis and notation of the theorem. Let y(t) = S(¢)x(0) —
x(t). Then y(t) is differentiable and

d

Sult) = Ty(t

for t € [0, s]. We show ||y(¢)|| is non increasing. Suppose t € [0,s) and A > 0 and
t+ h < s. Since T is dissipative there is an element F; € X™* of norm one with
Fi(y(t)) = |ly(t)]]| and Re(F¢(Ty(t))) < 0 for each t € [0, s]. Then we have

ly(t + B[ = ly(O) ] =Re(Fen(y(t + b)) — Fi(y(t)))
=Re((Fipn — F1)(y(t) + hRe(Fin(Ty(t)))
+ Re(Frn(y(t +h) —y(t) — hTy(t))).
Now the first of the three terms is non positive and the third is o(h). So all we need to

show is that the limit superior of Re(Fy4p,(Ty(t)) as h — 0+ is not positive. Suppose
the limit superior is a positive number A. Then there is a decreasing sequence of
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positive numbers h,, so that h, — 0 and Re(Fyip, (Ty(t))) — X as n — oo. Let
F be a weak limit point of the sequence Fjip, . Since the |[|[Fiyp, || = 1 we have
| F'|| < 1. We have

F(y(t) =F(y@t) —y(t + hn)) + (F = Fyn, ) (Yt + ha) —y(t))
+ (F = Fiyn, ) (y(t) + ly(t + ha)||

As n — oo the first two terms tend to zero and the last term tends to [|y(t)].
Since F' is a weak limit point there is a subsequence of the sequence h,, converging
to zero so that the third term tends to zero for the subsequence. Hence, we have
F(y(t)) = ||ly(t)]|- Also we have Re(F(Ty(t)) = A. Let g(s) = F(S(s)y(t)) for s > 0.
Since y(t) € ®(T) we have g is differentiable and ¢'(s) = F(S(s)Ty(t)). We have
1S(s)y(t)]] > Re(g(s)) and since g(0) = [|y(¢)|| and Re(g’(0)) = A > 0 we have
1S(s)y(t)|| > |ly(t)] for some s > 0. But this contradicts the fact that S(s) is a
contraction. Hence, we have

lim hsll&(lly(t + M) = lly®I)/h <0

and it follows that ||y(¢)|| is a non increasing function of ¢. Since |ly(0)|] = 0 we
have y(t) = 0 for all t € [0, s]. Hence, z(t) = S(t)x(0) for t € [0,s]. O

Theorem 2.9. Suppose T is the generator of a strongly continuous one parame-
ter semigroup of contractions O, of B($).. Then ©; is positivity preserving (i.e.,
Oi(p) >0if p>0 forallt>0 and p € B(H).) if and only if p — XTp > 0 implies
p >0 forall A€ (0,1) and p € D(T).

Proof. This result can be dug out of Chapter 3 of [BR] (Bratelli and Robinson
work with groups but the arguments work for semigroups). A sketch of the proof is
as follows. Assume the hypothesis of the theorem and ©; is positivity preserving.
Then for A > 0 we have

(I-XT)"! = %/ e~ O, dt
0

so (I — AT)~! is positivity preserving for A > 0. Hence p — ATp > 0 implies p > 0
for all A > 0 and p € D(T)).

Conversely, suppose p — ATp > 0 implies p > 0 for all A € (0,1) and p € D(T).
Then (I —AT)~! is positivity preserving for all A € (0,1). As shown in calculations
in Chapter 3 of [BR] we have

O1(p) = exp(tT)(p) = lim (I —(t/n)T)""p

n—oo

for each p € B(H), and t > 0. Since (I — (t/n)T)~! is positivity preserving for
n > t~lwe see O, is the limit of positivity preserving maps and, hence, O, is
positivity preserving. [J

We will occasionally need the following lemma.
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Lemma 2.10. Suppose p € B(9). and E € B($)) is an orthogonal projection. Let
p1(A) = p(EAFE) for A € B($). Then

lp = p1lI* < 2]lplI* = 2|1 |?

Proof. We prove the lemma for the case when |[|p|| = 1. The general case then
follows by linearity. Suppose p € B($). and ||p|| = 1. Then p can be written in the
form

p(A) = Z Ai(fi, Agi)

where the f’s and ¢’s form an orthonormal set of vectors and the \; are posi-
tive numbers which sum to one. Let m be the countable direct sum of identity
representations of B($) and let

F:\/Ylfl@\/TZfZ@"' and G:mgl@mgz@"'

Then we have p(A) = (F,7(A)G) and ||F|| = ||G] = 1. Let p1(A) = p(FAE)
for all A € B(9H). We have p1(A) = (n(E)F,7(A)r(E)G) and, hence, |[p1] <
|m(E)F|| |7 (E)G||. Suppose A € B(H) and ||A|| < 1. Then

p(A) = pr(A)| =[(F, 7n(A) (I = 7(E))G) + ((I = 7(E)F, 7(A)m(E)G)|
<G = 7(E)G| + [|F = = (E)F[| | (E)G||

Now ||F — m(E)F|? = (F,(I — n(E))F) = 1 — ||x(E)F||? and, similarly we have
|G — 7n(E)G||* = 1 — ||7(E)G|*. Combining these with the above inequality we
have

p(A) = pr(A)] < V1= [7(E)GIP + VIIn(E)G? — [ln(E)G? = (E)F>

Since /& + /y < /2x + 2y for all z,y € [0, 00) it follows that

p(A) = p1(A)] < V2 = 2[n(E)G|P|x(E)F|]>.
for all A € B($) with ||A|| < 1. Hence, we have
lp = p1ll* < 2 =2 (B)G|P |7 (B)F|* < 2 = 2[|pa||?

Where the second inequality in the line above follows from the inequality ||p1]| <
|m(E)F|| ||7(E)G|. Hence, we have proved the lemma for the case ||p|| = 1. For the
general case we first note that if ||p|| = 0 then p = p; = 0 and the conclusion of the
lemma follows trivially. Then if ||p|| > 0 we simply apply the above inequality to
the functionals ||p||~!p and ||p||~!p1 and the inequality of the lemma follows. [
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III. SUBORDINATES OF C' P-SEMIGROUPS.

In this section we are interested in the order structure of C'P-semigroups and
the E,-semigroups they induce from a result of Bhat [Bh].

Definition 3.1. A CP-semigroup « of B($) is a one parameter semigroup of
completely positive contractions a; of B($)) into itself which are strongly continuous
in the sense that ||ay(A)f — Af]| — 0 ast — 0+ for all A € B(H) and f € H.

We are particularly interested in the order structure for C'P-semigroups where
the order structure is in the sense of completely positive maps. A mapping ¢ from
one operator algebra 2 into B($) completely positive if

n

> (fi d(ATA;) f5) > 0

i,7=1

for A; e, fie Hfori =1,2,--- ,nand n = 1,2,---. An important result of
Stinespring [St] states that if 2 has a unit I and ¢ completely positive from 2 into
B($)) there is a x-representation 7w of A on B(K) and a operator V from §) to K so
that

P(A) =V*r(A)V

for all A € 2 and the vectors m(A)V f for A € A and f € $ span K. Furthermore,
this representation 7 is determined by these requirements up to unitary equivalence.
Note that for a completely positive map ¢ we have ||¢|| = ||¢(I)||. By requiring 2
to have a unit we insure ¢ is bounded. Also, if v is a second completely positive
map of A into B(H) and the mapping A — ¢(A) —v(A) for A € A is completely
positive then there is a unique positive operator C' € 7w (20)’(C' commutes with 7(A)
for all A € ) so that v(A) = V*Cn(A)V for all A € 2.

Another result concerning completely positive maps which we will often use is
that if ¢ is a completely positive contraction from a C*-algebra 2 to B($) and S € A
is a contraction (||S]| < 1) then if ¢(S) is an isometry then ¢(AS) = ¢(A)p(S) for
all A € 2 and if ¢(S*) is an isometry then ¢(SA) = ¢(S)p(A) for all A € A. This
result follows easily from the Stinespring construction.

Arveson has described the completely positive maps of B($) into B(R) which
we describe in the following definition. We use Arveson’s characterization to defines
the rank of such a map. In this section we denote by B(K, ) the space of bounded
linear operators from the Hilbert space $) to the Hilbert space K. Note that if
A € B(R,9) then A* € B(H, R).

Definition 3.2. Suppose ¢ is a completely positive o-weakly continuous contrac-
tion of B($)) into B(RK). Arveson has shown that a completely positive o-weakly
continuous contraction ¢ of B($)) into B(RK) is of the form

5(4) = 3" CACH
=1

for A € B(H) where r is a non-negative integer or a countable infinity and the
C; € B(R,9) are linearly independent over ¢%(N) which means that for every
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square summable sequence z; € C for ¢ € [1,7 + 1) if C is the operator given by

C = ZT: ZZCZ
i=1

(one can show the sum converges in norm) then C' = 0 if and only if each z; = 0
for i € [1,r 4+ 1). If ¢ is expressed in terms of a second linearly independent set of
operators C] the number of terms 7’ for the second sum is the same. We call r the
rank of ¢.

We have the notion of when map ¢ dominates v. Sometimes it is useful to have
a word for the maps v which are dominated by ¢. We call these maps subordinates

of ¢.

Definition 3.3. Suppose ¢ is a o-weakly continuous completely positive map of
B($) into B(K). Then v is a subordinate of ¢ if v is a completely positive map
of B(H) into B(RK) and the mapping for A € B(H) given by A — ¢(A) — v(A)
is completely positive. In this situation we say ¢ dominates . The fact that ¢
dominates v or what is the same thing that v is a subordinate of ¢ is denoted ¢ > ~.
(Note ~ is automatically o-weakly continuous.) Suppose « is a C'P-semigroup of
B(H). Then [ is a subordinate of « if 3 is a C'P-semigroup and A — «a;(A) — (i (A)
for A € B($) is completely positive for all t > 0 (i.e., ay > [ for each t > 0). Again
we may express this same notion by saying a dominates § and this is denoted by
writing a > .

Suppose ¢ is a o-weakly continuous complete positive map of B(9) into B(K)
and ¢ is given as in Definition 3.2. Then the extremal subordinates of ¢ are of the
form v(A) = CAC* for A € B($) with

i=1 i=1

We see that the extremal subordinates of ¢ are isomorphic to the rank one
projections in a r-dimensional Hilbert space.

An important result of Bhat [Bh] is that each unital C'P-semigroup « can be
dilated to an E,-semigroup a and if the dilation is minimal then a? is unique up
to cocycle conjugacy. The relation between the C'P-semigroup « of B($)) and the
minimal dilation a¢ which is an E,-semigroup of B($),) is given by

a(A) = W*ad(WAWH W

for all A € B($) where W is an isometry of §) into 1 so that WIW* is an increasing
projection for a? (i.e., ad(WW*) > WW* for all t > 0) and o is minimal over the
range of WW*. We use Arveson’s definition of minimal [A6] which is equivalent to
Bhat’s definition but easier to state which means the linear span of vectors of the
form

af (WAW* )l (WAW*) - af (WA, W*)W f
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with f € 9, 4; € B($H),t; >0fori=1,--- ,nand n = 1,2,--- is dense in $;.
Arveson showed that a? is minimal if and only if the operators af(W AW*) for
A € B(H) generate B(H;) so every vector is cyclic for the af (WAW™*).

The minimal dilation a? is determined by o up to conjugacy. Because of the

importance of this construction we briefly describe the situation. Suppose a? in

a minimal dilation of the unital C P-semigroup of B($)) to an E,-semigroup a? of

B(H1) and W is an isometry of § into H; so that a? is minimal over the range of
W and
a(A) = W*ad(WAWHW

for all A € B(H) and t > 0. The key to understanding why a determines a? is
seeing how the expression

= :E'(Alv e ATL?tlv e 7tn)
=W*af (WAW*)all (WAW*) - af (WA W)W

is computable from «. Let us first take the case of two terms with t; > t5 so we set
s =1ty and t = t; — t5. Then we have

Wl (WAW*)al (WBW*)W =W*ai  (WAW*)ad(WBW*)W
=W*ad(ad(WAW*)WBW* )W
=W*ad(WW*) ol (ad(WAW* YW BW*)W
=W*ad(WW*ad(WAW* )W BW*)W
=W*ad(Wa(A)BW*)W = a,(a(A)B)

where in the third line we used the fact that ad(WW*) > WW* so we have W* =
W*ad(WW*). So for t; > t, we have

Wl (WAW*) ol (WAW*S)W = a, (g —¢, (A1) As)
And when t; <ty a similar calculation shows

Wl (WAW*) ol (WAW*)W = ay, (A1, —¢, (A2))
So in general we have

W*Oét1<WA1W*)Oét2<WA2W*)W oy, (o, —t, (A1), —t, (A2))
where t, = min(ty, t2). For the case of n terms we find
W ad (WAW) ol (WAW*) -l (WA, W)W
W oo (WAIW ol (WAW™) ool _ (WA W)W

where s = min(tq,ta, - ,t,). So if ¢ is the minimum of the t's we have

W ad (WAW*)ad (WAW*) - (WA,WHW =
w* as(atl_s(WAlW ) atk (WA W™ )WAkW*atkH(WAkHW*)
. ~atn_S(WAnW*))W
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In the expression above we can replace W* by W*as(WW™) on the left and W by
as(WW*)W on the right. Then we have

W*a;ll (WA1W*)04212 (WAW™*) - - agn(WAnW*)W = W*ag(WXAkYW*)W

where

X =W*af _s(WAW*) o (WA W)W

and
Y =Wy (WA W) ---af _(WAWH)W

Note the expressions for X and Y involve an expression = with a smaller number
of terms. One sees that by using this procedure repeatedly one can successively
reduce the number to terms until the number of terms is two or less. In this way
one can evaluate = in solely in terms of a. To give an example, for the product of
four terms with 0 <ty <t; <t3 < t4 we find

W*al (WAW*) ol (WA W)l (W AsW*) ol (WA W)W
= O, (ah —t2 (Al)A2at3 —t2 (A3at4 —t3 (A4)))

In [P4] we introduced the notion of a local cocycle for E,-semigroups. If « is an
E,-semigroup of B($) then ¢ — S(t) is a cocycle if S(t) is strongly continuous in
t, S(0) = I and S(t) satisfies the cocycle identity S(t)a:(S(s)) = S(t + s) for all
s,t > 0. The family S(t) is a local cocycle if S(t) is a cocycle and S(t) commutes
with ay(A) for all A € B(9) (i.e., S(t) € a(B(H)) for all t > 0). In Theorem 4.9 of
[P4] it was shown that the projection valued local cocycles with the order relation
E(t) > F(t) for all t > 0 form a complete lattice which is a cocycle conjugacy
invariant. The same argument shows that the positive local cocycles with the
obvious order relation are a cocycle conjugacy invariant. What is of interest is
that the positive contractive local cocycles of an F,-semigroup « are in one to one
correspondence with the subordinates of «.

Theorem 3.4. Suppose « is an E,-semigroup of B($)). Suppose ( is a subordinate
of a. Then there is a local cocycle t — C(t) with 0 < C(t) < I for t > 0 and
Bi(A) = C(t)au(A) for allt > 0 and A € B(9H). Conversely, if t — C(t) is a local
cocycle with 0 < C(t) < I for t > 0 and if 5;(A) = C(t)as(A) for all t > 0 and
A € B(9) then [ is a subordinate of . Furthermore, the local cocycles t — C(t)
with 0 < C(t) < I for all t > 0 with the obvious order relation are a cocycle
conjugacy invariant.

Proof. Suppose « is an E,-semigroup of B($)) and 3 is subordinate of «. Suppose
t > 0. Since oy > [y and a4 is a *-isomorphism we have from the Stinespring
results concerning completely positive maps that G;(A) = a(A)C(t) with C(t) €
a:(B(H)) for each A € B($H) and 0 < C(t) < I. Since [ is a semigroup we have
for t,s > 0 that

C(t+5) = Brrs(I) = Be(Bs(1)) = Bi(C(s)) = Ct)ar(C(s))-

Conversely suppose t — C(t) is a local cocycle with 0 < C(¢) < I for all ¢ > 0.
Then for each ¢ > 0 we have

ai(A) = Bi(A) = (I = C(1))ar(A) = (I = C(1) 2 s (A)(I = C(1))

N
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Hence, the map A — a;(A) — B;(A) is completely positive for ¢ > 0.
Next suppose « and 3 are cocycle conjugate E,-semigroups of B($1) and B(92),
respectively. This means there is a unitary operator W € 9B($1, $2) so that

for all A € B(H2) and ¢ > 0 where t — S(¢) is an « unitary cocycle. Suppose
t — C(t) is a local cocycle for o with 0 < C(¢) < I for all ¢ > 0. Let D(t) =
*S(t)C(t)S(t)~*W. We have 0 < D(t) < I for all t > 0 and

D(t)B,(D(s)) =D(t)W*S(t)ce(WD(s)W*)S(t) "W
—D( YW*S(t)ar(S(5)C()S(s) ) S ()W
Ja(S(s)

for all t, s > 0. Hence, t — D(t) is a cocycle for 3. Next note that

D(t)3,(A) = HCH)S ) T WW*S () ay(WAW*)S(t) "W

S)C()S
=W S(t)C(t)a (WAW™*)S(t)~'w
=W*S(t)a,(WAW*)C(£)S(t) W
=W*S(t)as(WAW)S(t) " WW*S(t)C(t)S(t) ' W
=0:(A)D(t)

for all A € B(H) and t > 0. Hence t — D(t) is a local cocycle for 8. Hence, the
cocycle conjugacy produces mapping from each positive contractive local cocycle
t — C(t) for a to a positive contractive local cocycle D(t) for . Since this mapping
is invertible and preserves order it follows that we have an order isomorphism
from the local cocycles for a onto the local cocycles for § and from what we have
shown above this gives and order isomorphism of the subordinates of o with the
subordinates of 5. [

Theorem 3.5. Suppose « is a unital C P-semigroup of B($) and a? in a minimal
dilation of a to an E,-semigroup of 8($)1). Then there is an order isomorphism of
the subordinates of o with the subordinates of a? given as follows. Suppose the
relation between oy and of is given by

o (A) = W*ad(WAW*)W

for all A € B($)) and t > 0 where W is an isometry of §) into $); with WW™* an
increasing projection for a® and a? is minimal over the range of WW*. Suppose
7 is a subordinate of a® and C(t) = ~(I) for t > 0. Then (3 the subordinate of «
associated with v under this isomorphism is given by

Bi(A) = W al(WAW)C(t)W
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for all A € B($) and t > 0.

Proof. Assume the hypothesis and notation of the theorem. Suppose 7 is a subor-
dinate of a? and C(t) = ~4(I) for all t > 0. Let 3; be as given in the statement of
the theorem. Note

Bi(A) = W*ad(WAW*)C(OW = W*C()2 ad(WAW*)C ()2 W
and

ay(A) — B(A) =W o (WAW*)(I — C(t))W
=W*(I = C#))2ad(WAW*)(I — C(t))2W
for all A € B(9H) and t > 0. From this it follows that A — [(;(A) and A —

at(A)—B¢(A) are completely positive maps for all ¢ > 0. Note that (3; is a semigroup
since

Bi(s(A)) =W*a(WW*ad(WAW*)C(s)WW*)C(t)W
=W*ad(WW*)al, ((WAW*)af (C(s)ad (WW*)C ()W
=W*ad(WW*)al, (WAW*)CO(t)af (C(s)af (WW*)W
=W*al(WW*)ad, (WAW*)C(t + ) (WW*)W

—W*ad, (WAW*)C(t + )W = Byy(A)

for all A € B($H) and ¢, s > 0. (Note above we used the fact that ad(WW*) > WW*
which implies W*ad(WW*) = W* and o (WW*)W = W for all t > 0.) Hence, 3
is a subordinate of a.

Next we show the mapping just described from C(¢) to [ is one to one. In fact
we will show that the local cocycle C(t) can be reconstructed from 3. We will show
how expressions like

E=W*al (WAW) - af (WAWHC(to)al (WBW*)---ad (WB,W* )W

Sm

can be calculated from o« and 3. Since a? is minimal over the range of W it follows

that these expression determine C(t). We begin with some low order terms. Suppose
0<t<sand A€ B(H). Then

W*C(t)ad(WAWS W =W*a?
—W*a

WAW*)C ()W

YWWC () ad(WAW*)ad(WW*)W
WW*ad(WAW*)ad(WW* )W

WW*al ,(WAW*YWW*)W

/\/\/\
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Suppose 0 < s <t and A € B($H). Then

W*C(t)al(WAW W =W*C(s)ad(C(t — 5))al(WAW*)W
=W*ad(WW*)C(s)ad(C(t — s))a(WAW*)W
=W*C(s)ad(WW*C(t — s) WAW*)W
=W*C(s)ad(WB—s(I) AW*)W

=Bs(Be—s(1)A).

Repeating the computation with C'(¢) on the right gives
W*ad(WAW*)C(t)W = Bs(ABi—s(I)).

Next we show how an expression = given above can be calculated in terms of a =
with fewer terms. Consider = given above. Let ¢t = min(ty, - ,tm, o, S1,°* , Sm)-
Suppose t = t. Note that C(t,) = C(t)ad(C(t, — t)) and C(t) commutes with
a(WAW™) for s > t and A € B($). Using this we find the expression for Z above
can be reduced as follows.

[1]

= W*C(t)af(af, (WAW?) - - af, (WAW*)O(t,)ad, (WBIW™) - -
ol (WB,W*))W

m

_~

for t{ = t; —t and s;. = s;—tfori = 0,1,---,nand j = 1,---,m. Since
aAd(WWHW = W, W*ad(WW*) = W* and o}(WW?*) commutes with C(t) we
have

[1]

= W*C(t)af(WW*af, (WA W) - --
. -azil, (WAk_lw*)WAkW*ail/k+1 (WAk+1W*) e

k—1
g (WAW*)C(t)ad (WBW™) - -
ol (WB,WHWW*)W
Let
X =Whag (WAWY)---afl (WA WHW
and

Y = W*af/kﬂ (WA W*) - - afs (WAW)C(t,)ad, (WBW™) - -
ol (WB, W W

Note X, Y € B(9) and X is computable in terms of a as described at the beginning
of this section and Y is of the form = with a smaller number of terms. Then we
have

E=W*CH)ad(WXALYW )W = 3(XAY)

Hence, we have shown that in this case = can be computed from a knowledge of 3
and = with fewer terms.
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Next suppose t = t,. Then C(t,) = C(t) commutes with all the other terms and
we have

[1]

= W*C(t)af (af, (WAWY) - --af, (WA W*)ald, (WB,W*) - -
-~a§,m(WBmW*))W
for ¢, = t; — t and s; = s;—tfori=1,---,nand j = 1,---,m. Since

aA(WWHW = W, W*ad(WW*) = W* and o (WW*) commutes with C(t) we
have

[1]

=W*C(t)ad(WW*af, (WA W) - --
eaf (WAW)ad, (WBIW™) - --af, (WB,W* )WW*)W

Let
Z=W*af (WAW?)---af, (WAW)al, (WBIW?)---al, (WB,W*)W
Note Z € B($) and Z can be computed from a knowledge of o. Hence, we have
E=W*CHt)al(WZWHW = 3,(Z)

Hence, we have shown in this case = can be calculated from a knowledge of 3 and
.

Finally suppose t = si. Then the same sort of calculation we did for ¢t = t
shows that = can be computed from a knowledge of @ and § and = with fewer
terms. Hence, we have shown in all cases = can be computed from a knowledge of
a, § and = with fewer terms. Then by iteration we can reduce the number of terms
in = until the number of terms is down to two or one where we have shown how to
compute these terms from a knowledge of o and (3. Hence, we have shown that all
the terms = can be computed from a knowledge of o and 3. Since a is minimal
over the range of W it follows that for each ¢ > 0 we can compute (F, C(t)G) where
F and G are linear combinations of vectors of the form

af (WAW*) - af (WA,W*)W f

with f € $, A, € B(9),t; > 0fori=1,---,n. Since the closed span of such vectors
is all of $; it follows that C(t) is determined from a knowledge of o and /3. Hence,
the mapping C(t) — [; from positive contractive local cocycles to subordinates of
« is one to one.

Next we show the mapping is onto (i.e., it has range all subordinates of «).
Suppose then that 3 is a subordinate of a. Suppose ¢t > 0. Since we have a;(A) =
W*ad(WAW*)W for A € B($) and af is a x-representation of B($);) the mapping
A — a(WAW*) is a =representation of B(§) on ol (WW*)IM,; where I, is
the closed linear span of {ad(WAWYWf, f € 9§, A € B(H)} and let ¢; be the
restriction of A — ad(WAW*) to M; so ¢:(A)f = ad(WAW*)f for all f € M,
and A € B(9). Note a(A) = W*¢(A)W for A € B($) and the span of ¢, (A)W f
for A € B(H) and f € $H is dense in M;. Since a; > [; it follows from the
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Stinespring analysis of completely positive maps that there is a unique operator
Z(t) € p:(B(H)) so that G (A) = W*p(A)Z(t)W for all A € B($H).

To proceed further we need to know the relation between the unit I € B($)
and WW*. Since WW* is an increasing projection for a¢ we have ad(WW*) >
ad(WW*) for t > s. Note either WW* = o(WW*) for all t > 0 or a}(WW*) #
ad(WW*) if t # s. In the first case «; is already an E,-semigroup and in this case
the theorem is trivial and in the second case I — WW?™* is of infinite rank since
ol J(WW*) — ad(WW*) for n = 1,2,--- is a sequence of non zero orthogonal
projections less than I — WW?™*. Hence, I — WW?* is of rank zero or infinity. In
the rank zero case the theorem is trivial so we assume I — WW™ is of infinite rank.
Then there exist an infinite sequence of partial isometries F;; € B($1) so that
EfEjn =FEin =WW?* and Ej{Ej; =0 fori # j for¢,j =1,2,--- and

i EnE; =1
=1

Let E;; = ilEjl for 4,5 = 1,2,--- . Note the E;; form a set of matrix units in
B($H1). Since M, is a subspace of H; any operator A € B(IM;) can be interpreted
as an operator A' in B($H1) by considering A' in B($H1) to be given by (f, Alg) =
(f', Ag’) where f" and ¢’ are the orthogonal projections of f and g onto 9;. Then
let

Y(t) = Z af (Ein)Z(t)o (Ex;)

where we interpret Z(t) € B(9;) as an operator in B($H1) in the manner just
described. We will show W (t) € a¢(B($1))’. This is seen as follows. From the
formula given above one easily checks that Y (t) commutes with the af(FE;;) for

i,j=1,2,--- . Let Fjj fori,5 =1,---,r be a complete set of matrix units for B($))
(note r is the dimension of §). Then G (i) (jm) = EaW Fpy W*Eyj fori,j =1,2,---
and n,m = 1,--- ,r form a complete set of matrix units for B($;). Then C €

o (B($1))" if and only if C commutes with af (G in)(jm)) for all values of the indices.
Since Y (t) commutes with af(E;;) for all 4,5 = 1,2,--- we have Y (¢) € ad(B(91))’
if and only if Y (t) commutes with ad(W F,,,W*) for n,m = 1,---,r. Suppose
1 <n,m<r+1. Since Z(t) € ¢p+(B(H))" we have for f € M,
QW Ep WY (8) f =0 (W Ep WHZ () f = ¢¢(Fm) Z(t) f
= Z(0)0u(Fun) f = Z(0)0(WE, W)
:Y(t)ag(WanW*)f

and since (W F,,,, W*) = o(W E,,,W*) maps M, into itself o (W F,,,W*) maps
9~ the orthogonal complement of M, into itself we have for f € M

QAW F,WHY () f = (WF,W*)Z(t)f =0

and
Y () o (W Ep W) f = Z(t)ad(W Epy W) f = 0
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Since these Y (t) and of(W F,,,,W*) commute when applied to f € 9, and to
f e Mt forall nym = 1,---,r we have Y(t) € af(B(H;))’. We are now we are
prepared to define a local cocycle C(t). We first define C(t) for t a dyadic rational
(i.e., t = m2~" with n and m integers). Suppose t = m2~". For n, m and p positive
integers consider the operators
C(m,n,p) =Y (s)ag(Y (s))ag,(Y(s)) - ag,(Y(s))

where s = 277 and ¢ = m2™*(P=0) _ 1. Since the unit ball of B($;) is o-weakly
compact the above sequence of operators has a weak limit point as p — oo. Since £,
is separable there is a subsequence of the above operators which converge weakly to
a limit. Since the dyadic rationals are countable there is by the diagonal sequence
argument a sequence {px : k = 1,2,---} tending to infinity so that C'(m,n,py)
converges o-weakly to a limit as k — oo for all positive integers m and n. We define

C(m2™") = lim C(m,n,px).

k—o0

Since Y (s) € a%(B($H,))’ for s > 0 a routine computation shows C(m,n,p) €
A(ma-n)(B(H1))" for all p > 0. Hence, C(t) € ay(B(H1))" for t = m27™". Next we
show C'(t) is a cocycle. Before we begin we note that although multiplication is
not jointly continuous in the o-weak topology in our case it is. Note that if M
is a type I factor then the mapping C' = AB for A € M and B € M’ is jointly
continuous in the o-weak operator topology. To see this note we can represent our
Hilbert space R as the tensor product of &) ® R2 and represent M as B(R;) and
M’ as B(R2) so we can express elements of M in the form A ®I and elements of
M" as I ® B. Note that for product vectors F' = f; ® fo and G = g1 ® g2 we have

(F,CG) = (F,(A® B)G) = (f1, Ag1)(f2, Bg2)

and we see the above expression is jointly continuous in the o-weak operator topol-
ogy. Since linear combinations of product vectors f; ® fo are dense in R it follows
that multiplication is jointly continuous in A and B for A € M and B € M’. The
same argument shows multiplication is jointly continuous in n variables (i.e., C' =
A1Ay -+ A,) where A; € M; with the M; mutually commuting type I factors for
i=1,---,n. Since af is o-weakly continuous for each ¢ > 0 we have expression of

the form
Arag, (Ag)a, 14, (A3) - -ty gty (An)

with A4; € a4, (B($H1)) are jointly continuous in the A; in the o-weak topology.
We now show C'(t) satisfies the cocycle condition on the dyadic rationals. Sup-
pose t = m2™ "™ and s = k277. Note that for k sufficiently large we have

O(m7 n,pk)@g(C(k,j,pk)) = C(m2q_m + k2q_k7 Q7pk)

As k — oo the three terms above tend o-weakly to C(t), a;(C(s)) and C(t+s) and
since multiplication is jointly continuous in this situation we have C(t)aé(C(s)) =

C(t+s).
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Next we show W*C(t)a}(WAW*)W = 3,(A) for t a dyadic rational and A €
B(H). Suppose t = m2~". Now we have for k sufficiently large (so that px > n) we
have

C(m,n, p)af (WAW™) =Y (s)al(Y(s)ag, (Y (s)) - - aly_1),(Y () ags (WAW)

S

where s = 27P% and ¢ = m2P*~". Since P = WW?¥ is an increasing projection for
a? and the fact that Y (s) € a?(B($))’ it follows that

W*C(m,n, pr)a(WAW*\W
Y ()P (0)ad(PY () -0l (PY (i, (W AW )W
=W*Y (s)ag(PY (s))ag,(PY (s)) "Oéqs J(PY (s)al(WAW™) P)W
=W*Y (s)ag(PY (s))ag,(PY (s)) "Oéqs 25 (Y (8)) g s (W B, (A) W)W
=W*Y (s)ag(PY (s))ag,(PY (s)) "aqs 25 (Y (8)ad (W3, (A)W*)P)YW
=W*Y (5)ag(PY (5))ag,(PY (5)) - - Qg_os (W B2 (A)W*)W

=W*Y (5)ad(PY (5)ad (W B,s_2s(A)W*)PYW
:W*Y('S)a/?(wﬁqs—s(A)W*)W = ﬁqs(A> = ﬁt (A)

Since C(n,m,py) — C(t) as k — oo we have WCO(t)ad(WAW )W = ;(A) for
all A € B($) and t a non negative dyadic rational. We now want to extend these
results from dyadic rationals to the real numbers. Since o is o-strongly continuous
in t and C(t+ s) = C(t)a(C(s)) all for ¢t and s non negative dyadic rationals all
we need is to show C(t) — I o-weakly as t — 0+ in the dyadic rationals. (Note
since C(t+s) = C(t)au(C(s)) > C(t) for s and ¢ positive dyadic rationals it follows
that C(t) is decreasing in ¢ so if C(t) converges weakly to I as t — 0+ it converges
strongly.) Now we showed earlier how expressions of the form

E=W*al (WAW*) ol (WA,W*C(to)ald (WBW*)---al (WB, W)W
can be computed from a knowledge of o and (8 and if we restrict the variables ¢;
and s; to dyadic rationals the same rules apply and we can compute these terms
in terms of a and 3. We do not actually have to carry out these computations in
detail to see that for an expression = above there will be a finite number of 3,
expressions with t; <t, and since G;(A) — A o-strongly as s — 0+ it follows that
as t, — 0+ these expressions behave so that the limit will be the expression for =
with C(t,) replaced by the unit I. Hence, we have (F,C(t)G) — (F,G) as t — 0+
(t a dyadic rational) for F' and G finite linear combination of vectors of the form

af (WAW*) - (WA, W)W f
with f € $ and 4; € B(H) for i = 1,--- ,n. Since a? is minimal over the range of

W these vectors are dense in $); and since the C(t) are all of norm less than one
we have C(t) — I weakly as t — 0+ with ¢ a dyadic rational. As we have seen this
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implies C(t) is continuous in ¢ so we can extend C(t) to all the non negative reals
by continuity and the cocycle condition C(t)ad(C(s)) = C(t + s) and the relation
Bi(A) = W*C(t)ad(A)W holds for all A € B($) and for all ¢,s € [0, 00). Hence,
we have shown for a subordinate 3 of a there is a subordinate v of a? (and from
what we showed before it follows that v is unique) so that v;(A) = C(t)a(A) with
C(t) a local cocycle and B¢(A) = W*C(t)ad(A)W for all A € B(H) and ¢t > 0. It
is routine to show the isomorphism v « (3 is an order isomorphism so the proof of
the theorem is complete. [J

The next lemma gives a way to determine if one C'P-semigroup dominates an-
other.

Lemma 3.6. Suppose a and 3 are C'P-semigroups of 8(%)). Let © be the semi-
group of B(H @ §) given by

(X)) Be(Xa2)

X1 X”] —[gt(xm) Bi(X22)

Ol {le Xo»

where X;; € B(9) fori,j = 1,2. Then a > 3 if and only if ©, is completely positive
for each t > 0.

Proof. Suppose a and [ are C' P-semigroups of B($)) and © is defined as above.
Note © is a semigroup. Using the notation above we have

o[y wap= [ e (AR GG

for ¢ > 0. Hence, if a > [ the above equations shows that ©; is the sum of
two completely positive maps and, therefore, is completely positive. Conversely,
suppose O is completely positive for each ¢ > 0. Suppose t > 0 and A; € B(H)
and f; € $H and let

0 0 —fi
forv=1,---,n. Then we have
D (far (A Ay) = Bi(AT Ap) f;) = Y (i, ©4(Bf Bj)Fj) > 0
ij=1 ij=1

where the last inequality follows from the fact that ©; is completely positive. Hence,
A — ay(A) — B:(A) is completely positive for each ¢ > 0. O

When A. Connes introduced the notion of outer conjugacy [Co| which we now
call cocycle conjugacy one of the important observations Connes made was that
two automorphisms « and 3 of a factor R are outer conjugate if and only if there
is an automorphism © of Ms ® R of the form

o {Xll X12} :|:a/(X11) v(X12)
Xo1  Xoao 7 (X21) B(X22)



CP-FLOWS 19

We will make frequent use of Connes’ observation in developing criteria for de-
termining when the minimal dilations of two unital C'P-semigroups are cocycle
conjugate. We introduce the following notation. If $); and $ are Hilbert spaces
then an elements X € B(H1 ® H2) (all bounded operators on the direct sum of $);
and $)2) can be represented in matrix form as follows.

X1 X2
X —
{le Xzz]

where Xij S %(f}l,ﬁ]) fore,7 =1,2.

Definition 3.7. Suppose a and 3 are unital C' P-semigroups of B($);) and B($2),
respectively. We say v is a corner from « to 3 if 4; is mapping of B($1, H2) into
itself so that the mapping ©; given by

@t<[§; §] :[axXn) mxm}

for t > 0 where X;; € B(9H;,9;) for 4,5 = 1,2 and ~/(X21) = %(X5)* is a
C P-semigroup of B(H; @ 9H2). Suppose v is a corner from « to [ and © is the
CP-semigroup defined above and ©’ is a subordinate of ©® where the mapping O}
is given
@/<[X11 X12] _ [a;(Xll) 'Yt(X12>}
P Xo1 Xao %Ek(Xm) 5£(X22)

for t > 0 where X;; € B(9,,9;) for i,5 = 1,2 and v/ (X21) = 1(X3;)*. Then we
say 7 is a maximal corner from « to [ if for every subordinate ©' we have o/ = «

and we say 7 is a hyper maximal corner from « to [ if for every subordinate ©" we
have o/ = a and 3 = .

We note that if v is a corner from a to 3 then v* is a corner from ( to a and ~
is hyper maximal if and only both v and +* are maximal.

Lemma 3.8. Suppose a and 3 are E,-semigroups of ®8($)1) and B(%)2), respec-
tively. Then o and 3 are cocycle conjugate if and only if there is a corner ~y from
a to 3 so that ©, defined by

X X _ a(Xq1) +(X12)
o[ X2 | s

where X;; € B($;,$;) fori,j = 1,2 and fort > 0 is an E,-semigroup of B($1B9H2).
Proof. Suppose a; and f3; are E,-semigroups of B($1) and B($2) which are cocycle
conjugate. Then there is an a; unitary cocycle S(t) and a unitary operator W €
B($1,92) so that G (A) = W*S(t)ay(WAW*)S(t)*W for all A € B($H2) and t > 0.
Define ©; by

@([X” Xl?] :{ ay(X11) a (X12W*)S(t)* W
e Xo )T [ WSOadWXn) WS (WX WS ()W
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where X;; € B($;,9;) for i,j = 1,2. A routine computation shows that ©, is an
E,-semigroup of B(H; © $H2) satisfying the conclusion of the theorem.

Conversely, suppose «; and (3; are F,-semigroups of B($)1) and B($2) and ©; is
an E,-semigroup of B($H1 O H2) of the form given in the statement of the theorem.
Let E; be the hermitian projection of 1 ® $Hs onto $;. So F1 + Fo = I the unit
in B(H1 © H2) and O4(F;) = E; for i = 1,2 and ¢ > 0. From Theorem 2.4 we
have ©; is cocycle conjugate to a; and f; since a; and [3; are obtained from ©;
by restricting ©; to E1B(H1 © H2)E1 = B(H1) and E2B(H1 © H2) L2 = B(H2),
respectively. Since a; and (3; are both cocycle conjugate with ©; they are cocycle
conjugate with each other. [

Lemma 3.9. Suppose a and (3 are x-endomorphisms of B($)1) and B($3), respec-
tively. Suppose © is a completely positive mapping of B($)1 @ $2) into itself of the
form

X1 X2 . Oé(Xu) 7(X12)
@({le Xzz} _{’7*()(21) B(X22)

Then
(3.1) Y(X11X12X22) = a(X11)7(X12) B(X22)

for all Xij € %(57)1,57)]> fori,7 =1,2.

Proof. Suppose « and 3 are x-endomorphisms of B($;) and B(5)2), respectively,
and © is a completely positive mapping of B($; @ $H2) into itself of the form
given above. Then from the Stinespring construction there is a *-representation m
of B(H1 & $H2) on a Hilbert space H3 and operator V € B(H3, H1 & H2) so that
O(A) = V*r(A)V for all A € B(H; ® H2) and H3 is the closed span of vectors
of the form w(A)Vf with A € B(H1 ® H2) and f € H; ® Hy. Let P; be the
orthogonal projection of 1 @© H2 onto $;. Given the form of © given above we see
that O(P;)P; = ©(P;) for i = 1,2. Suppose A € B(9H1) and B € B(5H2) and

A 0
X = [0 B} '
Since O(X)*O(X) = O(X*X) we have V*r(X)*VV*r(X)V = V*'r(X)*n(X)V.
Since V is a contraction we have VV*7m(X)V = n(X)V and V*n(X) = V*r(X)VV*
for all X of the above form. Suppose T' € B($1, H2). Then we have

OXTX)=V"n(XTX)V =V*n(X)VV*r(T)VV*r(X)V = 0(X)O(T)O(X).
Hence v(ATB) = a(A)y(T)B(B) for all A € B(H1) and B € B(H). O

Next we show that a mapping satisfying (3.1) is automatically o-strongly con-
tinuous.

Lemma 3.10. Suppose a and (3 are x-endomorphisms of B($1) and B(9s), re-
spectively. Suppose v is a linear mapping of B(91, H2) into itself satisfying (3.1).
Then v and v* are o-strongly continuous.

Proof. Suppose the hypothesis of the lemma is satisfied. First let us assume the
dimension of $); does not exceed the dimension of $)5. Then there is isometry W
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on 9 into Ho. Suppose w is a normal state of B(£s3). Then for T' € B(H1, Ha) we
have v(T) = y(W*WT) = v(W*)B(WT) and

w(Y(T)Y(T)) =w(BWT) (W) y(W*)BWT)) < [v(W)|*w(BWT)*B(WT))
WPw(BTWWT)) = |[y(W*)|*w(B(T7T))
NPBw)(TT)

Since 3 is o-weakly continuous 3(w) is normal so we have w(y(T)*y(T))) < € pro-
vided [|y(W*)||?8(w)(T*T) < € so v is o-strongly continuous.
Next suppose the dimension of )5 does not exceed the dimension of $;. Then

there is isometry W on )5 into $);. Suppose w is a normal state of 2B()3). Then
for T' € B(91, H2) we have y(T) = y(TW*W) = a(TW*)~(W) and

w(y(T)(T)) = w(y (W) TW") a(TW )y (W)) = w(y(W) a(W T"TW )y (W))

Now p defined by p(A) = w(y(W)*Ay(W)) for A € B($1) is o-weakly continuous
we have

w(y(T) (1)) = pla(WT*TW)) = a(p)(W*T"TW)

Since « is o-weakly continuous &(p) is o -weakly continuous. Since the mappings
A — W*AW is o-weakly continuous we have A — &(p)(W*AW) is o-weakly
continuous. Then w(y(T)*v(T)) < € if a(p)(W*T*TW) < € so 7 is o-strongly
continuous.

The proof that v* is o-strongly continuous is the same as the proof for v except
that the roles of o and (3 are interchanged. [

Lemma 3.11. Suppose a and (3 are x-endomorphisms of B($1) and B(9s), re-
spectively. Suppose 7 is a linear mapping of B(91, $2) into itself satisfying (3.1).
Suppose W € B($1,92) is a rank one operator normalized so that ||W| =1 (so
W is a partial isometry). Then v(W) = a(WW™*)y(W)G(W*W). Conversely, sup-
pose S € B(H1,92) and S = a(WW*)SB(W*W). Then there is a unique linear
mapping of B(9H1, H2) into itself satisfying (3.1) so that v(W) = S.

Proof. Suppose a, 3 and W satisfying the conditions of the lemma. Suppose 7 is a
linear mapping of B($1, H2) into itself satisfying (3.1). Then

VW) =y (WW*WW*W) = «(WW*)y(W)B(W*W).

Conversely, suppose is S € B(H1,92) and S = a(WW*)SE(W*W). Let {e; :
i =1,2,---} and {f; : j = 1,2,---} be an orthonormal bases for $; and £,
respectively, so that W f; = e;. We define matrix units T}, f = (f;, f)e; and Fj; f =
(fj, f)fi for all f € $H2 and E;;f = (e;, f)e; for all f € $H:. We define v(T;;) =
a(E;1)SPB(F1 ) for all i and j in their appropriate range. Now suppose 7' is a finite
linear combination of the 7T;; and we define y(T") by linearity as

T = Z ti; T SO ~(T) = Z tija(Eir)SB(F1 )

1,7=1 1,7=1
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Suppose w is a normal state of B($2). Then we have

w(y(T)*y(T)) - Z tamtijw(B(Fp1) S a(Erm)a(Ei1)SB(Fij))
= D Tumtm;w(B(Fa1)S*SB(F;))
= w(B(Xm)* S SB(Xm)) < IS*SI| Y w(B(X;Xm))

m=1

where
Xm = Z tij1j~
j=1

We have
T*T = X5 Xm
m=1

so we have w(y(T)*y(T)) < ||S]|?w(B(T*T)). Suppose T € B($1, $H2). Let
E,=>» E; ad F,=» F; and T,=E,TF,
i=1 i=1

Then T,, — T in the o-strong topology as n — 00. Since the mapping C' — [(C)
is continuous in the o-strong topology and since

(T = Ti) YT = Tn)) < ISIPw(B((Tn — Tin)* (T = Trn)))

we have ~(T,,) converges to a limit which we call v(T') o-strongly as n — oo.
We have by direct calculation that v(E;;TymFrs) = a(Eij)y(Thm)B(Frs) and by
o-strong continuity and linearity this relation extends to the relation y(ATB) =
a(A)y(T)B(B) for all A € B(9H1), B € B(H2) and T € B(H1, H2).

If 4/ is a second mapping satisfying (3.1) and such that v/(W) = S. Then recalling
the construction of v we see that +/(T) = ~(T) for all T which are finite linear
combinations of the T;;. From the previous lemma we know that ~' is o-strongly
continuous and so 7" = ~. Hence, the mapping ~ satisfying the stated conditions is
unique. [

Lemma 3.12. Suppose a and (3 are unital x-endomorphisms of B($1) and B($2),
respectively. Suppose © is a completely positive mapping of B($1 @ $2) into itself

of the form
@([Xll X12}) _ {Q(Xll) ¥(X12)
Xo1 Xoo 7*(X21) 5(X22)
Suppose W € B($1, H2) is unitary and (W) € B(9H1, H2) is also unitary. Then ©
is a unital *-endomorphism of B($1 ® $2) into itself. Conversely, if © is a unital

x-endomorphism of B($H1 & ) into itself then (W) is unitary for every unitary
operator W € B($1, 92).

Proof. Suppose the hypothesis and notation of the lemma is satisfied. Below we
define S and compute O(.S)
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Since (W) is unitary ©(.S) is unitary. As we pointed out at the beginning of this
section it then follows that ©(XS) = ©(X)O(S) and O(SX) = ©(5)O(X) for all
X € B(H1DH2). Applying this to the case where X has entries A € B($;) and B €
B($2) in the upper left hand corner and lower right hand corner, respectively, and
the zero operator in the off diagonal entries we find v(AW) = a(A)y(W), v(W B)
= y(W)B(B), y*(BW) = B(B)y(W)" and v*(WA) = ~(W)*a(A) for all A €
B(H1) and B € B(H2). Now suppose A € B(9H1), B € B(H2) and T € B(H1, N2).
Then we have

V(AT B) =4(ATBW*W) = a(ATBW*)y(W) = a(A)a(TBW*)y(W)
(A (TBW*W) = a(A)(TB) = a(A)y(WW*TB)

( *

(

a(A)y(W)B(WTB) = a(A)y(W)B(W*T)5(B)
a(A)y(WW*T)3(B) = a(A)y(T)B(B)

A similar calculation shows that if A € B($1), B € B($2) and T' € B(H1, H2) then
V(BT*A) = B(B)y*(T")a(A) = B(B)y(T)*a(A). Now suppose Xi; € B(9i, 9;)
for 1,7 = 1,2. Then we have

Y(X12)7" (Xo1) =y( X 2W W)y (W W X31) = a( X12W* )y (W)y(W)* (W X 1)
=a(X1 oW )a(WXa1) = a(X12WWXap) = a(X12Xo1)

and

7 (X21)7(X12) =0 (Xar W)y (WW* X12) = B(Xor W)y (W)™ (W) B(W* X12)
=B(Xa1 W)B(W* X12) = B(Xas WW* X12) = B(X21X12)

Using the facts that a and (§ are x-endomorphisms and the properties of v and
~* established above it now just a matrix computation to show that ©(X)O(Y) =
O(XY) for all X, Y € B(H1 ® H2).

Conversely, suppose O is a unital *-endomorphism of B($; @ H2) and W €
B(9H1,92). It is now just a routine computation to show that (W) is unitary. O

Theorem 3.13. Suppose a and (3 are unital C P-semigroups of B($)1) and B()2)
with minimal dilations o and 3¢ to E,-semigroups of B($11) and B($21), respec-
tively. Then o and % are cocycle conjugate if and only if there is a hyper maximal
corner ~ from « to 3 where hyper maximal corners were defined in Definition 3.7.

Proof. Assume the notation given in the statement of the theorem and assume o

and 37 are cocycle conjugate. The relation between the C P-semigroup « of B();)
and the minimal dilation o which is an E,-semigroup of B($)11) is given by

o (A) = Wial (W AW W,
for all A € 9B($)) where W is an isometry of §) into 9, so that W, W7 is an increasing

projection for a? (i.e., (W W;) > W1 W5 for all t > 0) and a? is minimal over
the range of W, W7 and the relation between 3 and 3¢ is the same with W replaced
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with Ws. Since a? and ¢ are cocycle conjugate there is by Lemma 3.8 a corner v¢
from a? to 3¢ so that the mapping ©¢ given by

ot Fap- [ RG)

where X;; is a bounded operator from ;1 to £;1 for ¢ > 0 is an F,-semigroup
of B(H11 D H21). Let W be the isometry from $H; & Ha to H11 O Hay given by
W{f,g} ={Wif,Wag} for f € $; and g € H5. Then since W; W7 is an increasing
projection for a? and WoW3 is an increasing projection for 3¢ we have
* d *
ol (W) :le([wlw1 0 ]> _ [at (WW™*) 0

0 WoW; 0 Bt (W W3 )}

for each t > 0 so WW* is an increasing projection for ©¢. Note that since a? is

minimal over the range of W; and 3% is minimal over the range of W5 we see ©¢
is minimal over the range of W. Let © be given by 0;(A) = W*O{(W AW*)W for
A€ B(H1 D H2) and t > 0. We see that O is of the form

o[ xap=[5 B

where X;; € B(9;,9;) for i,j = 1,2 and %(X12) = FyE (W1 X 1o Ws )Wy for
X12 € B($H1,92) and t > 0. Now suppose O’ is a subordinate of the form given in
the statement of the theorem. Then from Theorem 3.5 there is a subordinate ©’¢
of ©% so that

O}(A) = W*Q X (WAW*\W

for all A € B(H11 D Ho1) and ¢ > 0 and from Theorem 3.4 there is a local cocycle
C so that ©/4(A) = O(A)C(t) for all A € B(H11 ® H21) and t > 0. Now C(t) can

be written in matrix form so

_ [ Cul(t) Cra(?t)
C(t)_[czl(t> 022(75)}

for t > 0. Writing out the equation C(¢)0¢(X) = ©¢(X)C(t) in matrix form one
obtains four equations with four variables X;; for ¢, j = 1,2. Examination of these
equation yields that facts C12(t) = 0, Ca1(t) = 0 and Caa(t) = v3(9)*C11(t)yE(S)
where S is a unitary form $2; to $11. (Note ;(S) is also a unitary from $21 to 11
follows from the fact that ©% is a unital E,-semigroup.) Since ©}¢(A) = C(t)0O%¢(A)
for A € B(H11 ® Ho21) and the corner of © is v by assumption we have ~;(A) =
Wi Oy ()vE (W1 AW )Wy = Wiyd (W1 AWS )W for all t > 0 and all bounded linear
operators A € B(H1, H2). Consider the somewhat complicated expression below.

E=Wrel (WiA W) -0 (W A,W)Ct)eL el (WiBW;)---

08 (Wi B, Wi W1 AW;0L (WoR Wy ) -
o ~®i,,(W2RpW5))@$1 (WaS1Wy) - @Zq (WS W3 )Wo
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for A, A;, Bj, R, S; € B(H1@©$H2)andt >0andt; >0,s; >0,z >0,y >0 for
i, j, k and [ in there respective ranges. First we note that from a knowledge of all
such terms we can compute C71(t). This can be seen by noting that in the above
expression the linear combinations of the terms in the brackets following C(¢)©¢
are o-strongly dense in the space of linear operators from $o; to $11 so we can
compute C(t)0%(X13) for X1 any operator from $2; to £1;. Since this operator
is determined by C11(t) it follows that we can compute C11(t) from a knowledge of
the above terms.
Next note that

C(t)@t(@gl (WIBIWI*) T
08 (WiB W)W AW; 07 (WoR W) --- 65 (WoR,W5))
= C()0L, (W1 BWY)---
-0, (Wi B, WO (W1 AWS)O%, (Wo Ry W) -- ~®i;(W2RpW2*)
= @gl,l(wlBlvvf) e

- 0%, (W1B,W{)C(t)0f (W1 AW;)O, (Wo RiW5) - - .@g; (WaR,Wy)

where a prime on a variable means the unprimed variable plus ¢ (e.g., s; = s; +t).
Then we see that = can be expressed in the simpler form

E = W7ol (WiAWY) 0] (WA, W;)C(t)0H W1 AW; )0 (WoB W3) - --
04 (WoB, W3 )Ws

where the new A’s are made of the original A’s and B’s and the new B’s are made
up of the original R’s and S’s and the new t’'s are made up of the original ¢ and
s’s and the new s’s are made up of the original ¢t and z’s. Now in calculating = by
the methods described earlier we see that = can be calculated from a knowledge of

WO (W1 AWT )W, W3O (Wa AWS )W,

and

Wy O (W AWo)Wo = W C(t)OF (Wi AWo) Wy

for A € B(H1 @ H2) and t > 0. Now the first two are given by ay(A) and [;(A),
respectively. And the third one is given by v;(A) by the assumption of the theorem.
Hence, = is computable from «, 8 and . Now if we calculate the expression for
= and replace C(t) with the unit we get the same expression. Since in calculating
an expression which determines C11(t) we get the same expression if we replace
C11(t) with the unit it follows that Cy1(t) = I. At this point we can only conclude
C11(t) = I because in these expressions we have restricted our attention to terms

where C(t) lies between vectors in $1;. Now we have seen that Ci2(t) = 0 and
Ogl(t) =0 and

Caa(t) = 7{(8)* Cra (' (S) = 7 ()™ (S) = B (5*S) = B (1) = I.

Hence, C(t) = I so ©' = 6.
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Now we prove the reverse implication. Suppose v is a corner from « to ( satis-
fying the condition of the theorem. Suppose © is given in terms of o, 8 and ~ as
in Definition 3.7 and © is the minimal dilation of © to an FE,-semigroup of H3 so
we have a isometry W € B(93, H1 @ H2) so WIW* is an increasing projection for
©? and ©9 is minimal over the range of W and ©;(A) = W*©¢(W AW*)W for all
A€ B(H D H2) and t > 0. Let P, and P, be the projections of $; & Ha onto Hy
and $s, respectively. Let W7, = WP, and Wy = WP,. Since « is unital and « is
the top left corner of ©® we have ©;(P;) = P; so we have

WAW;F QLWL WHWIWS = WiW; YW PLW* )W W = W10, (P)W; = W, W}

for t > 0 so W, W7 is an increasing projection for ©7. Since [ is unital we have by
the same argument that W5W. is an increasing projection for ©¢. Next we note
that Oy(W1W7)O4(WeW3) =0 for all s, > 0. To see this first note that

O (WIW ) WoWy O, (W1 W) < Oy (Wi Wi WoWs WiW) =0

for all £ > 0. So ©,(W W )WyWs = 0 for all ¢ > 0. The same argument shows
O (WoW3 )W Wy =0 for all £ > 0. Then we have for 0 <t < s that

O, (WiW)Os(WoWs) = O,(Wi Wi Oy (WaW5)) = 0.

A similar argument gives the result for 0 < s < ¢t. Hence, O,(W1,W7)O,(W2W35) =0
for all ¢, s > 0. Let 91; be the closed subspace of $3 spanned by the vectors

Yi(E) = O, (Wi Ay Wy) - - Of (WA, W)W, f

for i = 172af eﬁl@ﬁ%tk > OaAk € %(51@52) for k = 17 7na‘ndn: L,2,---.
When we refer to Y;(E) we mean the vector above. We give this vector a name
so we do not have to repeatedly repeat all the quantifiers associated with this
vector. Since O¢(W;W*)Y;(Z) = Y;(Z) for t > t; for i = 1,2 and OF(W;W7)
and ©%(W,W5) have orthogonal ranges it follows that 91; and 91y are orthogonal
subspaces. Let 91 be the span of 91; and 913 and let @), )1 and Q)2 be the orthogonal
projections of 3 onto N, Ny and Moy, respectively. We show ()1 is an increasing
projection for ©%. Consider the vector Y7 (Z) above. Note Q1Y1(Z) = Y1 (E) for all
such vectors Y7 (Z). Let s = min(¢y,- - ,t,). Suppose 0 < ¢t < s. Then

07(Q)Y1(E) =6](Q:10F, (W1 A\ Wy) - --Of (W1 A, W))W f
=07(Q10F, (WL AWY) - -0 (WA, Wi )W W)W, f

where ¢} =t, —t for k=1,---,n. Since
Q10f (WL A W) - Of (Wi A W)Wy = ©F (Wi Ay WY) - - ©F (W1 A, Wi

we have ©%(Q1)Y1(Z) = Y1(E) for 0 <t < s. Now suppose t > s and t, = s. Then
we have

01 (QV1(E) = @g(@g’(Ql)@%(WlAle) W AW - O (WA W))W f
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where ' =t —s and ¢} = t; — s for j = 1,--- ,n. Hence, ©(Q1)Y1(E) = Y1(8)
provided

01 (Q1)0F (W1 A WT)---0f  (WiA, (W)W,
=0 (Wi AWT) - 0F (Wi Ay W)Wy,

And using this reduction formula repeatedly we can reduce to only one term so we
have @g(Ql)Yl(E) = Y1<E) if

0L(Q1)0L W BW )Wy = 0% (W1 BW )W,

for all x,y > 0 and B € B(H1 © H2). We have already shown that if z < y the
above equality holds so we consider the case 0 < y < z. But then we have

OL(Q1)0% (W1 BW )W, =04(0%_ (Q1)W1BWT))W;
=0 (W1 BW{)W1.

Since @Q10%_, (W1 BW{ )Wy = ©%_ (W1 BW} )Wy we have proved the above equal-
ity for all z,y > 0 and, hence, ©¢(Q1)Y1(E) = Yi(E) for all t > 0 and vectors
Y1(Z). Hence, ©¢(Q1) > Q1 and Q; is an increasing projection for ©¢. The same
argument shows Qs is an increasing projection for ©%. It follows that Q = Q1 + Q2
is an increasing projection for ©%. Now let ©° be the C'P-semigroup of 9 given
by the compression of ©¢ to 9 so OY(A) = QOI(A)Q for all A € B(I) where we
identify B(M) with the hereditary subalgebra of B($)3) of all operators A € B(H3)
so that A = QAQ.

We see that OV is an intermediate C'P-semigroup between © and ©9. Note that
corresponding to the decomposition 91 = 91; & Ny we have a matrix decomposition
of ©% in the form

@b([Xll XlZ] :{Of?(Xll) N (X12)
P X1 Xoo nf(Xo1)  B(Xa2)

where X;; is a bounded operator from 91; to 91; for ¢ > 0. Checking the construction
of the minimal dilation we see that the upper left hand corner above is a? the
minimal dilation of a to an E,-semigroup. Similarly the lower right hand corner is
3% the minimal dilation of 3. Also, one checks that the minimal dilation of ©° to
a E,-semigroup is ©%. From Theorem 3.5 we have there is an order isomorphism
from the subordinates of © to the subordinates of ©¢ and an order isomorphism
from the subordinates of ©° to the subordinates of ©¢ and, therefore, there is an
order isomorphism from the subordinates of © to the subordinates of ©°. Suppose
S is a unitary operator from 91 to 91;. For each t > 0 we define

@C([Xll X12] :[ag(Xll> N (X12)
¢ Xo1 Xoo Uf(Xm) Ut(S)*Oéil(SXmS*)Ut(S)

where X;; is a bounded operator from 91; to 91; for 4,7 = 1,2. In the following
argument when we write X;; we mean an arbitrary bounded linear operator from
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N; to NM; so we will not continually write out the specification for X;;. Similarly
when we write t we mean an arbitrary ¢ > 0. We will show ©°¢ is a subordinate
of ©°. Note that n; satisfies (3.1). In the calculations below we will use this fact
repeatedly. First note the bottom right term above can be rewritten as follows.

777:(3)*04?(5145*)%(5) = nt(S) e (SA) = 77t(5>*77t(3>5g(14)
for all A € B(N3). Also we have
1e(S) i (SAS* ) (S) =(af (SAS™)*ne(S)) e (:S)
=0 (SA*)*ne(S) = (1:(S) 87 (A*)) i (S)
=06 (A)ne(S) m(S)

for all A € B(MNy). It follows that n;(S)*n:(S) € BL(B(N,)).

Next we show that ©°¢ is a semigroup. The top diagonal and the off diagonal
terms in ©°¢ are the same as ©° and since O° is a semigroup these terms satisfy the
semigroup property. We only need to check the semigroup property for the bottom
right term in ©¢. Suppose s,t > 0. Then we have

1:(S) 1 (S) 85 (ns(S)*ns(S) 85 (A))

)11 () 85 (05 (S)*115(8)) Br+5 (A)
)" (S5(S) ™15 (5)) Bets(A)
S)* i (Sns(S) ) (s (S)) Bes(A)
) i (S15(8) Ve (S) Brs-s (A)
=(af (15(S)S™ )1 (S)) s (S) Brvs (A)
=0t(Ns(5)) N+ (5) Br+s(A)

=145 (S) 45 (5) Beys(A)

for A € B(M,). Hence, the bottom right term satisfies the semigroup property
so ©° is a semigroup. Next we show OF¢ is completely positive. We will need an
alternate expression for 7;(X12). Note that

7]t<X12) = Ut(XHS*S) = ozf(Xle*)nt(S).

= (S
= (S
= (
=n¢(S

Also we have
0y (Xa1) = ne(X3,579)" = (o (X5,8")ne(5))" = me(S)" o (S X21)
Recalling how we defined ©f we have

oe(| X Xz |y aff (X11) af (X125 ) (S)
Xo1 Xoo () af(SXa1)  1e(S) af (SX228%)me(S)

where we have inserted the alternate expressions for n:(Xi2) and its adjoint. We
show this map is completely positive by writing it as the product of three completely
positive maps. Let

R:[é g] and T:[é m?S)]
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and A is the mapping

Al X111 Xio ) = af(X11) af(Xi2)
Xo1 Xoo af(X21) of

for X;; € B(My) for i, j = 1,2. Then one calculates that ©F(X) = T*A(RXR*)T

for all X € B(N) so OFf is the product of three completely positive maps so OF is

completely positive and ©°¢ is a C'P-semigroup. Note that ©¢ is a subordinate of

O’ since

@?({g ;;;b—@ﬂ[ﬁ; gj):lg 0~ (S K)

and since 1;(S)*n:(S) € BL(B(N2))’ we have

N|=

(I — ﬂt(5>*nt(3>)ﬁ§l(X22) = (- Ut(S)*ﬂt(S»%ﬁfl(Xzz)(I = 1:(S) e (5))

which makes it clear that the map X — ©% — ©¢ is completely positive. Hence, ©°
is a subordinate of ©°. Since the subordinates of ©% are order isomorphic with the
subordinates of ©, there is a subordinate ©" of © corresponding to ©€. Since the
off diagonal elements of ©¢ equal the off diagonal elements of O it follows that the
off diagonal elements of ©" match those of ©. By the assumption of the theorem
we have ©' = © and by the order isomorphism we have ©¢ = ©°. Hence, we have
ne(S)*n(S) = I for all t > 0.
Now let ©f be given by

ar| X1 X2 || Ut(S)ﬂfl(S*XuS)??t(S)* Ut(X12)
Gt({Xm XzJ)_{ i (Xa1) 5§l(X22)

Repeating the argument we made for ©¢ we find ©¢ is a subordinate of ©° and
this time we find 7, (S)n:(S)* = I. Note essentially all we are doing in this new
argument is interchanging the roles of o and (3. Hence, 1;(.S) is unitary for all t > 0
and from Lemma 3.12 we find ©? is a unital *-endomorphism of B(N) and from
Lemma 3.8 we have a? and 3¢ are cocycle conjugate. [

The previous theorem shows the importance of analyzing corners between C P-
semigroup. This brings up the question if « is a unital C'P-semigroup what do
the corners from « to « correspond to for the dilated E,-semigroup. As we will
see these corners correspond to contractive local cocycles. We will also consider
matrices of corners.

Definition 3.14. Suppose « is a C'P-semigroup of B($)) and n is a positive integer.
We say O is a positive (n X n)-matrix of corners from « to « if © is a matrix
with coefficients #(%) where the (%) are strongly continuous semigroups of B($)
for i,j = 1,--- ,n so that © is a C'P-semigroup of B(H!_,9) into itself and the
diagonal entries of © are subordinates of a.



30 ROBERT T. POWERS

Definition 3.15. Suppose a? is a E,-semigroup of B($)) and n is a positive integer.
We say C'is a positive (n x n)-matrix of a? local cocycles if the coefficients C;; of C
are contractive local cocycles for a? for i,j = 1,--- ,n and the matrix C(t) whose
entries are C;;(t) is positive for all ¢ > 0.

We remark how the cocycle condition fits nicely with the notion of a positive
matrix of local cocycles. It is well known that if A and B are positive matrices
with coefficients {a;;} and {b;;} in the complex numbers then the matrix C with
coefficients {a;;b;;} (C is known as the Schur product of A and B) is positive.
The same is true if the coefficients a;; € 2 where 2 is algebra of operators on
a Hilbert space and b;; € 2’ the commutant of 2. We see then that if C(¢) is a
positive matrix with coefficients which are operators in a¢(8($))" and C(s) is a
positive matrix with coefficients in B($)) and if C(t+s) is a matrix with coefficients
Ci;(t)al(Ci;(s)) then C(t + s) is a positive matrix. It follows then that in order to
check that C is a positive matrix of local cocycles it is only necessary to check the
positivity of C'(t) for small .

Theorem 3.16. Suppose « is a unital C P-semigroup of B($) and o is its Bhat
dilation to an E,-semigroup o of $B($1). The relation between o and a? is given
by

o (A) = W*ad(WAW*)W

for A € B(9) and t > 0 where W is an isometry from $ to $; and a® is minimal
over the range of W.

Suppose n is a positive integer and © is positive (n X n)-matrix of corners from «
to . Then there is a unique positive (n x n)-matrix C' of contractive local cocycles
Cij for a® fori,j=1,---,n so that

0y7) (A) = W*Cyj (ol (W AW )W

for all A € B($) and t > 0. Conversely, if C' is a positive (n X n)-matrix of
contractive local cocycles for a® then the matrix © whose coefficients 07 are
given above is a positive (n X n)-matrix of corners from « to c.

Proof. Assume the set up and notation of the theorem. Suppose C' is a positive
(n x n)-matrix of a? local cocycles with coefficients C;; for i, = 1,--- ,n and 0,5”)

are given in terms of the C;; as given in the statement of the theorem. First we
check that © is a semigroup. To do this we need to show that the coefficients are
a semigroup. To save writing subscripts in our calculations suppose ¢ and j are
integers in the interval [1,n] and C(t) = C;;(t) and v = 6,7 for t > 0. We have
Y (75 (A)) = W*C (1) (WW*C(5) s (WAW*YWW*)W

= W*C(t)af (WW*)af(C(s)) iy (WAW o (WW*)W

= W*al(WW*)C(t)af(C(s)) ot (WAW ™ )af (WW* )W

= W*C(t + S)at+s(WAW )W = 7t+S(A>

for all t,s > 0 and A € B(H) where we have used the facts that WIW* is an
increasing projection for a? and C(t) is local. Hence, © is a semigroup. Let ©; be
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the family of mappings in the statement of the theorem and W; be the mapping
of & 19 into & 191 given by Wi{f1, -+, fu} = {Wf1,---,Wf,}. Then we have
©; = W;E W, where E; are operators on @®F 1531 with coefficients u? (Aij) =
Cij()ad (WA ;W*) for Aj; € B(H) for i,j = 1,---,n. We show Z; is completely
positive for t > 0. Suppose t > 0. The matrix C’(t) with coefficients C;;(t) €
al(B($H1)) is positive. For z € [0, 1] we have

(1—2)7 =1—(1/2)x — (1/8)a% — (1/16)2® — (5/128)z* —

where the series converges absolutely in the closed interval. Let X = I — C(¢).
Then we have

Ct): =(I—-X)2=1-(1/2)X — (1/8)X2—--.

where the series converges in norm. Since C;;(t) € af(B(H1))’ we have D(t) =
C(t)7 has coefficients D;;(t) € ad(B(9H1))". Since C(t) = D(t)*D(t) we have

—~
~

Eij (AU) = Cij (t)Oég WAZJ W* Z Dkzz ij Oét (WA”W*)

for A;; € B(9H) for i,5 = 1,--- ,n. Hence, =; is the sum of n completely positive
maps and since ©, = W;E,W; is follows that © is a C'P-semigroup so © is a
positive (n x n)-matrix of corners from a to a.

Conversely, suppose © is a positive (n x n)-matrix of corners from « to . The
proof of the exitance and uniqueness of the positive (n X n)-matrix C' of contrac-
tive local cocycles for a virtually a repetition of the proof in Theorem 3.5. The
uniqueness of the matrix coefficients C;;(t) is the same as the proof of the unique-
ness of the positive cocycle C(t) in Theorem 3.5. The proof of the existence of
the (n x n)-matrix C of contractive local cocycles for a? is the same as the proof
of the existence of the positive contractive cocycle C(t) in Theorem 3.5 with one
complication which we explain. Recall in the proof of Theorem 3.5 we found an
operator Z(t) € ¢.(B(9))’ so that B;(A) = W*¢:(A)Z(t)W for A € B($) where
¢; was the restriction of A — af(WAW?*) to M; which was the closed linear span
of {al(WAW*YWf : f € 9, A € B(H)}. In our present case we find the same
operator Z(t) which is now a positive (n X n)-matrix of elements ¢;(8B(5))’. The
existence of Z(t) in the proof of theorem 3.5 was assured by Stinespring analysis of
completely positive maps. The existence of the matrix Z(t) in our case follows from
the following mild generalization of the Stinespring analysis which is the following.

Suppose 7 is a completely positive unital map of a C*-algebra 2 into B($) and 7
is the Stinespring representation of 2 on B($);) determined by 1 by the requirement
n(A) = V*r(A)V for A € A and V is an isometry from $ to $; and the linear
span of the vectors m(A)V f for A € A and f € § is dense in $H;. Now suppose 7 is
positive (n X n)-matrix of corners from 71 to n where we take the notion of positive
from Definition 3.14. Then there is a unique positive (n x n)-matrix of contractive
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operators C;; in w(A)’ so that v;;(A4) = V*Cym(A)V for Ac Aand i,j=1,--- ,n.
Unfortunately, we do not have a reference for this exact result but it a fairly routine
argument.

Using this result we construct Z(¢) which is now a positive matrix with coef-
ficients in ¢:(B($))’. Then following the argument in Theorem 3.5 we construct
Y (t) which is now a positive (n x n)-matrix with coefficients in a¢(8($))’. Then
following the argument in Theorem 3.5 we construct the positive (n x n)-matrix
C(t) for t a dyadic rational and then show C(¢) is continuous and can be extended

to all real positive ¢ thereby producing the positive (n x n)-matrix of local cocycles.
O

Corollary 3.17. Suppose « is a unital C P-semigroup of B($)) and o is its Bhat
dilation and the relation between o and o is as given in the previous theorem.
Suppose @ is a corner from o to o and C' is the local contractive cocycle for a
associated with 0. Then C(t) is an isometry for all t > 0 if and only if 6 is maximal
and C(t) is unitary for all t > 0 if and only if 6 is hyper maximal.

Proof. Assume the set up and notation of the corollary. Let © be the (2 x 2)-matrix
of semigroups so that the diagonal semigroups are o and the (12) entry is 6 and
the (21) entry is 6* and let C be the positive (2 x 2)-matrix of local a? cocycles
associated with © by the previous theorem. Suppose ©' a subordinate of © whose
corner is 6 and let C’ be the positive (2 x 2)-matrix associated with ©’. One checks
that 0 < C11(t) < 1,0 < Chy(t) < I, Cl5(t) = Cra(t) and Chy (t) = Ca1(t) = Cra(t)*
for all ¢ > 0. A matrix computation shows that C’(t) given below satisfies

0<C(t) = {C1zéi)2*(%1*2(t) Cl;(t)} < {le(t)* Cl}(t)} =C(t)

for t > 0. Hence, if C12(t) is not an isometry then the top left entry of the above
matrix in not the unit so 6 is not maximal. Conversely, suppose Cp2(t) is an
isometry for all ¢ > 0. If C’(t) is positive for all ¢ > 0 we have

0 < [011(0 012(0} < {Cil(t) 012(t>:|

— [C@)r Cu) |~ [C@®) I
for all t > 0. A straight forward computation shows matrix on the right above is
positive if and only if C7;(t) > I and since C;(t) < I we have C7;(t) = I for all
t > 0. Hence, 6 is maximal. Now @ is hyper maximal if and only if both # and 6*
are maximal so € is hyper maximal if and only if C(#) is unitary for all ¢t > 0. O

IV. CP-FLows.

We consider the problem of finding all strongly continuous semigroups of com-
pletely positive contractions of the space of all bounded operators on £ ® L?(0, o0)
into itself which intertwine with the semigroup of right translation on £® L?(0, cc).
As we will see this is a problem in finding an extension of the differential operator
d = d/dx. The importance of this problem is that every E,-semigroup can be in-
duced using the Bhat minimal dilation [Bh] from such a semigroup. We call such
semigroups C' P-flows over K where R is a separable Hilbert space.
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Definition 4.0. Suppose £ is a separable Hilbert space and § = 8® L?(0, c0) and
U(t) is right translations of $ by ¢ > 0. Specifically, we may realize $) as the space
of R-valued Lebesgue measurable functions with inner product

(f.9) = / T @) de

for f,g € 9. The action of U(t) on an element f € § is given by (U(t)f)(z) =
f(x —1t) for x € [t,00) and (U(t)f)(xz) = 0 for x € [0,%). A semigroup « is a C'P-
flow over R if «v is a C'P-semigroup of B($)) which is intertwined by the translation
semigroup U(t), i.e.,, U(t)A = a,(A)U(t) for all A € B($H) and ¢t > 0. A semigroup
a is a CP,-flow over R where k > 0 if « is intertwined by the translation semigroup
U(t) and the semigroup A — e "*a;(A) is a CP-semigroup of B($). The constant
k is called a growth bound for a.

Then next theorem shows that every spacial E,-semigroup is cocycle conjugate to
an F,-semigroup which is also a C' P-flow so and complete classification of C'P-flows
yields a complete classification of spatial F,-semigroups.

Theorem 4.0A. Every spatial E,-semigroup of ®8(%)) is cocycle conjugate to an
E,-semigroup which is also a C'P-flow.

Proof. Suppose « is a spatial E,-semigroup of B($)) and V is a one parameter
semigroup of isometries that intertwine «. For each one parameter semigroup of
isometries V' acting on §) there is the Wold decomposition of = $, EBR®L2(O, 00)
so that V(¢) is unitary on $), and V (¢) is the right shift on is £ ® L2(0, c0) for each
t > 0. Note V(t)V(t)* — P as t — oo where P is the projection onto 9, so if
\V(t)*f|]| — 0 as t — oo for each f € $ then « is a C'P-flow since V (¢) is the
right shift on § = R ® LQ(O, oo) for each t > 0. To prove the theorem we need to
show that every spatial E,-semigroup is cocycle conjugate to a F,-semigroup which
is intertwined by a semigroup V with the above property. From Theorem 2.13 of
[P4] it follows that every spatial E,-semigroup is cocycle conjugate to a spatial
FE,-semigroup in standard form where an E,-semigroup « is in standard form if it
has a pure absorbing state w, which means that if p is any normal state of B($))
then p(a(A)) — wo(A) as t — oo for all A € B(H). It follows that an absorbing
state is invariant (i.e., wo(at(A)) = wo(A) for all ¢ > 0 and A € B($)). Since
w, is pure it follows that there is a unit vector f, € $ so that w,(A) = (fo, Afs)
for all A € B($). One defines a strongly continuous one parameter semigroup of
isometries U(t) by the relation

Ut)Afo = ar(A)fo

for all A € ®B($) and ¢t > 0. The semigroup U intertwines «. It follows from proof of
Theorem 2.13 in [P4] that U(t) is a pure shift on the orthogonal complement of f, so
the Hilbert space $ = 9, P $H1 decomposes into a direct sum of the one dimensional
subspace ), spanned by f, and the orthogonal complement $); and the semigroup
U decomposes as a pure shift on the orthogonal complement $; and U just the
identity on 9, (i.e., V(t)f, = f, for t > 0). We will show that we can perturb the
FE,-semigroup «a and obtain an F,-semigroup ( which is cocycle conjugate with «
and [ is intertwined by a semigroup of pure shifts so 3 is a C'P-flow.
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Now since U is a pure shift on $; we can represent $; as K1 ® LQ(O, o) and V
acts by translation. We can pick a unit vector h; € K1 and then let h be the vector
in 9, defined by the & valued function h(x) = V2hie~? for > 0. To specify
the vector h without referring to this representation of vectors as functions we can
simply say h € § is a unit vector so that U(t)*h = e~ th for all t > 0. Now let H
be the skew hermitian operator giving by

Hf :%(h7f)f0_%(f07f)h

for all f € §. Let —d be the generator of U(t) so U(t) = e~ for t > 0. Let § be
the generator of o and let

01(A) = 6(A) + HA— AH

for all A € ©(5). Now by Theorem 2.8 of [P3] (restated as Theorem 2.10 in [P4])
01 is the generator on an E,-semigroup [ which is cocycle conjugate to a and (3
is intertwined by the semigroup of isometries V (t) = exp(—tdy) = exp(—t(d — H))
for t > 0 (where dy = d — H). We show V is a pure shift. Suppose f € $. We note
that for each ¢ > 0 we can uniquely decompose V' (¢)f in the form

V(t)f = a(t)fo+ b(t)h + g(t)

where ¢(t) is orthogonal to both f, and h. Note a(t) = (f,, V(t)f) and b(t) =
(h,V(t)f). Note fo,h € ©(d}) and

deO:d*fo_H*fO:_%h and dih:d*h—H*h:h—f—%fo.
Then we can differentiate a(t) and b(¢) and obtain the equations

alt) = ~(d5 o, V() = 3 V() = $0(0)

and
d

Zb() = =(dih, V() ) = (=h = 310), V() ) = =b(t) — 3a(?)

for t > 0. Solving these coupled differential equations one finds that

a(t) = (a+ La+0)t)e 2" and  b(t) = (b— L(a+ b))e 2!

for ¢ > 0 where a = a(0) = (f,, f) and b = b(0) = (h, f).

Now let 9t be the two dimensional subspace of § spanned by f, and h and let P
be the orthogonal projection of £ onto 9. We see from the above equations that if
f € M+ (the orthogonal complement of M) then V(t)f € M+ for all + > 0 (since
if a = b =0 then a(t) = b(t) = 0 for all £ > 0). Next we note that if f € ©(d) and
f € M+ then dy f = df. Hence, for f € D(d) and f € ML we have U(t)f = V(¢)f
for all ¢ > 0. This extends to all f € M+ by continuity. Armed with these facts
can now prove V(t) is a pure shift for each ¢ > 0.
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We have shown that
Vi)=V)P+V(it)I—-P)=V()P+U(t)(I — P)
for ¢t > 0. Taking adjoints we have
V()" =PV(Et)"+ (I —-P)U@)"

for t > 0. Since U is a pure shift on f;- and (I—P)U(t)* f, = 0 for all t > 0 it follows
that ||(I — P)U(t)*f|| — 0 as t — oo for all f € . Then we have |V (t)* f|| — 0 as
t — oo for all f € 9 if and only if ||[PV(t)*f|| — 0 ast — oo for all f € H. Now
from the equations for a(t) and b(t) we have

1PV ()" 1 = |(fo, V) HIP + (B, V()" )P = la(t)]* + [b(t)”
< (1 + ) (lal* + p*)e™ = (1 + )| Pf]Pe™

for t > 0. Hence, ||PV(t)*f|| — 0 as t — oo for all f € $ so V(¢) is a pure shift for
each t > 0. Hence, 3 is a CP-flow. [

The problem we pose is to describe all C' P-flows over K. In the following when
working with a CP-flow over & we will assume that § = & ® L2(0,00) and U () is
the right translation operator described above. Note that a C'P,-flow is a C'P-flow.
We will prove that every CP,-flow is a C'P-flow. Also when we write C'P,-flow in
the sequel we assume automatically assume that x > 0 and R is a separable Hilbert
space.

Lemma 4.1. Suppose « is a one parameter semigroup of positive linear mappings
of B($) into B($H) and the semigroup U(t) of isometries intertwine « in that
Ut)A = oy (A)U(t) for all A € B($H) andt > 0. Let E(t) =1 — U(t)U(t)*. Then
for A € B(H) we have E(s)a(A) = a(A)E(s) for all s and t with 0 < s <t < 00
and

(4.1) ai(A) = UR)AU (D) + E(t)as(A)E(t)

Proof. Suppose « satisfies the hypothesis of the lemma. Since «; is positive we
have a;(A*) = ay(A)* for all A € B($H) and all ¢ > 0. Since U(t) intertwines we
have U(t)A = ay(A)U(t) for all A € B($) and taking adjoints and replacing A by
A* we have AU (t)* = U(t)* a4 (A) for all A € B(H) and ¢t > 0. It follows then that

as(A)U(s)U(s)* =U(s)AU(s)* = U(s)U(s) as(A)
for all A € B($H) and s > 0. Since for s < ¢t < 0o we have a(A) = as(ai—s(A))

it follows that E(s)a:(A) = E(s)ai(A) for all A € B($H) and s and ¢ satisfying
0 < s <t < oo. The last line of the lemma follows from the computation

ar(A) = a (AU U )" + ar(A)E(t)* = U()AU(t)" + E(t)ar(A)E(t)

for all A€ B(H) and t > 0. O
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Lemma 4.2. Suppose « is a C'P.-flow over R and recall U(t) are the right transla-
tions on § = A® L?(0,00). Let § be the generator of a and —d be the generator of
U (t)(d is the differential operator d/dxz with the boundary condition that f(0) = 0).
Then each A € ©(0) has property that AD(d) C D(d) and AD(d*) C D(d*) and
for f € ©(d) and g € D(d*) and A € ©(J) we have

(4.2) S(A)f = Adf — dAf and §(A)g=—Ad g+ d"Ag

Proof. Assume the hypothesis and notation of the lemma. Suppose A € D(4d) and
f € ©(d). Using the fact that U(t)A = a(A)U(t) we have

tHU(t) = DAf =t~ (ow(A) = A)f +tT AU = 1) f
+ 7 ae(A) = AU ) - Df

Since the first two terms on the right hand side of the above equation converges to
0(A)f and —Adf respectively and the third term converges to zero it follows that
Af € ©(d) and —dAf = §(A)f — Adf. Hence, we have proved the first equation of
the conclusion of the lemma. Now continuing to suppose f € D(d) and A € D(0)
and suppose g € ©(d*). Then we have —(dAf,g) = (§(A)f,g) — (Adf,g). Since
A € D(6) implies A* € ©(J) and §(A*) = §(A)* we can replace A by A* and taking
adjoints we find (df, Ag) = (f, Ad*g) + (f,0(A)g). Since this is true for all f € D(d)
we have Ag € ©(d*) and d*Ag = Ad*g+0(A)g. O

We introduce a *-derivation ¢; which is an extension of .

Definition 4.3. Let §; be the linear mapping of the domain D(d;) into B(9H)
where ©(91) consisting of all A € B(H) so that AD(d) C D(d), AD(d*) C D(d*)
and there is a B € B(9) so that Bf = d*Af — Ad* f for all f € D(d*). If A € B(H)
satisfies the above requirements then §;(A) = B.

Lemma 4.4. The domain ®(07) is a x-algebra which is o-strongly dense in 5($))
and 8, is a o-weakly closed x-derivation of ©(d1) into B(9). If § is a generator
of strongly continuous one parameter semigroup « of completely positive maps of
B($)) into itself satisfying the hypothesis of Lemma 4.2 then §, is an extension of
0 in that ©(61) D ©(0) and 61(A) = §(A) for all A € D(9).

Proof. Suppose h,g € D(d) and X f = (g, f)h for all f € $. Note XD(d) C D(d)
and X®(d*) C ©(d) C ©(d*). Let Y f = —(g, f)dh — (dg, f)h for all f € $. Then
one checks that X € ©(d;) and §;(X) = Y. It follows then that ©(d;) contains
all finite linear combinations of operators of the form X just given. Since ®(d) is
dense in $) these operators are o-strongly dense in the finite rank operators. Since
the finite rank operators are o-strongly dense in 8(5)) we have D(4;) is o-strongly
dense in B($H).

Suppose A € ©(61) and 01(A) = B. Then Bf = d*Af — Ad*f for all f € ©D(d*).
Suppose g € D(d). Then (A*g,d*f) = (g, (d*A— B)f) = ((A*dg — B*g), f) for all
f €®D(d*). Hence, A*g € ©(d**) = D(d) and we have shown that A*D(d) C D(d).
Since AD(d) C D(d) and —d* D d we have Bf = Adf — dAf for all f € D(d).
Suppose g € D(d*). Then we have (A*g,df) = (g, (dA+ B)f) = ((A*d*g+ B*g), f)
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for all g € ©(d). Hence, we have shown that A*D(d*) C ©(d*) and B*g = d*A*g —
A*d*g. for g € ©(d*). Hence, A € ©(61) implies A* € D(d1) and d1(A*) = 61(A)*.

It is a routine computation to show that if A, B € ©(§;) then AB € D(d;)
and §1(AB) = §1(A)B 4 Ad1(B) so we have that ©(d;) is a *-algebra and J; is a
x-derivation of D (d1) into B(H). If J is the generator of Lemma 4.2 it follows that
D(61) DD(0) and 01(A) = 0(A) for all A € D(J).

Finally, we show that d§; is o-weakly closed. Suppose then that A, € D(d;)
and §,(A,) = B, and A, — A and B,, — B o-weakly as n — oo. Then A} —
A* and 01(A}) — B* o-weakly as n — oo. Suppose f € ©(d) and g € D(d*).
Then (Af,d*g) = lim, (A, f,d*g) = lim,, o (A.df,9) — (Bnf,g9) = ((Adf —
Bf),g). Hence, AD(d) C ©(d**) = D(d). Suppose f € D(d*) and g € D(d). Then
(Af,dg) = limp—ao(Ay f,dg) = lim, o (f, Azdg) = limg o (f, (dA3 + B)g)
lim,, oo ((And* + Bp)f,g9) = ((Ad*f + Bf),g). Hence, we have Af € ©(d*) and
Bf =d*Af — Ad*f for all f € ©(d*). Hence, we have A € ©(d;) and 6;(A) = B.
Hence, 01 is o-weakly closed. [

We define the boundary representation 7, of ©(d1). As is well (see [DS], Lemma
10, p.1227) known each element f € D(d*) can be uniquely decomposed in the form
f = fo+ fr with f, € D(d) and f; € D(d*) and d*fy = fi. The vector fy is
given by fi(x) = e~ f(0). Note that since f is differentiable f can be represented
by a continuous R-valued function f(x) and when we write f(0) we are of course
referring to a representation of f by a continuous function. We introduce the inner
product (f, g) on ©(d*) by the relation

(frg9)=(d"f,g)+ (f,d"g)

Note that if f,g € ©(d*) then (f,g) = (f(0),¢(0)) so (-,-) is an inner product in
D(d*) mod D(d). Now if A € D(61) we have AD(d) C D(d) and AD(d*) C D(d*).
It follows that if f € ©(d*) then (Af)(0) only depends on f(0). The mapping
f(0) — (Af)(0) is called the boundary representation of 7, of ©(d1). One sees that
To is a *-mapping and 7, is a representation of ©(d;) since for A, B € ©(d;) and
f € D(d*) we have mo(AB)f(0) = (ABf)(0) = o (A)(Bf)(0) = mo(A)mo(B)f(0).
Note 7, is unital in that 7,(I) = I. We show 7, is a contraction of ®(d;) into
B(R). Since D(47) is not a C*-algebra this in not an immediate consequence of the
fact that 7, is unital. For A > 0 let fy = e "k where k € £ is a unit vector and
suppose A € D(81). Note ||fx|| = 1/v/2\. Then we have

Imo(A)k|* =(fr, AAfA) = (d* fr, A"AFN) + (fr, d* AT Af)

=(d" fo, A"Af) 4 (fx, A"Ad™ fr) + (fx, 6(A"A) )
=2\ ALlI” + (fa, 6(A*A) £) < [ AI2 + 20) 1| 6(A*A) ||

Taking the limit as A — oo we have ||7m,(A)|| < ||A|| for all A € D(d7).

Definition 4.5. The mapping 7, defined above is called the boundary represen-
tation of ©(d1) on K.

If one looks for the solutions to the equation d;(A) = A one is lead to the
operators A(B) defined below.
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Definition 4.6. For A > 0 and A € B(K) we define A(A4) on H = & ® L?(0, o)
by the relation (Ay(A)f)(z) = e M Af(x) for all f € . If we write A(A) with no
subscript we mean Aj(A) (i.e., A = 1) and we simply write A for A(I) = A;(]).

Note that for A > 0 the mapping A — A (A) is a contraction of B(RK) into B(5).
One easily checks that

Ax(A)" =A\(AY)
U(H)Ax(A) =e* A (AU (1)
U(t)*Ax(A) =e MAN(A)U ()"
for A € ®B(RK) and t > 0. Note that for A\, x > 0 we have

AN(A)AL(B) = Axsu(AB)
for A, B € B(R).

Lemma 4.7. If §; is the x-derivation defined in Definition 4.3 and A > 0 then
01(A) = MA if and only if A= A\(B) for some B € B(R).

Proof. If B € B(R) one sees immediately that Ax(B) € ©(61) and 61 (Ar(B)) =
A (B). Conversely, suppose A € ©(d1) and 61(A) = MA. For s > 0 let ©; be the
subspace of all f € ©(d*) so that d*f = sf. It is well known that © consists of
all vectors f € 9 of the form f(x) = e %" f, where f, € K. Suppose f € ©;. Since
91(A) = AA we have from the definition of d; that NAf = 61(A)f = —Ad*f+d*Af
and, hence, d*Af = (1 4+ A\)Af. Hence, A maps ©; into D14). Since the mapping
f — f(0) is continuous and has a continuous inverse both for f € ©; and for
f € D14y it follows that if f(x) = e %k with k € & then (Af)(z) = e~ (N2 Bk
where B is a bounded linear operator determined by A. Suppose B is this operator
determined by A. Let C = A — A\(B). We claim C = 0.

We have C' € ©(d1) and §;(C) = A\C and C'f = 0 for f € ©;. From the definition
of 9 we have C'f = 6, (C) f = —dC f+Cdf for all f € D(d). Now suppose f € D(d).
Let g(t) = eMCU(t)f. Since U(t)f € D(d) for all t > 0 and —d is the generator of
U(t) we have

d

Sa(t) =g(t) - M CdU(D)f

=\g(t) — eMdCU(t)f — XeMCU(t)f = —dg(t).

Since —d is the generator of U(t) we have ¢g(t) = U(t)g(0) = U(t)Cf or U(t)Cf =
eMCU(t)f for all f € D(d) and t > 0. For each fixed ¢ both sides of this equation are
norm continuous in f so we can extend this equation to all f € §. In particular we
can apply this equation to vectors g; given by g(z) = e~k in ®; and since C'f =0
for f € ©1 we have CU(t)g; = 0 for all k € R and t > 0. Note (g1 —e 'U(t)g1)(z) =
qt(x)k where g4(x) = e=* for x € [0,t] and ¢;(z) = 0 for > t. The linear span of
the functions ¢; are dense in L?(0,00) for if h € L?(0,00) where orthogonal to all
the ¢; we would have e”?h(x) = 0 almost everywhere. Since the linear span of the
q: are dense in L?(0, 00) we have the linear span of the vectors U(t)g; with g;(x) =
e "k with k € R and t > 0 are dense in §). Hence, Ch = 0 for a dense set of vectors
so C' =0. Hence, A = A\(B). O

Next we introduce the operator I' which solves the equation A — §;(A) = B.
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Definition 4.8. Suppose A > 0. For ¢ > 0 we define

T¢ (A) = /0 N MUMAU) dt and  Ty(A) = /0 T ANMUW AU () dt

for all A € B(9). If we write I'(A) with no subscript we mean I'y (4) (A = 1). When
we write I'y we always assume A > 0.

We see I'y is a everywhere defined bounded operator and I'y is o-weakly con-
tinuous since I'§ is o-weakly continuous and I'§(A) converges in norm to I'y(A) as
¢ — 00.

Lemma 4.9. Suppose A > 0. For A € B($)) we have I'y\(A) € ©(61) and
La(A) = 2715 (Ty(4)) = A.
For A € ©(61) we have

Th(A—XA"101(A)) = A — Ax(m,(A)).
Proof. Suppose T is as defined above. Suppose A € B(5)). Then we have

TA(A) — e MU (AU (1)* = /Ot e MU (s)AU (5)* ds.

Dividing by ¢ and taking the limit as t — 0+ we find.
tHUOTA(AU ()" = Ta(A)) — ALA(A) — A)
in the strong operator topology as t — 0 + . Now suppose f € D(d). Then

t=HU(t) = DTAA)f =t UOTAA)U )" (U ) - 1) f
+ T UTAA)U ()" = TA(A) S

As t — 0+ the first term on the right hand side converges to —I'y(A)df and the
second term converges to A(I'y(A)f — Af). Hence, I'\(A)f € ©(d) and

—dDA(A)f = ~TA(A)df + ATA(A)f — Af).

Note the above equation holds with A replaced by A*. Then for f € ©(d) and
g € ©(d*) we have

—(g,dUA(A") f) = —(g, TA(A™)df) + Mg, TA(A™) f) — Mg, A" f)

and rearranging we have



40 ROBERT T. POWERS

It follows that I'y(A)g € ©(d*) and
d'TA(A)g = TA(A)d"g + A(TA(A)g — Ag).
Hence, it follows from the definition of d; that I'y(A) € D(d;) and 61 (TA\(A)) =
ATz (A) — A). Hence, T'y(A4) — X716, (T (A)) = A.
Now suppose A € ©(d1) and f,g € D(d*). Since & (A)U)* f = d*AU(t)*f —
Ad*U(t)*f and (d/dt)U(t)*h = —d*U(t)*h and recalling that (f,g) = (d*f,g) +
(f,d*g) we have

(f,TS(A — A~16,(4))g) = / A MU, (A= A8 (AU ()" g) dt

= /OC e MU f, AU(t)*g) + %e"\t(U(t)*f, AU (t)*g) dt

- / T M), mo(A)g(1)) dE + (F, Ag) — e (U(e)* f, AU()"g)

= (f, (A= Ax(mo(A)))g) — e (U (e)" f, (A = Ax(mo(A))U () 9)-
Note both sides of the above equation are norm continuous in f and g and since
D(d*) is dense in $ the above equation is valid for all f, g € $. Hence, we have

DS (A= AT101(A)) = A = Ax(m5(A)) — e U (e) (A — Ax(mo(A)))U (0)*

As ¢ — oo the second term on the right hand side of the above equation converges
strongly to zero and the result of the lemma follows. [

The next lemma characterizes the domain of d; and 51. We recall that if ¢ is a
linear mapping which is o-weakly closed then ¢ is the associated mapping on the
predual.

Lemma 4.10. Suppose A > 0. We have A € ©(d1) if and only if A is of the form
A = A\(B)+T\(C) with B € B(K) and C € B($). We have p € D () if and only
if p = I'x(w) for some w € B(H), with Ay(w) = 0. Note p satisfies p— A~ 151 (p) = w.
Proof. Suppose A > 0. From the previous lemmas it follows that if A = Ay(B) +
['\(C) with B € B(RK) and C € B($) then A € D(d1). Now suppose A € D(d7).
Let C = A — A716;(A). Then from Lemma 4.9 we have I'y(C) = A — Ay (7,(A))
and, hence, A = Ax(m,(A)) +T'x(C).

Next suppose p € D(d1). Let w = p—A~281(p). Then w(A) = p(A)—A~1p(61(A))
for all A € ©(61). Since Ax(B) € ©(d1) and 01(Ax(B)) = AAA(B) for all B € B(R)
we have w(A\(B)) = 0 for all B € B(R) so Ay(w) = 0. Since w(A4) = p(A) —
A71p(81(A)) for all A € D(4;) and by the properties of I'y proved in the previous
lemma we have w(I'y(A)) = p(A) for all A € B(). But this means p = L'y (w).

Now, suppose w € B($), and Ay(w) = 0. Let p = I'y(w). Suppose A € D(d;).
Then from the previous lemma we have

p(A = A7161(A)) = w(Tn(A — A7161(4))) = w(A — Ay (mo(A))) = w(A)
where the last equality follows from the fact that A A(w) = 0. Hence, p € @(51) and
p—A"161(p)=w. O

In the next definition we introduce notation we will use repeatedly in our analysis
of C'P-flows.
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Definition 4.11. Recall § = 8 ® L?(0,00) and U(t) is the translation semigroup
on 9. Let E(t) = (I —U@)U(t)*) and E(s,t) = E(t) — E(s) for 0 < s < t and
E(t,00) =U)U(t)* =1 — E(t) for t > 0. Let

0.(A) =U@AU®)",  &(A)=U@#)"AU®{)  and  G(A) = E(t)AE(t)
for all A € B(9).

For A > 0 let Qy be the isometry from £ to § given by (Q\k)(z) = vV Ae 2 7k
for z > 0 and k € K. Let ®, be the mapping of B($) into B(H) given by

D5 (A) = QrAQN
for A € B(H). Note if we write & without a subscript we mean ®, with A = 1.
Note 6; and &; are semigroups and
£(0:(A)) = A and 0:(&:(A)) = E(t,00)AE(t, )
for all A € B($) and t > 0. It follows that 6,(,(n)) = n for all € B(H).. Note
E(AN(A)) = e MAL(A) for all A € B(H) and t, A > 0. Also, we have

1 1
(I))\(A)\(A)) = §A and CI)A(FA(A)) = 5(1))\(14)
for A € B($H) and A > 0. Using these identities a direct calculation establishes the

formulae

(4.3a) A& () = e MAx(n)

(4.3b) TG = am) + [ At ds
(4.30 6P (E () = Taln)

(4.34) Ra(@a(0) = 50

(4.3¢) PA(@a(0)) = 5@1(0)

(4.30) Pa(Ao(A)) = Ag(A) — Ax(A)

(4.3g) I()=1-A

which are valid for all ¢, A > 0, n € B(9)., p € B(K). and A € B(H).

We establish the last two equations. Suppose f,g € $H and so we can represent
f and g as R-valued functions f(x) and g(x) for z > 0. Then for A € B(RK) and
A > 0 we have

(f,Ta(Ao(A))g) = / T AL UM A(AT () g) di

= [T [T ). Agta dar
0 t
Integrating by parts we arrive at the formula
(FTAA(A)g) = [ (o) Agla)) da— [ e (7(0), Ag(0)) at
0 0

= (f; (Ao(A) — Ax(A))g).
Hence, we have established (4.3f). Since A,(I) = I and A1(I) = A(I) = A (4.3g)
follow from the previous equation when one sets A =1 and A = 1.

—~
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Lemma 4.12. With ¢, and 6, as above we have ||n|| > ||C;(n)|| + ||6:(n)|| for all
t >0 andn € B(H)..

Proof. Assume ¢t > 0 and n € 2B(5)).. Suppose A and B are in the unit ball of 2B($))
and G()(A) = |G:(n)]| and 0x(n)(B) = [10:(n)]. Let C = E(t)BE(t) + U (t) AU (1)".
Note
C*C =E(t)B*E(t)BE(t)+ U(t)A*AU(t)*
<E@{)B*BE(t)+U)U(t)" < E@l)+U)U(t) =1
Hence, ||C]| < 1. Now we have

Inll > In(C)] = [&e(n)(B) + b:(n) (A)] = 1<) | + 16:(n) ]
which concludes the proof of the lemma. [

Suppose « is a C'P-flow over K. Suppose ¢ is the generator of a. In the analysis
of o an important tool is the resolvent Ry of § which is defined for A > k where &
is a growth bound for a by the formula

Ry(A) = /0 h e Moy (A) dt

for A € B(H). If we speak of the resolvent R (with no subscript) we mean the
resolvent R; where A = 1. If a is a C'P-semigroup the resolvent is defined for all
A > 0 (in fact all complex A with Re(\) > 0) but because ||a;(A)|| can grow like e**
we see that convergence of above integral is only assured for A > x. The resolvent
is the inverse of the map A — A — A71§(A) for A € D(§). Precisely, we have for
A > k the resolvent maps B($) onto the domain ©(J) and

Ra(4) = \15(Ry (4)) = A
for all A € B(9). Also, we have
Ry(A) = X"TR\(6(A)) = A

for all A € ©(6). The semigroup « can be recovered from the resolvent in a variety
of ways. One formula we will use is the formula

an(4) = lim (Royo)"(4)

for A € B(9H) and ¢ > 0 where the convergence is in the o-strong topology and
is uniform for ¢ in a bounded interval. We use the convention R (A) = A. For a
discussion of the resolvent we refer to Chapter 3 of [BR]. Now from equation (4.1)
we recall that

ar(A) = E(t)a(A)E(t) + U(t) AU (t)*
for A € B($). Then we have

oo
Ry\(A) = / e ME(t) oy (A)E(t) dt + Ty (A)
0

so we see that the resolvent is the sum of two terms the second of which is directly
computable and the first term contains the information about the particular CP,-
flow. The next definition allows us to focus on this first term. Our definition is not
just the first term above but a what you obtain after applying @, to it. Our reason
for this will become clear with Theorem 4.14.
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Definition 4.13. Suppose « is a C'P,-flow over 8 with a growth bound x > 0.
Suppose A > k. The boundary resolvent for a denoted by o is a completely positive
o-weakly continuous mapping of B($)) into B(R) given by

ox(A) = 205(Rx(A)) — Pa(A)

=2 / T AN, (B()os (A)E(L)) d

for A € B(9) where R is the resolvent for a.. In terms of the maps on the predual
we have

&x(p) = 2R\ (®x(p)) — @r(p)

_ 9 /Ooo AeMay (E(Br(p)) dt

for p € B(R).. If we refer to o (with no superscript) as the boundary resolvent of
a CP-flow we mean oy with A = 1.

Theorem 4.14. Suppose « is a C'P,-flow over R and suppose x > 0 is a growth
bound for «. Suppose A > k and o) is the boundary resolvent of .. Then

(4.4) Ry(n) = 6x(Ax(n)) + Ta(n)

for n € B(9H). where Ry is the resolvent of a. We have

~

(4.5) G (6x(Ax () + MDA (&) = €M (Ex(Ax(m)) + Ta())

for all n € B($). and t > 0 and for arbitrary v € B($), we have
(4.6) ar(v — G (v) = 0,(v).

Proof. Assume the hypothesis and notation of the theorem. We begin with (4.6).
Assume v € B($).. We have from Lemma 4.1 that

du(v = G()(A) = v(aw(4) = E()au(A)E(1) = v(U () AU (1)) = b, (v)(4)

for all A € B($) and t > 0. Hence, equation (4.6) is established.

Next we establish equation (4.4). Let § be the generator of o and § its preadjoint
which is the generator of . Suppose 7 € B($).. Let p = Ax(n) and let 7, =
n—2®,(p). Since 2A5 (P (p)) = p we have Ay(11) = 0. Then we have from Lemma
4.9 that Ty (1) € D(01) and Az (1) — 01 (Da(m1)) = App. From Lemma 4.4 we have
that 0, is an extension of § so ¢ is an extension of 4;. Hence, T'y(1;) € D(d) and
S(Dx(n1)) = ALx(11) — Any. In terms of resolvents this means Ry (1) = Ix(n1). Let

o be the boundary resolvent of av. Since 2& A(p) = n—mny it follows from Definition
4.13 that

Ry(n—m) = 6x(p) + &a(p)
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Since Ry(m1) = Ta(m) and p = Ay(n) we find from the above equation that

~ ~ ~

Ry(n) = 6x(Ax() +Ta(n) + @x(Ax(n)) — 20A(@x(Ar(0))).

From equations (4.3f) the last two terms cancel and we have established equation
(4.4) of the theorem.

Finally, we establish equation (4.5). Suppose t > 0 and n € B($).. From
equation (4.4) applied to e*&;(n) instead of i we have

A

Ry(eM&(n)) =

~

(R () + Ta(m) + / AME, (n) ds

Q»

t
() + / AP Ey(n) ds = o
0

where we have used equations (4.3a,b) to compute Ay (£:(n)) and T'x(€:(n)) where
the last equality in the second line is just the definition of ;. In terms of the

A~

generator 0 this means v; € D(0)

Avp = 6(1g) = A&(n)  or O(ve) = Mve — & ()
for ¢ > 0. Since

t
v= e N R n) + [ A ()ds)
0
we see that v; is differentiable and

d

%Vt = —Ave — &)

Suppose t, > 0 and ¥y = vy, for t € [0,t,]. We see that 9, € @(3) and 9, is
differentiable for t € [0,t,] and

d .
%ﬂt — (5(’(915)

so from Theorem 2.8 we have ¥, = &(V,) for t € [0,%,] and for t = ¢, we have
V¢, = &y, (¥,) which says

A

to . .
e Moay, (Ra(n) + / MM, (n)ds) = Ra(n)
0

for t, > 0. Multiplying this equation by e*** and using equation (4.4) yields equation
(4.5). 0O

We found the next theorem a surprise. It says that C P.-flows are C P-flows.
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Theorem 4.15. Suppose « is a C'P-flow over K. Then « is a C'P-flow over K.

Proof. Suppose « is a C'P,-flow over K and x > 0 is a growth bound for a. Suppose
A > k and &) is the boundary resolvent of cv. We will first show that o (p)(I) < p(I)
for all positive p € B(RK),. Then we will use this to show « is a C' P-flow.

Assume t > 0 and p € B(R).. Applying equation (4.5) to 2®,(p) and using
equations (4.3) we find

dr(6(p) + 26N TA(E(@a(0)))) = €M (6a(p) + 207 (@2 (0))).

Applying this to the unit I and noting that a;(I) = I 4+ (;(cas(I) — I) and using
equations (4.3) we find

(e = 1) (p) (1) =62(p) (Gelaw(I) = 1)) + (X = 1)p(I)
+2eM D5 (E(Pa(0))) (Gelen(T) = 1)).

Now we assume p € B(RK), is positive. We have k is a growth bound for « so
a(I) < eI and

Celae(I) = 1) < (e = 1)G(I) = (" = 1)E(t).
Since oy, 'y, & and ®) are completely positive and p is positive if we substitute
(e —1)E(t) for ¢;(a¢(I) — I) in the equation above we obtain the inequality
(€M = 1)ax(p)(1) < (" = an(p)(E(®)) + (M = 1)p(1)
+2(e" = 1M (i (Da(p) (E(2)).-

A direct computation shows the last term in the above inequality is (e** —1)(e* —
1)p(I) so after dividing by (e — 1) we have

et —1

oA _ 1&A(P)(E(t)) + e p(I).

ax(p)(I) <

Since 65 (p) is normal we have 6, (p)(E(t)) — 0 as t — 0 4 . Then taking the limit
as t — 04 we find

ax(p)(I) < p(I)

for all positive p € B(RK).. Now suppose 1 € B(9), and n is positive. Then we
have from equation (4.4) that

Ra(n)(1) = ax(Ax(m) (1) + Da(n)(D) < (M) () + (I — Ax(D)) = (D).

Hence, Rx(I) < I. Suppose t > 0 and n = 1,2,---. Since R/, is completely
positive we have

(Resn)"(I) < (Repn)" M) < -+ < Ryy(I) < 1
Since

ar(I) = lim (Ryy)" (1)

n—oo
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we have a¢(I) < I for all ¢t > 0. Since «; is completely positive we have «y is a
contraction for all t > 0 so « is a C' P-semigroup. [J

The mappings Ay, 'y, oy, @) and R) have a subscript A. For C'P-flows we will
only need computations with a fixed A = 1. While working with C P,-flows it was
necessary to be able to choose A > k where k is a growth bound. Now that we
know that C'P.-flows are C' P-flows so that x = 0 is a growth bound we are free to
fix A = 1. So in the sequel we will write A, I'; o, ® and R without a subscript and
we remind the reader that this means we have set A = 1. One exception to this
general rule is A, which we will need occasionally.

Now we begin our analysis of the boundary resolvent ¢ with no subscript so
we mean o1. We begin with a definition of boundary weights. As we will see the
boundary resolvent is the integral of a boundary weight.

Definition 4.16. Suppose £ is a separable Hilbert space and § = & ® L?(0, c0).
Suppose U(t) for ¢t > 0 is translation on $) and the mappings 6, ¢, A, T and ® are
as defined in Definitions 4.6, 4.8 and 4.11. We define the null boundary algebra
2A(H) of B(H) as the algebra of all operators of the form

A= —N2B(I—A\)?

with B € B($). We say w is a boundary weight on B(9) if w € A($). or more
explicitly w a linear functional on 2(($)) and there is a normal functional u € B($).
so that

W((I = A)FA(T = A)*) = pu(A)

for all A € ®B($). The weight norm of w is the norm of ;1 above. When we speak
of the norm of a weight w or say w is bounded and do not explicitly say the weight
norm we mean the usual norm of w which can be infinite as opposed to weight norm
which is always finite. If w is a boundary weight then the truncated boundary weight
wy defined for ¢ > 0 is the normal functional w; € B($). so that

wi(A) = w((I — E(t))A(I - E(1)))

for A € B($). The mapping p — w(p) defined for p € B(R), is a boundary weight
map if this mapping is a linear mapping of *B(RK). into boundary weights on 5()
and this mapping is a completely bounded with the norm on B(8), the usual norm
and the norm on the boundary weights is the boundary weight norm. A boundary

weight map is positive if it is completely positive. A boundary weight map w is
unital if w(p)(I — A) = p(I) for all p € B(R)..

Maintaining the notation of the above definition we note that U (¢t) AU (¢)* € 2A($)
for all A € B($) and t > 0. Recall the mapping I" defined in Definition 4.8. Since I
is completely positive and T'(I) = I — A so T'(I) € A(9) it follows that T'(A) € 2A($)
for all A € B($). This may be seen as follows. Suppose A € B($) and 0 < A < I.
Then we have 0 < T'(A) < I — A. Then for f,g € ®((I — A)~2) the bilinear form

(f,9) = (I =N) "2 f,T(A)(I - A)"2g)
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is well defined and 0 < (f, f) < (f, f) so there is a bounded operator B € B($)) so
that (f, Bg) = (f,g) for all f,g € ©((I — A)~z). Then we have

(f;T(A)g) = (I = A)2 [, B(I = A)2g)
for all f,g € ®((I —A)~2). If follows that
I'(A) = (I —A)2B(I —A)?

and I'(A) € 24($). Since each operator A € B($)) is the linear combination of four
positive operators it follows that I maps 9($)) into the null boundary algebra 4($).
Note that if w is a boundary weight then n(A) = w(I'(A)) defined for all A € B($)
defines an element 7 € B($), so if w is a boundary weight then I'(w) is a well
defined element of B(5))..

Theorem 4.17. Suppose « is a C'P-flow over & and o is the boundary resolvent
of a. Recall 6,(A) =U(t)AU(t)* for A € B($) and t > 0. Then for each t > 0 the

mapping
(4.7) p— &(p) — e "0:(5(p))

is completely positive mapping of B(R). into B(9).. The boundary resolvent sat-
isfies the normalization inequality 6(p)(I) < p(I) for all positive p € B(R). and
a(p)(I) = p(I) for all p € B(R), if and only if « is unital.

Suppose o is a completely positive o-weakly continuous contraction of B($)) into
B(RK) so that the mapping (4.7) is completely positive for allt > 0. Then there is a
completely positive boundary weight map p — w(p) of B(R). into A($H). (boundary
weights on B(9)) so that

(4.8) 5(p)(A) = /0 e~ 'w(p)(U(AU (1)) dt = T'(w(p))(4)
for A € B(9). And w satisfies the normalization condition

(4.9) w(p)(I = A) = a(p)(I) < p(I)

for p positive.

Conversely, if p — w(p) is a completely positive boundary weight map B(R).
into (), satisfying the normalization condition (4.8) and 6(p) is defined by (4.7)
then the mapping (4.7) is completely positive for allt > 0 and this mapping satisfies
the normalization condition 6 (I)(p) < p(I) for p € B(R), positive.

Proof. Suppose « is a C'P-flow over K and o is the boundary resolvent of a. We
will show the mapping (4.7) is completely positive for ¢ > 0. From Definition 4.13
we recall

A

5(p)(A) = / T e (o) (B(t)an( A)E()) dt

for all A € B(H).
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Suppose ¢ > 0. Let J4(p) = 6(p) — e tay(6(p)) for p € B(K).. We show the
mapping p — v is completely positive. Suppose p € B(R)., A € B(H) and s > 0.
We have with repeated use of Lemma 4.1 that

e~6(p) (s (4)) =2 / T e () (B(t)arso(A)E (1)) dt
=7 T et (p) (B () (A)) dt
0
9 /0 e~ =3B(p)(E(t + 5)arss(A) — Bt £+ 5)ass(A)) dt
=7 T (o) (B(t)an A)E()) dt
-2 /OO e D(P)E(t t + s) s (A)E(t, t + s) dt.
0

Hence, we have

D.(p)(A) =2 / e B (p)(E(t)an(A)VE() di

+2 /OO e T D(p)(E(t, t+ s)aurs(A)E(t, t+ 5)) dt.

Since all the mappings in the above formula for J, are completely positive in their
dependence on p the mapping p — ¥ is completely positive. Then from Lemma
4.1 we have

~

5(A) — e 1o (U AU®)") = D,(A) + v (A)

where

vi(A) = e7'6(p)(E(t)ar(A)E(t)).

Since «; and the mapping p — &(p) are completely positive we see that the mapping
p — v is completely positive. Hence, for each ¢ > 0 the mapping p — &(p) —
e_tét(&(p)) is the sum of two completely positive maps and, hence, it is completely
positive.

The normalization inequality 6(p)(I) < p(I) for all positive p € B(K). was
established in the proof of Theorem 4.15. Recalling equation (4.4) of Theorem 4.14
we have

A

(4.4) R(n) = 6(A(n) +T'(n)

for n € B(H). where R is the resolvent of a. Suppose « is unital. Then R is unital
and setting n = 2®(p) for p € B(RKR). in the above equation and using equations
(4.3) we have ¢(p)(I) = p(I). Conversely, if 6(p)(I) = p(I) for all p € B(RK), then
from equation (4.4) above and equations (4.3) we have

n(R(I)) =n(A) +n(I = A) =n(I)
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for all n € B(5)).. Hence, R(I) = I and we have

/OO e (I — oy(I))dt = 0.

Since the integrand above is positive we have ay(I) = I for all t > 0 so « is unital.

Now suppose o satisfies the conclusion of the first paragraph of the theorem so
the mapping (4.7) is completely positive. We begin by constructing w for fixed p.
Assume p € B(R). is positive. Since p will be fixed for the first part of our argument
we will write expressions like o(p) and w(p) as ¢ and w to simplify notation. If I
is the interval [a, ) let

nr(A) = e 6(U(a)AU(a)") — e "6 (U (b) AU (b)")
for all A € B($)). Since for A € B($H) we have
ni(A) = e %6 (U(a)AU (a)* — e~ = DU (b — a)U(a) AU (a)*U (b — a)*)

it follows that 77 is positive. From the definition of n; and the properties of & we
have

77[a+t,b+t)(A) = e_tn[a,b)(U(t)AU(t)*)
Nattbt) ) < e Niapy (1) < Njapy (1)
for all numbers a, b, ¢ and ¢ satisfying 0 < a < b <candt >0 and all A € B(9).

We use the same convention used in the definite integral, namely, 7y, ) = —7Np,q).
Suppose a > 0 and n is a positive integer. Then

n—1

M0,a) (I) = Z NMka/n,(k+1)a/n) (I) > NMa,a+a/n) (I)
k=0

And if n and m are positive integers we have

—_

m—

Na,a+ma/n) (I) = Ma+ka/n,a+(k+1)a/n) (I> < MNa,a+a/n) (I>
k=0

Then combining these two inequalities we have

ma

Na,at+ma/m) (L) < Ta‘ln[o,a)(l)

for all @ > 0 and positive integers n and m. Hence, 04 q++)(I) < (t/a)njo,q)(I) for
all positive ¢ so that t/a is rational. Since 7, 4)(I) is continuous in b it follows that

(4.10) Ma,a+t) (1) < (E/a)m0,0)(I) < (t/a)o(I)
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for all t,a > 0. It follows that for every A € B($) and a,t > 0 the function
q(t) = Nja,a+t)(A) satisfies a Lipschitz condition of order one. Hence, the derivative
dq/dt exists almost everywhere and

d
n[a,b)(A) = / %n[a,a—l-t)(A) dt
[a,b)NS(A)

where S(A) is the set of ¢ for which the derivative exists. Suppose a > 0. Let C,, be
a sequence of hermitian compact operators whose finite linear span is norm dense
in the compact operators and let C, = I. Let S = N> ,S(C,,). Let D be the set of
operators which are finite linear combinations of the C,, forn =1,2,--- . Fort € S
let w! be the linear functional on N given by

d
wt (A) = En[a,a—l—s) (A) |5:t

and for t ¢ S we define w'(A) = 0 for all A € M. Note from inequality (4.10) it
follows that for A € 91 we have |w!(A)| < ||A||6(I)/t for t € S and for t ¢ S we
have w’.(A) = 0. Since N is norm dense in the compact operators and w' is norm
continuous w' has a unique norm continuous extension to the compact operators
which we also denote by w! and ||w!| < &(I)/t.

We note that w! is positive. To see this suppose A is a positive compact operator

and t € S. Suppose {A,} is a sequence of operators in I converging in norm to A.
Let B, = 3 A, + 1A}, and D, = By, + ||A — B,||I. Since D,, > A > 0 we have

wt(Bn> + SOHA - Bn” = }111_% h_ln[a—i—t,a—i—t—i—h) (Dn) 2 0.

where s, = (d/dt)nq,q++)(I) > 0. Recall that we have adopted the convention

that 7, ,)(A) = —n}y,2)(A) which is how we interpret the above expression when
h < 0. Hence, w!(B,,) > —5,||A — By||. Then we have w!(A) = lim,,_,o, w'(B,) >
lim, 00 —So||A — Bp|| = 0. Hence, w' is a bounded positive functional on the

compact operators for t € S.

Suppose 0 < s < t and s,t € S and C € B(9) is compact. We show w!(C) =
e tws(U(t — s)CU(t — s)*). Suppose € > 0. Let k = 26(I)/s. Then for [a,b) C
[s/2,00) we have from inequality (4.10) and the positivity of 745 that |9l <
(b — a)k. Also we have [|[w”|| < K for z € S and = > s. Since N is dense in the
compact operators there is an operator C; € 91 with ||C' — C4 || < (4k)'e. Then we
have

|wh(C) — W' (C1)] < /4.
Now for h # 0 we have
h_ln[t,t—i—h)(cl) = h_les_tn[s,erh)(U(t —5)C1U(t — 5)").

Since C7 € 91 we have the limit of the left hand side of the above equation tends
to w!'(Cy) and, therefore, the right hand side also tends to w’(C1) as h — 0. Since
U(t—s)C1U(t — s)* is compact there is a an operator Cy € 9 so that ||Cy — U(t —
s)C1U(t — s)|| < (4k)~te. Then we have

e sy (U(E = $)OLU(E — 8)7) = W16 e (Co)| < /4
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for h # 0 sufficiently small. Hence, we have in the limit that
|wh(C) — e* 7w (Cy)| < €/4.
And we also have
€57 tws (Cy) — et (U(t — s)CLU (t — 5)*)| < €/4
and
le* Tt (U(t — s)C1U(t — 5)*) — e’ W (U(t — s)CU(t — 5)*)| < ¢/4
Combining the four €¢/4 inequalities above we find
Wi (C) — et (U(t — s)CU(t — 5)*)| < ¢

and since € > 0 is arbitrary we have w!(C) = e* 'w*(U(t — s)CU(t — s)*). Hence,
wt = e57t0,_qw® for all 0 < s < t with s,¢ € S. Since the complement of S
has Lebesgue measure zero there is a decreasing sequence of real numbers s, € S
tending to zero. Let us define w? for all ¢+ > 0 by the limit

wh = lim e 0w,

n—oo

Note that for ¢ € S this leaves w! unchanged and for ¢ ¢ S this defines w' so that w’
is norm continuous in t. Note that for the newly defined w? we have w! = e*~t0,w*
for all 0 < s < t. Since the complement of S has Lebesgue measure zero we have

(4.11) Moty (A) = /S O / WL (A) dt

for all A € 9. Since each side of the above equation is o-weakly continuous the
above equation extends to all A € B(9).
We now define w(A) = limy_,oy e'w'(U(t)*AU(t)) for A € UpsoU (£)B(H)U(1)*.
We see that for s > 0 and A € B($H) we have
w(U(s)AU(s)*) = tlilglJr elw (U )*U(s)AU(s)*U(t))
= tlilg1+ e'Ww(U(s —t)AU (s — t)*) = e*w®(A)

Combining this with equation (4.11) we have

b
Ma(4) = [ e wlUAU()") d
for all A € B($) and a,b € (0,00) with a < b. Since

My (A) = €76 (U(a) AU (a)*) — e~"6 (U (b) AU (b)")
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for A € B($) and as a — 0+ and b — oo this converges to (A) we have

5(A) = /0 e tw(U (AU () dt

for all A € B(H).
To establish w is a restriction of a boundary weight to U;~oU (t)B(H)U (t)*. we
will need some estimates. As we saw in establishing equation (4.3f) we have

/OO e tUU(t)* dt =1 — A.
0

Then we have

a(U /OO Ut+s)U(t+s)*)ds

0

/00 te 5w (U(s)U(s)*) ds = e'w'(I — A).

0

Hence, we have w'(I — A) = e '6(U@)U(t)*) < e t6(I). Now for ¢ > 0 and
Ae ’B(ﬁ) let

p(A) =w(U U ) (I - A)2 A= A)2U-U (L))
='W (U)*(I = A)2A(I — A)2U(¢)).
Then recalling that w'(I) < 6(I)/t and w!(I — A) < e~ t6(I) we have
(1) =e'w* (U ()" (I — A)U(t)) = e'w' (I — e"A)
W —A) + (e = D' (I) < e t6(I) + (e —1)o(1)/t

Since p¢(I) increases as t deceases toward zero and the limit of the expression on
the right of the above inequality converges to 26(I) we have p:(I) < 26(1) for all
t > 0.

Now from the definition of u; and the fact U(¢)U(t)* commutes with A we have

(4.12) pirs(A) = (Ut + s)U(t+ )" AU (t + s)U(t + s)™)

for all A € B(H) and s,t € (0,00). It then follows from Lemma 2.10 that for
t,s € (0,00) we have

e = poeesl* <20 ell® = 2llpers I = 2(0psell + Nprers D Nprell = Nsesl)
<Aflpell Clpeell = Npeaesll) < 86 (D) lpell = Npetesll)

Hence,

e = prsll < 28/26 (D) /[ el = [lpssl |

for t,s € (0,00). Since ||u¢|| converges to a limit as ¢ — 0+ it follows that ¢ —
is a Cauchy net in norm as ¢t — 0+ and, hence, p; converges in norm to a positive
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element 1 € B(9H). and from equation (4.12) it follows that for ¢ > 0 and A € B(9H)
and t > 0 we have u(A) = p(U@)U@)*AU(t)U(t)*). Since U(t)*U(t) = I and
U(t)U(t)* commutes with A we have

(U (AU ()%) =, (U (H) AU (£))
=c'w! (U(t)*(I = N)FU ) AU (£)*(I — A)2U (%))
=w(UMU)* (I — N)2U-)AU(1)* (I — ) U)U(1)*
=w((I = A)2U)AU(t)*(I - A)?)

for all A € B(H) and ¢t > 0. We extend w to the whole null boundary algebra 2($))
by the relation

w((I—=A)2A(I = A)?) = p(A)

for all A € B($). Hence, this extension of to the whole null boundary algebra 2((5))
gives us a boundary weight which satisfies equation (4.8). As for normalization
condition (4.9) we have only established u(I) = w(I — A) < 26(I). However, now
the existence of p has been established we have pu(I) =w(l — A) =6(1) < p(I) by
direct calculation.

In our calculations we have suppressed indicating the dependence of o, w and
p on p. Now we will return to indicating this dependence by writing o(p), w(p)
and p(p). Summarizing our progress up to this point we have shown that for a
positive p € B(RK). the boundary weight w(p) is positive and satisfies equation
(4.8) We have shown the mapping p — w(p) is positive. To complete the first
part of the proof we must show this mapping is completely positive. To show a
mapping p — w(p) is completely positive is equivalent to showing the mapping
vrep — v w(p) is positive from B(R1). to B($H1)« where R = K, ® R and
N1 =Ro®H =K RARL?(0,00) = R ® L*(0, 00). The argument that the mapping
p — W is completely positive is obtained by simply repeating our argument above
for the tensored map from B(R1). to B($H1). and replacing our use of positivity
above with complete positivity which is the same as positivity for the tensored
maps. Since all this involves is a change in notation we will skip the details.

Conversely, suppose p — w(p) is a completely positive mapping of B(R). into
2($). satisfying the normalization condition (4.9). Suppose t > 0. Then we have

&(p)(A)—e_tét(&(p))(A)Z/o e w(p)(U(s)AU(s)") dt

for A € B($). Since the mappings p — 0,(w(p)) is completely positive for each s > 0
the mapping p — 6(p) — e '0,(6(p)) is completely positive and the normalization
condition follows from direct computation. [J

The next two lemmas provide some useful norm estimates.

Lemma 4.18. Suppose p € B(K).. Then

et + et

Aeﬁ@u@m»m < [loli( 1)
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for all t > 0 so the above expression is O(t?).

Proof. Suppose p € B(R).. We have

~ A

e*Cu(Es(2(p)))(A)

e*®(p)(U(s)*E(t)AE(t)U(s))
=e25®(p) (U (s)U(s)* E(X)AE)U(s)U(s)¥)

for all A € B(9). For 0 < s <t we have E(t)U(s)U(s)* = E(s,t) so

~ ~

e*CuEs(B(p))(A) = e (p) (E(s, 1) AE(s, 1))

Next we will estimate the norm of the above expression. Let S be a partial isometry
so that p(A) = ¢(AS) where ¢ is positive and ||¢|| = ¢(I) = ¢(S*S) = p(S*) = ||p||-
For A € ®B(R) we define A,(A) the operator on B($) given by

(Ao(A)f)(z) = Af(x)

cting on § = A ® L?(0,0). Note from the definition
(0)(AAL(S9)) for all A € B(H). Then we have

for z > 0s0 Apy(A) = A
of ® we have ®(p)(A) =

~
Q0

e*C(€s(D(p)))(A) =€ B(¢)(E(s, t) AE(s, 1) Ao(S))
—eX 8 () (E(s,t) AN (S)E(s,1)).

Since the functional A — ®(¢)(E(s,t)AE(s,t)) is positive the norm of this func-
tional is obtained by evaluating this functional at A = I. Hence, we have

G (€s((0)))(A)] = [ () (E(s, 1) AAo(S)E(s,1))]

b(
< B(8) (E(s, )| AA(S)] < (¢ — > )] 1 A]

Hence, ||eC(E((p)))|| < (e — e2571)||p||. Evaluating the above expression with
A = A,(S*) proves the reverse inequality so we have ||eSCt(§5(<i>(p)))H = (e® —
e?*~%)||pl|. Hence, we have

And we have

t o ¢ 1
|| GE@omas| <ol [ et = g+ -2
0 0

as t — 0+ (i.e., t~2 times the above expression is bounded). [

/0 & (Eu(B(p))) ds|| = O()

Lemma 4.19. Suppose n € B(9).. Then, we have

16 (D(Ee(m) = SAmN)I/t — 0

and

16 (D) = SAMN)I/t — 0
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as t — 0+ so |G (T(€x(n)) —(A(n))|| and [|G(T () — (A(n)))|| are oft) as t — 0+.
Proof. Suppose n € B(9).. We will prove that

e G (D (Exm) — ' @A)/t — 0
as t — 0+ . Now from equations (4.3) we have

~

&Nmm:ﬂm+éﬁgmw

We will show that the norm of ¢; applied to the second term is o(t)ast — 0+.
Now we have

ft(/o esés(n)dS)(A)Z/o e*n(U(s)"E(t)AE(t)U(s)) ds.

Now suppose 1 is positive then the norm of the above functional is attained for
A = I and we have

méa&m@>=AaMWWEwwm@=Ae%wwﬂ»@

g/awmm@:w—mww»
0
Since n(E(t)) — 0 as t — 0+ we have

1

— 0

[ et

as t — 0+ . Since an arbitrary n € B(9). is the linear combination of four positive
elements the above results holds for all n € B($).. With this established we have

le* Ce(T(& () — e" @A) || = 16T (n) — e"@(AM))I| + ot)-

Let v =n — 20(A(n)) so n = 20(A(n)) + v and A(v) = 0. Then

G(L(m) = e'@(A(n)) = (1= ") (@A) + G(T ()
and direct calculation shows that ||C(®(A(n))|| = (1 — e H)||A(n)] so
16D () = e @A) = 1G]+ O@F*)

and combining the with the previous estimate we have

le*C(T (&) — e @A) = 16T @)l + o(t).



56 ROBERT T. POWERS

Then the proof of the lemma reduces to showing ||, (I'(1))]] is o(t) for all v € B(H).
with A(v) = 0. Suppose then that v € B($), and A(v) = 0. Suppose ¢t > 0. We
note the mapping A — I'((;(A)) is completely positive. Hence, the norm of this
mapping is attained at the unit. We have

(¢ (1) = /0 T e U(s) B (s)* ds
We recall from equation (4.3f) we established the formula
/000 e *U(s)U(s)*ds=1—A
Then we have

LG (1)) :/O e?U(s)(I = U@U()")U(s)" ds
=T —A-U@t)I - NU®)*
=E(t) — A+ ' AU@)U(t)*
=(I — AN)E(t) + (¢' = )AU @)U (£)*

Note the operator I'((;(I)) is multiplication by function ¢(z) = 1—e~7* for x € [0, t]
and q(z) = e'™% — e~ for x € [t,00). Then ||[I'(¢;(1))]| =1 — e ! since 0 < g(z) <
l1—etforall z > 0 and g(z) - 1 —et as x — t. Since A — T(((A)) is
completely positive we have |T'(¢:(A))|| < (1 — e ?)||A]| for all A € B(H). Hence,
ICe(C(»))]| is O(t). Using the fact that A(v) = 0 we will show [|¢,(T(v))] s o(t).
Suppose this is not the case. Let A(t) be an element in the unit ball of B($) with
G(T(v)(A(t) = |IG:(T(v))]| for each t > 0. Let

B(t) = tIT(G(A®)) =t /O e U(s) B AW B U ()" ds

We have | B(t)|| < (1 —e™ %)/t <1 and v(B(t)) = ||((T'(v))||/t and by assumption
IC(T(v))]|/t does not tend to zero as t — 0+ we have limsup,_,q v(B(t)) > 0.
Since v(B(t)) is bounded there is a sequence t,, — 04 so that v(B(t,)) — c
as n — oo and ¢ > 0. Since the unit ball of B($) is o-weakly compact and §) is
separable we can by passing to a subsequence (which we also denote by ¢,,) arrange it
so B, = B(t,) — B, asn — oo and v(B,) = ¢ > 0. We will show that B, = A(C,)
for some C, € B(R). We begin by showing that B, = E(t)B,E(t)+e U (t)B,U (t)*
for each ¢t > 0. As a preliminary to that we show B, commutes with E(t) for all
t > 0. Since U(s)*E(t) =0 for s > t we have

BLE(t) =t /0 e U(8) B(t) A(b) E(t) U (5)*E () ds

—t-1 /0 e5U(8)E(tn) Aty E(t,)U(s) E(t) ds
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And since E(t +t,)U(s)E(t,) = U(s)E(t,) for s € [0,t] we have B, E(t) = E(t +
tn)BnE(t). Hence, if f € (I — E(t))$ and g € E(t)$ we have

|(f; Bog)l = lim |(f, Bug)| = lim |(E(t,t+tn)f, Bng)l
< lim Bt t+ta)f] 1 Ball gl
< lim || E(t,t +to) fll gl =0

Hence, (I—E(t))B,E(t) = 0. Calculating E(t)B,, as we did above we find E(t)B,, =
E(t)B,E(t+t,) and taking the limit as above we find E(t)B,E(t,c0) = 0. Hence,
we have E(t)B, = B,E(t) = E(t)B,E(t) for all t > 0.

We now investigate U (t)B,U(t)*. Now for ¢t > 0 we have

Ut B, Ut =t /OO e Ut + 5)E(tn)A(tn) E(t,)U(t + 5)* ds
0
=t Let /OO et Ut + 8)E(tn) A(tn)E(t,)U(t + 8)* ds
0
Then we have
B, — e tU#)BU)* =t / t eSU(S)E(tn) At E(t,)U(s)* ds
0

Let C, e 'U(t)B,U(t)* — B,E(t). Combining the above equation with
the 1ntegral for B wE(t) derlved earlier and using the fact that E(t,)U(s)*E(t) =
E(t,)U(s)* for s € [0,t — t,,] we have

Cp = —t1 /t ; e5U(8)B(tn) At E(t,)U(s)"(I — E(t)) ds.

n

Since E(t,)U(s)* = E(t,)U(s)*E(t+t,) for s € [t — t,,t] we have
Cp=—t;" /t e *U(s)E(tn)A(tn)E(t,)U(s)" (E(t +t,) — E(t)) ds.

Hence, we have from the above that C,, = C,E(t,t + t,) and ||Cy,|| < 1. Let
C, = lim, o Cp, = B, — e U (t)B,U(t)* — B,E(t) where we are taking the limit
in the sense of weak convergence. Then we have for f, g € $ that

|(f; Cog)l = lim [(f,Crg)| = lim [(f, CnE(t,t +tn)g)|
< Tim £ |E (.t + gl = 0
Hence, C, = 0 and since B,E(t) = E(t)B,E(t) we have that
B, = E(t)B,E(t) + e 'U(t)B,U(t)*

for all ¢ > 0. We will now show that the above equation implies B, = A(C,) for
some operator C, € B(R). Note the above equation implies E(t)B, = B,E(t) =
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E(t)B,E(t) for all ¢ > 0. Multiplying the above expression for B, by U(t)* on
the left we find U(t)*B, = e 'B,U(t)* for all ¢ > 0. And multiplying the above
equation for B, by U(t) on the right we find B,U(t) = e *U(t)B, for all t > 0. It
follows from differentiating these equations that B,0(d) C ®(d) and B,®(d*) C
D(d*) and B,f = d*B,f — B,d*f for all f € ©(d*). It follows that B, € D(d;)
and §,(B,) = B,. Hence, it follows from Lemma 4.7 that B, = A(C,) for some
C, € B(R). We recall that v(B,) = v(A(C,)) = ¢ > 0. But this is a contradiction
since A(v) = 0. Hence, ||G(D(v))]| is o(t). O

The next theorem is one of the main results of this section. In the statement of
the theorem we use the norm ||n||+ which we now describe. If n € B(9). and n
is hermitian then 7 has a canonical decomposition as the difference of two disjoint
positive functionals 14 and n_ so n = n4—n_. For a discussion of this decomposition
we refer to section 4.3 of [KR| and we present the well known properties of this
decomposition. For hermitian n € B(9). we have ||n|| = ||n.|+ ||7—| and there
are unique hermitian projections Ey, E_ € B($) so that n(AE;) = ni(A) and
n(AE_) = —n_(A) for all A € B($) and E; and E_ are the smallest projections
with this property and Ey + E_ < I. Also ||[n4] = sup(n(A4) : 0 < A < I) and
the supremum is actually attained for A = E,. If n is an hermitian functional we
define ||n]|+ = ||n+] = sup(n(A) : 0 < A < I). Note that for an hermitian functional
with n = n; —n_ its canonical decomposition into the difference of disjoint positive
functional we have || — ][5 = |_|| and [[n] = [+ + || - nll+-

Next we introduce some notation. Suppose ¢ is a o-weakly continuous linear
mapping of B(H) into B(RK). Let K, be an infinite dimensional separable Hilbert
space and let $; = &, ® H and R; = K, ® R. Let ¢’ be the mapping of B(H)
into B(R) given by ¢'(A® B) = A® ¢(B) for all A € B(KR,) and B € B(H).
The statement ¢ is completely positive or completely contractive is equivalent to
the statement ¢’ is positive or contractive. Suppose « is a C'P-flow over K so
a is a CP-semigroup of B(§) where § = & ® L2(0,00). Let &, be an infinite
dimensional separable Hilbert space and let $; = K, ® $H and K; = K, ® K. Let
o/ be the CP-flow over K given by oj(A® B) = A® o(B) for t > 0, A €
B(R,) and B € B(H). To show «a is a C'P-semigroup is equivalent to showing
o’ is a semigroup of positive contractions. Note all the operators and mappings
Ut), E(t) =1 -U@®U)*, 0, &, ¢, ,A, ,®,,T and o all have obvious primed
operators and mappings where we replace £ with 8; = K, ® K and $H; = R, ® 9.
When we put a prime on a mapping (e.g. U’(t), o’ or ®" and speak of the tensored
operators or maps we mean the operators or maps one obtains by tensoring with
B(K,). So showing that a map ¢ is completely positive is the same as showing ¢’ is
positive. Note all the theorems and lemmas we have proved concerning C P-flows
remain true if we replace the maps and operators in the theorems and lemmas
with the primed maps and operators since all that is needed is to replace K with
R =K, QK.

Theorem 4.20. Suppose « is a C'P-flow over & and o is the boundary resolvent
of a. Recall E(t) = I —U(t)U(t)*, 0:(A) = U(t)AU(t)* and ((A) = E(t)AE(t)
for A € B($) and t > 0. Recall from Lemma 4.16 it follows that for each t > 0
the mapping p — 6(p) — e t0,(6(p)) is completely positive linear contraction of
B(R). into B(H).. Assumed the primed mappings are the tensored mappings just
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described and a subscript one on a Hilbert space mean the Hilbert space without
a subscript tensored with the infinite dimensional Hilbert space R,. Then for each
p € B(R1)« we have

(4.13) lim inf ¢ ([|G(e ¥ () + &' (P = le'6” () — 01(&" ()]} > 0
and for each hermitian p € B(R;). we have
(413+)  lim inf 1 ((IGE (e D (p) + 67 (p)) |+ — lle6” (p) — 04(5" ()1 +) = 0

where ||n||+ is the is the norm of n4 where n = ny — n_ is the canonical decompo-
sition 1 as the difference of disjoint positive functionals.

Conversely, suppose p — &(p) — e0,(6(p)) is a completely positive linear con-
traction of B(R). into B(H), for each t > 0 and the primed mappings are defined
as described above and for all p € $B(R;). we have

(4.14) lim tsil§>+t_1(llf£(et¢>’(p) +6"(p)) = €&’ (p) = 036" ()]) = 0

and for all hermitian p € B(R1). we have

(4.144)  lim tsuollt_l(llfé(et@'(p) +6" ()4 = lle'6" (p) = 6:(6"(p))l|+) = 0
Then there is a unique C'P-flow o over & whose boundary resolvent is o. If in

addition the mapping p — &(p) is unital the same conclusion follows if one only

requires condition (4.14) (i.e., in the unital case condition (4.14+) it follows from

(4.14)).

Proof. Before we begin the proof we remark that conditions given in (4.134) and
(4.14+) above imply (4.13) and (4.14), respectively. This is seen as follows. Note
for an hermitian functional n we have ||| = [Inl|+ + || — nl|+ and, hence, (4.13)
and (4.14) follow from (4.134) and (4.14+) in the case of hermitian functionals.
Because R, is infinite dimensional the truth of (4.13) and (4.14) for hermitian
functional implies the truth of the relations for arbitrary functionals. This follows
from the following observation. Suppose 2N is a Hilbert space and n € B(MN). is an
arbitrary. Let n; € B(91 @ M) the functional given in matrix form as follows

10 7 A B| s
Let S be an element in the unit ball so that n(S) = ||n|| and let

0o S
s-[2 8]
Note S; = ST and STS; has positive diagonal entries of norm less than or equal

to one so STS1 < I. Hence, we have [|S1]| < 1 and 71(S1) = 2||n|| and, therefore,
1]l > 2||n||- On the other hand, suppose T; € B(MN E&N) is of the form

A B
n-|5 3]



60 ROBERT T. POWERS
and ||71]| < 1. Then we have ||B]| <1 and ||C|| <1 and

Im (T = [n(B) +7(C)] < [Inll + lInll = 2[n]

and, hence, ||71|| < 2||n||. Combining this with the previous inequality gives ||n; || =
2||n||. Hence, the norm of an arbitrary functional 7 can be obtained from the norm of
the hermitian functional 7;. Since K, is infinite dimensional B(8,) is isomorphic to
B(R,DR,) the properties of all the primed mappings persist if &, is replaced by K,®
R, and by the procedure described above the norm of an arbitrary functional can
be determined from the norm of an associated hermitian functional. It follows that
if relations (4.13) or (4.14) hold for hermitian functionals they hold for arbitrary
functionals. In the statement of the theorem we included both the conditions with
and without the (4) because in the unital case the only the versions without the
(+) are needed.

We begin the proof of the theorem by establishing condition (4.13) of the theo-
rem. Suppose p € B(R;). and n,v € B(H1), and A'() = p. Then from equations
(4.5) and (4.6) of Theorem 4.14 we have

A

&,(6' (p)+1" (n) + / €1 () ds — v+ E()
0 A N
—e'(6'(p) + T () — 6,(v)

Let 7 = 28/(p) and let

Then

We calculate the last term in the above equation. Since for ¢ > s we have 6} (€. (n)) =
0;—s(05(£5(n))) = 0;_s(n) and, hence,

2 / e 0L(E (&' (p))) ds =2 / 0 (&(p)) ds

t
- / P (p) ds = (¢ — ) (p)
0
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Hence, in the expression for &}(C/(v)) the last two terms cancel and we have
& (({(v) = €6’ (p) — 046 ()
We have
CH(v) = G (p)+e'd () — (e = (P ()
t
(1.15) b2 [ Q@@ (o) ds
0

for A € B($). From Lemma 4.18 we have

e GEUD (p))) ds|| = O(F?)

as t — 0+ (i.e., t~2 times the above expression is bounded).
We note that the norm of the second to last term in equation (4.15) is

I(e" =G ()] = (" =)L — e pl = (" + e = 2)[lp]

which is also O(t?). Hence, we have

I @) = 1€/ ("Y' (p) + 6" ()| + O(%)

Since a4 is a complete contraction of B($)) into itself the extended o} is a contraction
of %B(H1) into itself. Hence, |¢/(v)]| = la4(G )]l = €'6”(p) = 8,(6"(p))]| for all
¢ > 0. From the estimate above for ||¢/(v)|| the limit condition (4.13) of the theorem
follows.

We now show condition (4.134) holds. Suppose p € B(&1)* and n,v € B(H1).«
and A’(n) = p and all the functionals are hermitian. Repeating the calculations
above we arrive at the expressions for &}(C/(v)) and (/(v) given above. We note
16, () |1+ < 1€/ (v)||4- This may be seen as follows. Note that since oy is com-

pletely positive and completely contractive «} is positivity preserving and contrac-
tive. Since for 0 < A < I we have 0 < a}(A) < a}(I) < I we see that

165G+ =sup(63(¢{(1))(A) - A € B($1), 0< A<T)
=sup({ (v) (o) (A)) : Ae’B(m) 0<A<I)

<sup(((v)(A) s A€ B(H1), 0< A<T) = |G|+
Hence, [G/(1)ll+ = 1a1(G(w)]l+ = lle'6"(p) — 0,(6"(p))|+ for all ¢ > 0. From

expression for (;(v) in equation (4.15) and the fact that the norm of the second two
terms is O(t?) it follows that

IG @)1+ = 11 @ (p) + 6" (p) |+ + O(¢?)
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This with the upper estimate for ||e!6”(p) — 61(6"(p))]|+ gives condition (4.13+) of
the theorem.

Now we prove the reverse implication. Suppose p — 6(p) — e 104(6(p)) is com-
pletely positive linear contraction of B(R), into B($)). for each ¢t > 0 satisfying
conditions (4.14) and (4.14+). We define § by equation (4.4) of Theorem 4.14.
Specifically we define the domain of 4 to be all v of the form v = 6(A(n))+ I'(n)
for some 1 € B($H), and d(v) = v —n. It is clear that the range of the mapping
p — p—0(p) from D(8) to B(H), is all of B(H).. All we need to establish that &
is the generator of a continuous semigroup of contractions of 9B($)). is show that b
is dissipative. In fact, we will show 5 is completely dissipative so we will work with
the primed maps. Now each v € ©(d) is of the form v, = 6/(A/(n)) 4+ I'(n) for
some 1 € B(9H1).. We will show there is an element S in the unit ball of B($1) so
that v,(5) = [vo]| and Re(0(v,5(5))) = Re(vo(S) — n(S)) = [[vo] — Re(n(S5)) < 0.
To slightly simplify some of the following formulae let p = A’(n). Now let v, =
&' (p) + €T (€l(n)) for t > 0. Note vy for t = 0 is v,. We will estimate the difference
[ve]| — €t]|vo . We have from Lemma 4.12 that ||v¢]| > [|CL(v)] + |04 (14)]|. We have

IG Wl =lIEi (e D (p) + 6" (p) + €T (E4(no)) — €' ()|
>[|¢i ("D’ (p) + 6" (p)) ]| — ' ICH(T (&1 (1)) = ()|
From Lemma 4.19 the second term above is o(t) so
I @wa)ll = G ("D (p) + 6" ()] + (1)

Now from equations (4.3) we have

A

0,(t) = 0,(5(p)) + €'T"(n)
So we have

lvell Z1EE o)l + 1165 () |
=[G/ (e"®' (p) + 6" ()| + 16:(6" (p)) + €T/ ()| + o(t).
Now
=le'v, — 6" (p) + 04(6” (p)) |
>e'||vo|| — [le'6” (p) — 0;(6" (p))]].

166" (p)) + e'T' ()]

Then combining the two inequalities above we have

(4.26)  [lwell = e llvoll = 116 (e" ¥ (p) + 6" ()| = lle*6” (p) — 036" ()| + (1)

Now, let S(¢) be an element of the unit ball of B($1) so that 14(S;) = ||v¢||. Since
the superior limit is an accumulation point there is a decreasing sequence t! of
positive numbers converging to zero so that if the limit (4.14) is taken with the
sequence ¢/, the limit superior is achieved. Since the unit ball of B(9) is o-weakly
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compact there is a subsequence t,, = t;ﬁ(n) so that S(t,) converges o-weakly to a
limit S, as n — oo. Note S, is in the unit ball of B($) since it is the weak limit of
elements in the unit ball. Since |14, —v,|| — 0 and, therefore, |(v, —vt, )(St, )| — 0
as n — oo we have

Vo(S,) = lim 1v,(Sy,)

n—oo
= lim [Jo, || = o

Hence, S, is an element in the unit ball of 2B($)) with v,(S,) = ||v,||-
Applying equations (4.3) to the expression for v; we have

A

ve = &'(p) + T/ (E(m) = 6" (p) + T () + / &€ (1) ds

Then, we have

t
1 = vo) — < ¢ / [e%€(n) — nllds — 0
0
ast — 0+ . Then we have

n (0, (S(ta)) = vo(S(ta))) = n(S(tn) + (87" (vt — vo) — M) (S(tn))

Since the norm of second functional on the right hand side of the above equation
converges to zero as n — oo and the S(t,) are in the unit ball of B($) we have
this term converges to zero as n — oo. Since S(t,,) converges o-weakly to S, the
first term on the right hand side of the above equations converges to 1(.S,). Hence,
we have

lim ¢ (v, (S(ta)) = vo(S(tn))) = n(S,)

n—oo

Then we have

Re (8 (v6(S))) =Re(vo(S0) = 1(S0)) = o]l = Re(n(So))
=llvoll = lim ! Re(v, (S(tn)) — vo(S(tn)))
=llvoll = lim ;' Re(|lve,, || — vo(S(tn)))

<|lvoll = lim sup t~" Re(||ve,, | — [[voll)
n—oo

| — €™ |[voll + (e = 1)[[voll)

n ’

<||vo|| — lim sup ¢ *(||v

= —lim sup ¢ (|lve,, || — e [[voll)
< —lim sup ¢, (IG, (e @' (p) + &' ()l — lle™ 5" (p) — 67, (5" (p))])

t, —00

where the last inequality follows from (4.16). Recall that the sequence {t,} is
a subsequence of the sequence {t/} where for the sequence {t/ } the above limit
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superior equals the limit superior as ¢t — 0 + . Hence, the above limit superior
equals the limit superior as ¢ — 0+ and by assumption (limit inequality (4.14))
this limit is greater than or equal to zero. Hence, Re(d (v5(S,))) < 0 and &' is
dissipative and since ¢'is dissipative 4 is completely dissipative.

Recall 4 is defined on its domain ®(3) of v € B($). of the form v = 65(A(n)) +
I'(n) and §(v) = v — 1. We see that ¢ is a closed dissipative operator and the range
of the mapping v — v — d(v) for v € D(4) is all of B($),. Then from Theorem
2.7 we have § is the generator of a strongly continuous one parameter semigroup
& of contractions of B($). and ) and, therefore, « is uniquely determined by
the mapping p — &(p). Since 5 is completely dissipative & and, therefore, « is
completely contractive.

We now prove the last statement of the theorem. We assume then the mapping
p — 6(p) is unital. Then for v = 6(A(n)) + (1) € D(8) we have

Hence,

d 2a
g (e(l)) = 0(a:(¥))(I) = 0

A A

for all v € ©(9) and ¢ > 0. Hence, v(I) = v(ay(I)) for all v € ®(§) and ¢ > 0 and
since D(4) is dense in B($), we have oy (I) = I for all ¢t > 0. Hence, « is unital.
Since « is unital and completely contractive a is completely positive.

Now that we have proved the last statement of the theorem we now drop the
assumption that p — &(p) is unital. We will show that condition (4.14+) insures
that « is completely positive or what is the same thing that o’ is positive. As
mentioned earlier in the proof condition (4.14+) implies (4.14) so by the argument
above we have « is a strongly continuous semigroup of completely contractive map-
pings of B(9H) into itself. As we saw in Theorem 2.9 o' is positivity preserving if
and only if for all A € (0,1) we have v — A§’(v) > 0 implies ¥ > 0 or what is the
same thing o is positivity preserving if and only if for A € (0,1) and v € D(§') is
hermitian and v is not positive then v — PV (v) is not positive. Suppose then that
A€ (0,1) and v € D(§') is hermitian and v is not positive. Let v = v4 — v_ be the
canonical decomposition of v as the difference of two disjoint positive functionals
and let £, and E_ be the support projections of v, and v_, respectively. Since v
is not positive v(E_) = —|v_|| < 0. Since v € D(§’) we have v = &' (A (n))+ ['(n).
Let P, = E'(t)A(t)E'(t) + 0,(E_) for t > 0 where A(t) is a positive operator in the
unit ball of B($1). We see that P, is positive and in the unit ball so

(6"(A () + L' (n)) (P, = E-) 2 0

for t > 0. So for ¢t > 0 we have

e —1)" (' (m)(B-) — &' (' (n))("E- — 6,(E-)) 2 0

_|_
—
~—
—
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Since

tljglj_lF (M (61(B-) = B_) = I (n)(B-) = n(E-)

and from Lemma 4.19 we have ||C/(I"(n) — ®'(A'(n)))||/t — 0 as t — 0+ and since
(et — 1) (D'(A(n)))]| is O(t?) and, hence, is o(t) we have the above expression is
equal to the expression below

tn(E-) < ¢{(6"(A'(n)) + €' ®' (1)) (A()) + (6" (A" () + I (m) (E-)

— ("8 (A'(n)) — 616" (A" (m)))(E-) + o(1)

Recall that the only assumption on A(t) € B($H1) is 0 < A(t) < I. Now let us
choose A(t) so that

GH(&' (N (m)) + '@ (1)) (A() = =[G (6" (X (1) + €'’ ()] -

where [|p||— = ||p—|| with u = py — p— is the canonical decomposition of p into
the difference of disjoint positive functionals. Since E_ is a hermitian projection
we have

(e'5" (A" (n)) — 616" (A" (m)))(E-) = —|le"&" (A" (m)) — 6(6" (A" (m))) |-

Hence, we have

(E-) <(&"(A'(n) + ' () (B-) =t 1 G (6" (K () + €'’ ()] -

+ 7€' s (A () — 6,(6" (A" (m)) - + o(t) /¢

A

Note (6"(A'(n)) + " (n))(E_) = v(E_) = —||v|~ < 0. Hence, we have

n(E-) < —|vl- < —lim sup D(t)
t—0+

with

D(t) =t~ (I¢{(6" (N () + €' ¥ ()| — [le" 6" (A (1)) — G;(5" (A" (m) )] -)

Since || —pl|+ = ||p]| = for any hermitian functional y it follows that relation (4.14+)
holds with the || - ||+ norms replaced by the || - ||- norms. Since we have assumed
(4.144) holds and —||v||— is strictly negative we have n(E_) < 0. Hence, we have

(v = A W) (E=) =(1 =N (&' (K () + L' (n)(E-) + An(E-)
(I =Mv(E-) + Mn(E-)
<=1 =N <0
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and, hence, (v — A0'(1)) is not positive. It then follows from Theorem 2.9 that &’
is positivity preserving and, hence, « is completely positive.

We show that U(t) intertwines a. We recall each v € ©(6) is of the form v =
&(A(n)) + I'(n) for some n € B(H),. If follows that if n € B($H), and A(n) = 0
then I'(n) € ®(8) and §(I'(n)) = I'(n) — n. It follows from Lemma 4.10 that & is an
extension of &; (i.e., §(v) = 61 (v) for all v € D(4;)). Hence, it follows that &; is an

extension of 6. Suppose that f € ©(d) and A € ©(6). Then we have

W opn (AU (E+ h) f — o (AU (t) f) =h™ (apqn(A) (U (h) — DU () f)
+ b o n(A) — o (A)U (1) f

for t > 0 and ¢t + h > 0. Taking the limit as h — 0 we find

L (U] = VAU (1) f — S (AU ()] =

dt
= —a(A)dU () f — 01 (u(A)U () f = —deu (AU (1) f.

Since f; = a(A)U(t)f € D(d) and (d/dt) fy = —df: it follows that f, = U(t)f, =
U(t)f. Hence, we have U(t)Af = ay(A)U(¢) f for all f € D(d) and A € D(J). Since
for fixed t each side of this equation is norm continuous in f this equation extends
to all f € $. Since each side of this equation is o-strongly continuous in A and ()
is o-strongly dense in B($)) it follows that U(t)Af = a(A)U(t)f for all A € B($)
and f € 9. Hence, U(t) intertwines a. [J

We see from the previous theorem that for an understanding of C'P-flows it is
essential that we understand the limits (4.134) and (4.144). The next lemma shows
us that the superior limit in (4.144) is always finite.

Lemma 4.21. Suppose p € B(RK). is hermitian and o € B($), is hermitian then

16 ('@ (p) + )|+ — lle'o = bu(a)ll+ < (¢" = 1)(lloll- + Ilpll+)

for all t > 0. The same result holds for an hermitian p € B(R1). and an hermitian
o' € B(9H1). with all the maps above replaced by the primed maps as described
before Theorem 4.20.

Proof. Assume the hypothesis of the lemma and ¢ > 0. Let = (e!®(p) + o) and
let n = ny 4+ n— be the unique decomposition of n into the difference of disjoint
positive functionals and let E be the support projection for ny so n(EL) = ||n||+
and F is the smallest projection with this property. It follows that E(¢)E. E(t) =
E+. Let

B = i U(nt)ELU(nt)*

n=0

Since Ey < E(t) we have

B= i Unt) B U (nt)* < i Unt)E()U (nt)* = I
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Hence, 0 < B < I. We have

e'B —04(B) =(e' — 1)B + ZU (nt)ELU(nt)* Z (nt)ELU(nt)*
n=0 n=1
=(e' —1)B+ E,

Since 0 < B < I we have

le‘o —8u(0) ]|+ 20(e B~ 6,(B)) = (¢' = 1)o(B) + o (Ex)
=(¢" = 1)o(B) +n(E+) = (e ®(p))(E+)

>(e" = 1o (B) + |Inll+ — lI¢i (e @(p))l|+

>—(e" = Dloll- +lInll+ — (" = Dllpll+

Note in the last line we used the fact that [|C;(e'®(p))|l+ = (e! — 1)||p|l+ which

follow from direct computation. Recalling n = ;(e'®(p) + o) the estimate of the
lemma follows. The proof for the primed maps is identical. [J

Lemma 4.22. Suppose p — w(p) is a completely positive boundary weight map
of B(R). into A(H). as described in Definition 4.16 and suppose p — &(p) is the
mapping of B(R). into B($),. given by

(4.8) o(p)(A) = /Ooo e~ 'w(p)(U(HAU (1)) dt = T(w(p))(A)

for all A € B(9). Let R, be an infinite dimensional separable Hilbert space and let
R =RoRand H1 = K109 = B, AR L*(0,00) and let the primed operators and
mappings be the tensored mapping as described before Theorem 4.20. Let A($1)
be then null boundary algebra of all operators of the form

A=(I-NI):B(I - N (D)=

with B € 9B($1). Then the mapping p — &(p) is the boundary resolvent of a
CP-flow over R if and only if for each hermitian p € B(R1), there is an operator
T € B(R1) with 0 <T < I so that if A= A* € A($H1) and

(4.17) 0<A+AN(T)<I then p(T) > ' (p)(A).

Proof. Assume the hypothesis and notation of the lemma. Suppose for each her-
mitian p € B(RK). there is an operator T' € B(K) with 0 < T < I so that for
A= A* € A(H1) inequality (4.17) above is satisfied. From Theorems 4.17 and 4.20
we see that the mapping p — 6(p) defines a C'P-semigroup provided limit inequal-
ity (4.14+4) holds. Suppose then that p € B(R1), is hermitian and 7' € B(RK;) with
0 < T < I sothat (4.17) is satisfied. Suppose t > 0 and C' € B($H;) with0 < C < T

and
(€'6"(p) — 0:(6" (0))(C) = [le'6" (p) — 6:(6" ()| +
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Note we can let C' be the support projection of the positive part of e!6”(p)—8,(6"(p)).

Let B = A/(T)E’(t) where A, was defined in Definition 4.6. Since 0 < T < I we
have 0 < B < I and (;(B) = B it follows that

IGi(e"®" (p) + 6" (p)) 1+ = (¢'®'(p) + 6" (p))(B)

Then we have

(4.18) 16 (e"®" (p) + 6" ()14 — lle6” (p) — B:(5" (p)) |+ = Q(t)
= ('®'(p) +6"(p))(B) — (¢'6(p) — 66" (0))(C)

We examine Q(t). We have

Q(t) = (e'=1)p(T) + /000 e W' (p)(U'(s)AL(T)E'(H)U"(s)") ds
—et/o e W (p)(U'(s)CU' (s)*) ds

We can write the above formula in the form

Qt) = (e' = 1)p(T) — w'(p)(B1 — B)

where

¢
By = et/ e U (s)CU'(s)" ds
0
and

Bs :/000 e U (s)AL(T)E'(t)U'(s)* ds

=Ao(T) = A(T) = U'(£)(A(T) — A(T))U'(#)".
=A(T)E'(t) — N'(T) + e'A'(T)(I — E'(t))
where the second equality comes from applying equation (4.3f) and the fact that

E'(t) = I —U'(t)U’'(t)* and the second equality comes from the commutation
properties of U’(t) with A (T") as stated after Definition 4.6. We calculate

(¢! — )A/(T) — By —=e'N'(T) — AL(T)E'(t) — e' A(T)(I — E'(¢))
=(e"N(T) = A(T))E' (1)
For f a £ valued function f(x) we have ((e!A'(T) — AL(T))E'(t)f)(z) = (ele™* —

1)Tf(x) for x € [0,¢] and the function is the zero vector for x > t. Since T' > 0 we
see the above operator is positive. Since B; is positive we have

By — By + (e! = 1)A(T) >0
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If in the expression for B; above we replace C' by the unit I we will obtain a larger
operator. Hence, we have

¢
B <D :et/ e U (s)U'(s)" ds
0

=e'(I = A'(I)) = U'(t)(I = N(I)U'(t)"
—(e! —1)(I — E'(t)) + €' (I — N (I))E'(t).

Hence, we have

(e —1)I — By + By — (e! — 1)A/(T)

>(e! —1)I — D+ By — (e' — 1)A/(T)
(€' =DI = (" =1)(I = E'(t)) — (I = N(I))E'(t)
— (' N(T) = AL(T) E'(¢).
('] —T—e'T+e'AN(I)—e'N(T)+ A (T))E'(t)
(—AL(D) + " A'(I) = e"N(T) + AL(T)) E'(t)
('N(I=T)—Ay(I-T))E'(t)

For f € $; represented by a & valued function f(x) we have ((e!A’(I—T)—A,(I—
T)E'(t)f)(x) = (ele=® —1)(I — T) f(x) for = € [0,t] and the function is the zero
vector for x > t. Recalling that T' < I we see the above operator is positive. Hence,
we have

0< By —By+ (e —1)A(T) < (e = 1)I

Let A = (et —1)71(B; — By). Since B; and Bj are in (1) we have A € 2($)
and we have 0 < A+ A'(T) < I so we have p(T) > w'(p)(A) and we have

Q(t) = (' = 1)p(T) — w'(p)(B1 — B2) > 0.

Hence, Q(t)/t > 0 so from (4.18) we see the limit (4.14+) of Theorem 4.20 is non
negative. Hence, from Theorem 4.20 it follows that the mapping p — &(p) defines
a unique C'P-flow «.

Conversely, suppose ¢ is the boundary resolvent of a C'P-flow «. Suppose p €
B(R1)« is hermitian. Let A(t) € B($H1) be hermitian with 0 < A(t) < E’(t) for
each ¢t > 0 so that

G(e'd'(p) + 6" () (A1) = [IG(e' @ (p) + 6" (p)) 1+

Let
B(t) =) e U’ (nt)A()U' (nt)"
n=0

Let X (t) = t71T(¢[(A(t))) = t7TV(A(t)). Note that X(t) — B(t) converges o-
weakly to zero as t — 0+ . The fact that for f,g € 91 (f, (X (t) — B(t))g) — 0 as
t — 0+ is just the argument that the Riemann integral can be replace by Riemann
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sums for a continuous function. And then since X (¢) — B(t) is uniformly bounded
one obtain o-weak convergence. Repeating the argument in the proof of Lemma
4.19 we have there exists a decreasing sequence of positive t,, so that ¢, — 0 as
n — oo and X(t,) — A (T) o-weakly as n — oo. In constructing the sequence t,,
we can arrange it so it is a subsequence of any given sequence converging to zero so
we will make the further assumption that t,, = 27k (i.e., t, is the reciprocal of
a power of two). Since the X (¢) are positive and || X (¢)|| < 1 (see the argument in
the proof of Lemma 4.19) we have 0 < T < [. Since X (t) — B(t) — 0 o-weakly as
t — 0+ we have B(t,) — A(T) as n — oo. We claim condition (4.17) is satisfied
for this operator 7. Suppose this is not the case so there an hermitian A; € A($)
sothat 0 < A; +A(T) < I and p(T) < w'(p)(A1). Note ' (E'(t,00) A1 E'(t,00)) —
w'(A1) as t — 0+ so there is a t, > 0 so that if A, = E’(t,,00)A1E(ty,00) then
p(T) < w'(p)(A,). Furthermore, shrinking ¢, if necessary we can assume ¢, is the
reciprocal of a power of two. One checks that since 0 < A; + A'(T) < I we have
0<A,+AN(T)<I
We will need to introduce some notation. Let

wh(A) = t_1/ e W (p)(U'(s) AU’ (s)*) ds
0
and
vi(A) = W'(E'(ty,00)AE' (t,,00))

for all A € B($1) and t > 0. As we saw in the proof of Theorem 4.17 the expression
for w! is well defined and is given by

wt =1t71(6"(p) — e7'0,(5"(p)))

As for vy, since w'(p) restricted to U'(t,)B($H1)U’(t,)* is a normal functional we
have v; € B($1)« and 1, converges in norm to the limit v, as t — 0+ where
vo(A) = W' (p)(E'(ty,00)AE'(t,,00)) for all A € B($1). In terms of w® we have for
t > 0 that

tHIG ("D (p) + 67 (p)) |+ = ¢ D (p) + 67 (p))(A(F))
=t"1(e'®'(p) + 5" (p))(A(1))

L (AW + 1 [ W (VU () AWMU (5)°) d
0

=t} (e — ) (p)(B(1) + ' (B(1))
And R
t=1(e'6"(p) — 04(6"(p)))(A) = e'w'(A)
for all A € B($1). We define

q(t) =t (IC/(" Y (p) + 6" (D)) 1+ — lle's” (p) — 66" (p))I+)

Since o is the boundary resolvent of a C'P-flow over K we have liminf; .4 g(¢) > 0
from Theorem 4.20. Now for C(t) € B($H1) hermitian and 0 < C(t) < I for t > 0
we have

t=H(e" — e )P (p)(B(t)) + W' (B(1) 2 e'w'(C(t)) +q(t).
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Dividing by €' and with a slight rearrangement we have
71— e )P (p)(B(1) — e 'q(t) = W' (C(t) — e " B(t))
for t > 0. Then we have for all hermitian A € U’ (t,)B($H1)U’(t,)*
711 — e )P (p)(B(t) — e tq(t) > wt(A)  if 0<A+e'Bl)<I

Since t, and t, for n = 1,2,--- are the reciprocals of a power of two we have
E'(t,) commutes with B(t,,) for t,, <t, so we have if A satisfies the inequality 0 <
A+ e " B(t,) < I then the operator A’ = E’(t,,0)AFE’(t,,o0) satisfies the same
inequality. Hence, we have for all hermitian A € B($;) with0 < A+e " B(t,) < I

t (1 —e72) @ (p)(B(tn)) — a(tn) = v, (A)

Note 14, converges in norm to v, as n — 0o and

A

t, ' (1= e )& (p)(B(tn)) — 28" (p)(N(T) = p(T)

and the inferior limit of the e~'"¢(t,) is non negative. From these facts it follows
that for every € > 0 there is an integer N so that for each n > N if A = A* € B($H,)
with 0 < A+ e " B(t,) < I we have p(T) + € > v,(A). Note p(T) < w'(p)(4,) =
Vo(A,) and 0 < A, + A'(T) < I. We choose € = €, = 3(vo(A4,) — p(T)) > 0 so for
n>N=N(e)if A=A* € B(9H1) and 0 < A+ e " B(t,) < I we have

p(T) + €5 > vo(A)

We will show that this inequality leads to the conclusion that p(7") > v,(A,) which
is a contradiction.
Suppose D; = exp(—tn,)B(tn;), A >0and n;, > N fori=1,--- ,p and

> X=1 and C=)> \D;

Suppose A = A* € B(H;) and 0 < A+ C < I. We show p(T) + €, > vo(A). Let
A; =A+C—D;fori=1,--- p. Then 0 < A;+D; < I so we have p(T)+e€, > v,(A;)
fori=1,---,p. Then we have

p

p(T) +é = Z Mi(p(T) + €0) > Y vo(Nidi) = vo(A)

i=1

Since the set of C' of the above form is a convex set and the o-weak and o-strong
closure of a convex set are equal and since e~ B(t,,) — A'(T) o-weakly as n — oo
we have A’(T') can be approximated arbitrarily well by operators C' in the above
form in the o-strong topology. Hence, there is a sequence C',, of operators of the
above form so that C,, — A’(T") as n — oo in the o-strong topology. Let ¢ be the
real valued function given by ¢(x) = 0 for x < 0, ¢p(x) = z for x € [0, 1], ¢(z) = 2—=x
for € [1,2] and ¢(x) = 0 for x > 2. Note ¢ is a continuous function of compact
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support. As shown in (Theorem 5.3.4 p. 328 of [KR]) the mapping A — ¢(A)
is strongly continuous on the hermitian operators. Recall A, was the hermitian
operator satisfying 0 < A,+A'(T) < I.Let A, = ¢(A,+C,)—C, forn=1,2,---.
Since 0 < ¢p(A,+C,) < I we have 0 < A, +C,, < I and, hence, p(T)+€, > v,(A})
forn=1,2,--- . Since C,, — A (T) and ¢(A,+C}) — (Ao + A (T)) = A, + AN (T)
as n — oo in the strong operator topology we have

A, — Ay + N(T) — N(T) = A,

strongly as n — oo and since the A,, are uniformly bounded we have convergence
in the o-strong topology. Hence, v,(A4,,) — v,(A4,) as n — oo and since p(T') +¢€, >
Vo(Ay) for all m =1,2,- - we have p(T) + €, > v,(A,). We recall €, = 1(v,(4,) —
p(T)) so we have 2 p(T) > 1v,(A,). But this is a contradiction since p(T') < vo(A4,).
Hence, p(T) > w'(p)(A) for all hermitian A € A($,) with 0 < A+ A(T)<I. O

Theorem 4.23. Suppose p — w(p) is a completely positive boundary weight map
B(R). into A($).. For s > 0 suppose ws is the truncated boundary weight map so
ws(p)(A) = w(p)(E(s,00)AE(s,00)) for all A € B($) and s > 0. Suppose p — &(p)
is the mapping of B(R), into B(H). given by

(4.8) a(p)(A) = /Ooo e 'w(p)(U(H)AU(t)") dt

for all A € B(9). Let R, be an infinite dimensional separable Hilbert space and let
Rl=R,®@Rand H1 = K ®H =K, ® AR L?(0,00) and let the primed operators
and maps be the tensored operators and maps as describe before Theorem 4.20.
Suppose the mapping o is the boundary resolvent of a C P-flow over K. Then for
each hermitian p € B(R,). and each s > 0 we have

(4.19) lp+ A (@i ())ll+ = llws(p)ll+

Conversely, suppose for each hermitian p € B(R1). we have

(4.20) tim sup[lp-+ X0l ~ (0} 1+ > 0.

Then the mapping p — 6(p) defines a C' P-flow over R.

Proof. Assume the hypothesis and notation of the theorem. First let us assume
the mapping p — (p) defines an C' P-flow over K. Suppose p € B(£;) is hermitian
and s > 0. Then from the previous lemma there is an operator T' = T* € B(R;)
with 0 < T < I so that p(T) > w'(p)(A) for A = A* € A(H71) (the null boundary
algebra) with 0 < A+ A’(T) < I. Note if A satisfies 0 < A+ A'(T) < I so does
A’ = FE’'(s,00)AE’(s,00). Hence, we have p(T) > w.(p)(A) for all A = A* € B(H,)
with 0 < A+ A(T) < I. Hence, we have p(T') + w.(p)(A(T)) > wi(p)(A+ AN (T))
for all A = A* € B($H,) with 0 < A+ A(T) < I. Smce |lwi(p)]|l+ = sup(wi(p)(C) :
C € B(H) with 0 < C < I) we have (p + A(wi(p)))(T) > ||wi(p)||+ and since
0 < T < I wehave |[p+ AW.(p)ll+ = (p+ N(W.(p)(T) and inequality (4.19)
follows.

~
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Conversely, suppose inequality (4.20) holds for all hermitian p € B(8&;).. Sup-
pose p € B(R;). is hermitian. Then there is a decreasing sequence s,, — 0 so that
if

= llp+ N (W, (P)l+ — llws, (0)l]+

then lim, .., g, > 0. Let P, be the support projection of the positive part of
p+ K, (p) s0

(p+ N (wo, (0)(Pn) = llp + N (@, ()]

Then for each n =1,2,--- we have

p(Pn) +ws, (p) (N (Pn)) = Wi, (p)(B) + ¢n

for all hermitian B € B($;) with 0 < B < I and, therefore, we have p(P,) >
w (p)(A) 4 gqn for A = A* € B(H1) with 0 < A+ A'(P,) < I. And from the defi-
nition of w} (p) we have p(P,) > w'(A) + gy for all A = A* € U'(5,)B(H1)U’(s,)
with 0 < A 4+ A’/(P,) < I. Since the unit ball of B($;) is o-weakly compact and
$1 is separable there is a subsequence s,,(x) so that P, () converges o-weakly to an
operator T" as k — co. We relabel the subsequence as s; and Py so si is a decreasing
sequence converging to zero and P, — T o-weakly as k — oco. We claim inequal-
ity (4.17) holds with T the operator just constructed. Suppose this is not the
case. Then there is a ¢ > 0 and a hermitian operator A, € U’ (c)B($H1)U'(c)*
and 0 < A, + A(T) < I so that p(T) < w'(p)(A,) = w.(A,). Note that if
A=A € B(H1)and 0 < A+ AN (P,) <Tor0< A+ AN(T) < I then the
same inequalities hold with A replaced by A" = E’(¢,00)AE’(¢c, 00). Hence, we
have p(P,) > w.(A) + ¢, for hermitian A € B($H;) with 0 < A+ A’(P,) < I. Since
P, — T o-weakly as n — oo and lim,, . ¢, > 0 for each € > 0 there is an integer
N so that for each n > N if A= A* € B(H;) with 0 < A+ A'(P,) < I we have

p(T) + € > w)(A)

We are now in precisely the same situation we had in the proof of the second
part of Lemma 4.22 and repeating the argument there produces the contradiction
p(T) > w.(A,). Hence, inequality (4.17) holds and from Theorem 4.22 we have
p — 6(p) defines a CP-flow. [

A natural way to construct E,-semigroups or C'P-flows is through the boundary
representation 7, as given in Definition 4.5. One may simply require that the
boundary representation 7, of ©(J) be o-weakly continuous and, therefore, have a
o-weakly continuous extension 7 to all of B($). In earlier work it was natural to
focus on the boundary representation. For example, it was shown in [P3] (Theorem
4.6) if « satisfies the conclusion of Theorem 4.20 then « is a completely spatial
E,-semigroup of B(9) if and only if the mapping A — m,(A) from the domain of
the generator § of a to B(H) extends to a o-weakly continuous *-representation 7
of B(H) on B(K) and with the further property that A = w(A(A)) only if A = 0.
Here are ways to connect a normal boundary representation with a C'P-flow.
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Theorem 4.24. Suppose o is the boundary resolvent of a C P-flow over R and ¢ is
the generator of c. Suppose m is a completely positive normal contraction of B($))
into B(RK). Then the following are equivalent.

(i) @(p) € D(6) and 5((p)) = #(p) — B(p) for each p € B(R)..

(ii) 6(p — A(@(p))) = (7t (p)) for all p € B(R)..

(iii) m(A) = mo(A) for all A € ©(5) where 7, is the boundary representation
introduced in Definition 4.5.

Proof. Assume the hypothesis and notation of the theorem apply. Assume condition
(ii). Since « is defined from & we have for all n € B($). that 6(A(n))+T'(n) € D(4)
and 6(6(A(n)) +T'(n)) = 6(A(n)) +T'(n) —n where § is the generator of a. For n =
20 (p) —7t(p) we have A(n) = p—A(7(p)) and T'(n) = (p)— I'(#(p)) and, therefore,
from the equation above we have ®(p) € D(8) and 6(P(p)) = #(p) — (p). Hence,
(i) = (i).

Conversely if o satisfies (i) we have ®(p) € D(9) and §(P(p)) =
where 4 is the generator of &. Then for p € B(8), there is an n € B(H), so that
5(A(n)+T(r) = B(p) and then d(5(A(n)+T(n)) = #(A(m)+T(m)—y =
#(p) — ®(p). Hence, n = 2®(p) — #(p). Since I'(®(p)) = 3P (p) and A(
we have 6(A(n)) = 6(p — A#(p))) = T'(#(p)). Hence, (i) = (ii).

Next we show (ii) and (iii) are equivalent. Since « is defined from the map
p — 6(p) means that each element of ®(4) is of the form &(A(n)) + I'(n) and
5(6(AMm)+T(n) = 6(An))+I'(n)—n for some n € B($H),. This translates over to
the dual space B($) to give that each element of () is of the form A(o(A))+TI'(A)
and 0(A(c(A)) +T'(A)) = A(o(A)) + T'(A) — A. Recalling the properties of the
boundary representation we note that m,(I'(A)) = 0 and 7,(A(B)) = B for all A €
B($H) and B € B(K). Hence, we have m,(A(c(A))+T(A)) =o(A) for all A € B(H).
It follows that condition (iii) is then equivalent to the equation o(A) = 7w(A(c(A))
+I'(A)) for all A € B($H). Note all the mapping in this equation are o-weakly
continuous so translating this equation to the predual gives condition (ii). Hence,
(ii) and (iii) are equivalent. [

Definition 4.25. We say a CP-flow «a over R is derived from the completely
positive normal contraction m of B($)) into B(RK) if it satisfies one and, therefore,
all the conditions of Theorem 4.24.

The next theorem shows that for each such 7 there is a C P-flow a derived from
.

Theorem 4.26. Suppose 7 is a completely positive o-weakly continuous linear
contraction of B($)) into B(R). Then for each p € B(R), the sum

5(p) = L(#(p) + #(A(7(p))) + & (AGFAGF(p)))) + )

converges in norm and o is the boundary resolvent of a C' P-flow o« which is derived
from 7. Furthermore, this « is the minimal C P-flow derived from 7 in that if
p — 6&2(p) defines a second C'P-semigroup derived from 7 then 6(p) < 62(p) for
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all positive p € B(RK).. Furthermore, if (m o A)"(I) — 0 weakly as n — oo then «
defined above is the unique (i.e., « is the only C P-flow derived from ).

Proof. Suppose 7 is a completely positive o-weakly continuous linear contraction
of B($) into B(K). For p € B(K). let

n
A~

6u(p) = L(#(p)) + T (D #((Ao®)*(p))

k=1

Note the mapping p — 6, (p) is completely positive and each of the terms in the
sum for &,, are completely positive. Suppose p € B()). and p is positive. Using
the fact that 7(I) < I we find

Gn(p) (1) =p(n(I = A)) + Y pl((wo A)* (I — A))

k=1

<p(I—m(A) + D p((ro A)F(I —m(A)))
k=1

=p(I) = p((m o A)" (1)) < p(I)

for all n > 1. Since for n > m we have ||6,, — || = 6, (I) — 6, () and this tends to
zero as n, m — oo it follows that &, converges in norm to a limit which we denote
by 6(p) as n — oo. Since each p € B(RK). is the complex linear combination of four
positive elements it follows that ,(p) converges in norm to a limit as n — oo for
all p € B(R).. Note for p € B(R). and A € B($) we have

(6n(p) — e"0:(6m(p)))(A) = / e™* > p((mo A)rm(U(s)AU(s)")) ds
0 k=0

Since each of the terms in the above sum is completely positive the mapping p —
6nl(p) — e 10,(6,(p)) is completely positive. Since &, converges in norm to & as
n — oo the mapping p — 6(p) — e 0,(6(p)) is completely positive. To show that
¢ defines a C'P-flow we need to establish the limit inequality (4.14+) of Theorem
4.20. We do not know how to do this directly because although the expression for
d(p) converges in norm as n — oo the expression on which I acts in the definition
of 6(p) need not converge. (In fact, we know of examples where it fails to converge.)
To fix this problem we will replace m by A7 with 0 < A < 1 which makes the typical
sums which occur convergent. Then we will take the limit as A — 1 —.
For p € B(R). and 0 < X\ < 1 we define

o = p+ M) + PAGFAG(P))) +

and )
6*(p) = AL(7(pA))-

Note that since A < 1 the series for p) converges in norm. We show the mapping
p — 6*(p) defines a CP-flow over &. This mapping is completely positive by the
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same argument that the mapping p — &(p) is completely positive and 6*(p)(I) <
p(I) for p > 0 by the same computation that showed this for 6(p). We show 6A(p)
satisfies the limit inequality (4.14+). As describe before Theorem 4.20 we use the
primed maps to indicate the extension of the unprimed map to tensor product space
R =R, @K by rule v (A® B) = A®~(B). Suppose p € B(R1). is hermitian and
t > 0. Then we have

By Lemma 4.19 the norm of the second term on the left hand of the above equation
is o(t). Hence, we have

. —1Frr tE/ ~ N/

Jim #7G (e (p) + 67 (p)) 1+
= Jim 7H[G (e (p) + A (X (# (o)) +
= lim 71— e7)le’p+ A (7 (pA))]|+
= |lp+ M (@ (o))l + = lloall+

And we have

= (e'6N (p) — 6:(67 (p))) Zt_lAet/O e *0L(#' (pa)) ds
— A7 (pa)

as t — 0 + . Hence, we have

Jim £ €6 (p) = (™ () 1+ = AlIF () 1+

Hence, inequality (4.14+) is satisfied if and only if

AlF (e)ll+ < lloall+

for all hermitian p € B(RK;).. But this follows immediately from the fact that A < 1
and 7 is a completely positive contraction so w’is a positive contraction. Hence, by
Theorem 4.20 there is a C'P-flow o of B($)) whose boundary resolvent is c*. The
properties of the semigroup a* are essential to the remainder of our argument.

Suppose p € B(KR;) is hermitian. Suppose ¢ > 0. Then from equations (4.15) in
the proof of Theorem 4.20 we have

&' (G(v)) = '8 (p) — 6,(5™ (p))

and
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where the somewhat complicated expression for v (which fortunately we do not

need) is given in the proof of Theorem 4.20. Since a7 is completely positive and,

therefore, o is positive for t > 0 we have ||& (Cl(v))|l+ < ||C(v)||+. We note that
both & (C/(v)) and ¢/(v) converge in norm to limits as A — 1— and, hence, the
inequality [|& (C/(v))|l+ < [I€/(v)||+ holds in the limit obtained by setting A = 1.
Hence, we have

UG+ = N1e'd” (p) = 0,(6"(p))ll+) = 0

where (/(v) is the expression given above with 6% (p) replaced by 6’(p). As shown
in the proof of Theorem 4.20 (after equation 4.15) the norm of each of the second
two terms in the expression for ¢/(v) are O(t2). Combining this with the inequality
above we have

lim inf £~ ([C/(e"®'(p) + 6" ()4 — le'6”(p) = 01(5"(0)) 1 +) = O

which is the limit inequality (4.134) which implies (is stronger than) that the limit
inequality (4.14+). Hence, by Theorem 4.20 o is the boundary resolvent of a C'P-
flow over 8. We show « is derived from 7. Suppose p € B(R).. A direct computation
from the definition of & shows that

6(p — A(#(p))) = L(#(p)).

for p € B(R).. From Theorem 4.24 it follows that « is derived from .
Next suppose then that 3 is a CP-flow over £ derived from 7 and let o2 be the
boundary resolvent of 3. Since [ is derived from 7 we have from Theorem 4.24 that

~

6°(p — M#(p))) = L(#(p))

for all p € B(K).. For p € B(R), let

Then p, — A(7(pn)) = p— (A - 7)"1(p) and, hence,
*(p— (A- )" (p)) = T'(#(pn))

Early in this proof when we constructed o we showed that I'(#(p,)) converges in
norm to 6(p) as n — oo. Hence, we have

5%(p) = 6(p) + lim &2((A-7)"(p))

" are

(p) is

where the above limit exists. Since the mappings p — 62(p) and (A - #)
completely positive for all n = 1,2,--- is follows the mapping p — 62(p) — &
completely positive.
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Now suppose p > 0. Then [|(A - 7)™ (p)|| = p((7 o A)*(I)). Now let us make the
assumption (moA)™(I) — 0 weakly as n — co. It then follows that ||(A-7)"(p)|| — 0
as n — oo and since each p € B(R), is a linear combination of four positive elements
this limit holds for all p € B(RK).. From the normalization condition for &5 it follows
that 65((A - #)™) — 0 in norm. Hence, we have

~

G2(p) = (p) + lim &>((A-7)"(p)) = 6(p)
Hence, § = a and « is the unique C'P-flow derived from = if (w0 A)"(I) — 0
strongly as n — oco. [

Next we show that if the weights w(p) are bounded for all p € B(R), then the
C P-flow defined from w is derived from a completely positive normal contraction
7 of B(H) into B(K).

Theorem 4.27. Suppose « is a C'P-flow over K and o is the boundary resolvent
of a.. Suppose

5(p)(A) = / (o) (U AU (1)) di

for all A € B(9) where w(p) is the weight defined in Theorem 4.17 and suppose
the weight w(p) is bounded for each p € B(RK).. Then there is a unique completely
positive o-weakly continuous contraction m of B($) into B(RK) so that « is the
unique C'P-flow derived from 7w and the relation between m and w is given by

~

w=aI—-A -7)7" and T=wl+ A w)?

In particular, it follows that if « is a CP-flow over & and p — w(p) are the
associated maps for t > 0 as described in Theorem 4.23 then for each t > 0 there
is a unique completely positive normal contraction m; of B($) into B(R) so that
there is a unique CP-flow a(®) derived from 7; and the associated map p — o*(p)
is given by

5 (p)(A) = / " ew(p)(U(s) AU (5)") ds

for A € B($). The relation between m; and w; is given by the relations

~ ~

Wt = 7ATt<I —A- 7ATt)_1 and T = wt(I—f— A- wt)_l

for each t > 0.

Proof. Assume the hypothesis and notation of the first paragraph of the the-
orem holds. We first show that the mapping p — w(p) is closed. We must
show that if ||p,|| — 0 and |w(pn) — 71| — 0 as n — oo then n = 0. Let
ws(p)(A) = w(p)(E(s,00)AE(s,00)) for s > 0 and A € B($). Suppose p € B(R).
and p is positive. Since w(p)(I — A) < p(I) we have for s > 0 that

ws(p)(I) =w(p)(I = E(s)) < (1 —e™) " w(p)(I — A)
<(L—e™*) " o(D).
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Hence, ||w,(p)|| < (1 —e=*)71||p|| for p positive and since the mapping p — w,(p)
is completely positive we have this inequality holds for all p and the mapping
p — ws(p) is bounded with bound less than or equal to (1 —e=*)~! for all s > 0.
Suppose then that ||p,| — 0 and |w(p,) — n|] — 0 as n — oo. Then we have
ws(pn)(A) — 0 as n — oo for each s > 0. Hence, n(E(s,00)AE(s,00)) = 0 for all
s>0and A € B(H). Hence n = 0 and the mapping p — w(p) is closed and, hence,
by the closed graph theorem the mapping is bounded so there is a constant K so
that |w(p)|| < K||p|| for all p € B(K)..

Then next step is to show that mapping p — p+ A(w(p)) is invertible. We have
5(p) = T(w(p)) for all p € B(K),. We use the primed maps as described before
Theorem 4.20. Then for all hermitian p € B(R;). we have

Gi(e'®(p) + 6" (p)) =C (P (p) + &' (X' (' ())))
+ G (w(p) — & (K (W' (p)))

By Lemma 4.19 the norm of the second term in the above equation is o(t) and,
hence,

. —1fry t & ~1
Jim t7|G(e" 2 (p) + 67 (p)) 1+

= Jlim ¢~ IG(@' (' + AW (O)))ll+ = o+ A (W' (0))l]+
And we have
(e'a’(p) = bi(c" (p)))(A) = ¢! /Ot e "W (p)(U'(s)AU’(5)") ds
for all A € B($H) and t > 0. It follows from the above that

Jim 71 ("o’ (p) = (0" () = ' (p)

and, therefore, A
Jim t=Hle's" (p) = 0:(6" (p)) 1+ = W' (p)]|+

Then it follows from Theorem 4.20 (inequality 4.13+) that

lo+ AW ()14 = [l (p)]l+

for all hermitian p € B(R1).. As described in the proof of Theorem 4.20 this
implies [[p + A'(w'(p))]] > ||w'(p)| for all p € B(R1). and this trivially implies
lp + Alw(p)]l = llw(p)] for all p € B(R).. Note [|p + A(w(p))]| = [w(p)]| implies

lo+Aw)I = Nl = A @)= lloll = lw(p)ll = lloll = llp + Alw(p))]l-

So we have ||p + A(w(p))| > llpll for all p € B(R).. It follows that the map
p — p+ A(w(p)) is one to one and this map has a bounded left inverse.
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We will show that this mapping has range %B(R),. and so this left inverse is also
a right inverse and the mapping is invertible. Suppose 0 < y < 1. Consider the
mapping p — yo(p) and then p — yw(p) is the corresponding differentiated map.
Note from Lemma 4.22 that the mapping p — yw(p) satisfies inequality (4.17)
since the mapping p — w(p) does. Hence, the mapping p — yd(p) corresponds
to a CP-flow and by the argument above (with yw(p) replacing w(p)) we have
lp + yAw(p)|| > 3lp| for all p € B(K). and y € [0,1]. Let T, be the mapping
p— p+yhw(p)) for p € B(K). and let O, be the left inverse of T, for y € [0, 1].
Recall ||w(p)|| < K||p]|| for p € B(R).. Now for y € [0,1/K) we have

~

0,(p) = p — yA(w(p)) + Y’ Mw(A(w(p)))) — - -

and the geometric series converges. Note for y € [0,1/K) we have ©, is both a
right and left inverse of T}, so the range of T}, is B(RK), for y € [0,1/K). Suppose
y € [0, 1] and for this value of y we have T, has range B(R). so O, is both a right
and left inverse of T,. Then for z € [0, 1] we have

Tyry =Ty + oA w= (T, +zA - w)0,T, = (I +2(A-w)0,)T,.

Note since || Typl| > 3|lp|| for p € B(K). we have ||©,] < 2 and, hence, |z (A -
w)Oy | < 2zK. Hence for z € [0, 2 K~') we have (I+x(A-w)@y) is invertible (since
the geometric series for it converges). Since T}, has range B(R). it follows that
Ty+4y has range all of B(R). for z € [0,2K'). Then we can extend the interval
[0, (2/3)K '] on which we know T}, has range B(£). to [0, K~'| on which T} has
range B(K). then to [0, (4/3)K '] on which T, has range B(f). and in a finite
number of steps we can extend the interval for which we know T}, has range B(R).
to an interval containing [0, 1]. Hence, T3 has range B(8). and ©; is both a right
and left inverse for T7.

It follows that ©1(p) + A(w(01(p))) = p for all p € B(K).. Then for the primed
maps we have

loll+ = 1193 (p) + A" (Wi (OL (2D 1+ = Nl (O1(p))lI+

for all hermitian p € B(R1).. Let 7(p) = w(O1(p)) for all p € B(R).. Then the
above inequality says [|p|l+ > ||7'(p)||+ for all hermitian p € B(R;). which is

equivalent to saying m is a completely positive normal contraction of 95($)) into
B(R). Since O1(p) + AMw(O1(p))) = p for all p € B(KR). we have w(O1(p)) +

~

w(M(w(©1(p)))) = w(p) or

w(p = M7 (p))) = 7 (p)

for all p € B(R),. Hence, we have 6(p — A(#(p))) = ['(7(p)) for p € B(K), and a
is derived from 7.

As in the proof of Theorem 4.26 for p € B(RK). and n > 0 let

~

pn=p+A@(p)) + -+ (K -7)"(p).
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Then we have w(p— (A-#)"t1(p)) = #(pn). Then assuming further that p is positive
we have

#(pn) (1) = w(p)(I) = w((A-7)"H(p)) (1) < w(p)(I).

foralln = 1,2, --- and this implies # ((A-7)"p)(I) = (A-7)"p)(x(I)) — 0 asn — oo
for all positive p € B(R),. Since A < I we have ((A-7)"1p)(I) < ((A-7)"p)(x(I))
for p positive so p((m- A)"(I)) — 0 for all positive p € B(R). as n — oo. Since
each element in B(RK), is the linear combination of four positive elements we have
(m - A)™(I) tends weakly to zero so from Theorem 4.26 we have « is the unique
C P-flow derived from .

Note we have shown that ||w,(p)]| < (1 —e~%)7Y|p|| for p € B(K). and s > 0
so the theorem’s last paragraph is an immediate consequence of the theorem’s first
paragraph and the proof is complete. [

We consider the following exercise. Suppose 7 is a completely positive normal
contraction of B($) into B(K) so that ||A - 7| < 1 and « is the unique CP-flow
derived from 7. Suppose o is the boundary resolvent of a. As we saw in the above
proof for A € [0, 1] the mapping p — A& (p) gives rise to a CP-flow o™ and since
the mapping p — Aw(p) is bounded it follows from the above theorem that o is
derived from a completely positive normal contraction 7wy of B($) into B(RK). We
leave as an exercise determining the relation between m and 7, which is given by
7x = M(I — (1= A)A-#)"! for the predual maps and my = AT — (1 —\)7-A) " x
for the operator maps.

At this point we have reached the most important result of this section. We
see how a C'P-flow is characterized by the family of completely positive normal
contraction m; of the previous theorem and these contractions completely determine
the C' P-semigroup «. Because of their importance we give this family a name.

Definition 4.28. If a is a C' P-semigroup over K we say p — w(p) is the boundary
weight map of « if the boundary resolvent o of « is given by equation (4.8). We
denote by 7% called the generalized boundary representation of a (or w) the family
of mappings 7Tt# = 7¢ (where m; are mappings defined in Theorem 4.27) for ¢t > 0. A
boundary weight map p — w(p) is said to be g-positive if the generalized boundary
representation maps 77 are completely positive contractions of B(§) into B(8) for
all ¢ > 0.

Theorem 4.27 shows that the problem of constructing C'P-flows is equivalent to
constructing g-positive boundary weight maps. We consider this to be the most im-
portant result of this paper. Since every spatial F,-semigroup is cocycle conjugate
to one dilated from a unital C'P-flow this gives us a way to construct F,-semigroups.
There are a number of strategies for constructing g-positive boundary weight maps.
When the Hilbert space K is one dimensional they are simply given by a simple
boundary weight on L?(0,00). When £ is finite dimensional we have not classified
the ¢-positive boundary weight maps but the problem seems tractable. And in
the case where R is infinite dimensional we can construct new FE,-semigroups with
surprising properties as we will see at the end of this section. Note the general-
ized boundary representation of a completely determines a. Also note that if 77 is

a generalized boundary representation of a C'P-semigroup then wf is determined
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by 7# for all t > s so it is the properties of 77 as s — 0+ that are important.
The generalized boundary representation is of importance in determining the order
structure for C'P-semigroups.

Theorem 4.29. Suppose o and (3 are CP-flows over & and 7% and ¢* are the
generalized boundary representations of a and 3, respectively. If 3 is a subordinate
of a then 7 > ¢¥ (i.e., the map A — w#(A) — ¢¥7(A) from B($) to B(RK) is
completely positive) for all s > 0. Conversely, if ’ﬂ'i > qb?st for alln = 1,2,---
where s,, — 0+ as n — oo then (3 is a subordinate of «.

Proof. Suppose a and 8 are CP-flows over £ and 7% and ¢# are the generalized
boundary representations of v and 3, respectively. Suppose a dominates (3. Let ©
be the semigroup of B(H @ $) constructed from a and [ as described in the Lemma
3.6. Since o dominates 3 we have © is a C'P-semigroup and, hence, its generalized
boundary representation which is given below

L
% &

is by Theorem 4.27 completely positive for all s > 0. Then 77 > ¢# for all s > 0.
Conversely, suppose Wi > (ﬁi for all n where s,, — 0+ as n — oo. Let €2 be the
boundary weight given by the matrix of weights

N

non

where w is the boundary weight associated with « and 7 is the boundary weight
associated with (3. Consider the matrix of truncated weights

i
Ns Ts

where wy(A) = w(E(s,00)AE(s,00)) for A € B(H) and the same for n,. Since
WS#; > qbf; we have the above weight is the weight of a C'P-flow over R @ K for
s = 8,. Since s,, — 0+ it follows from Theorem 4.23 that the above matrix of
weights is the boundary weight of a C'P-flow over & & K and this is clearly a C'P-

flow of the form of ©; given in Lemma 3.6. Since ©; is a C'P-flow we have a > [
from Lemma 3.6. O

Lemma 4.30. Suppose o and 3 are CP-flows over & and ©# and ¢* are their
generalized boundary representations, respectively. Suppose for some t > 0 we have
7rt# > qbt# Then ©# > ¢7 for all s > t.

Proof. Assume the hypothesis and notation of the theorem. Let w and 7 be the
boundary weights of a and f3, respectively and let w; and 7; the truncated weights
at ¢, so

wi(p)(A) = w(p)(E(t,00)AE(t,00)) and  n:(p)(A) = n(p)(E(t, 00) AE(t, o0))
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for all A in the null boundary algebra 2(($)) and p € B(R).. Theorem 4.27 shows
there are CP-flows ! and 3! associated with w; and 7y, respectively. Let v the
mapping of B(H & $H) into B(K & K) given by

G Xep-[ooe i)

for X;; € B($). One checks that v is completely positive and there is a unique
C P-semigroup O derived from ~ which is given for each ¢t > 0 by the matrix

o xap- A6 A

Note the fact that © is unique follow from the fact that ||y - Al < e™* < 1. From
Lemma 3.6 it follows that o' > 3! and from Theorem 4.29 that 7r§ > (ﬁ for all
s > 0 where 7% and ¢'# are the generalized boundary representations of o' and
(Y, respectively. Since wl# = 7% and ¢1# = ¢¥ for s > t the conclusion of the
lemma follows. [J

The difficulty in computing the generalized boundary representation from the
boundary weight for a C'P-flow is computing the inverse of the map Tp = p—l—[\w(p).
Even when R is two dimensional this is a complicated problem in linear alge-
bra. The situation is tractable in the case of Schur maps which we now describe.
A mapping ¢ of B($) into itself is called Schur product with respect to an or-
thonormal basis {f; : i = 1,2,---} of § if there are complex numbers ¢;; so that
(fi,#(A)f;) = ¢ij(fi, Af;) for 4,5 = 1,2,---- . This means ¢ acts on A by multiply
the matrix coefficients of A by ¢;;. This product has been called the Schur product,
the Hadamard product or Kronecker product. We will call this the Schur product.
In the case where §) is finite dimensional one easily sees that if ¢ is diagonal with
coefficients ¢;; then ¢ is completely positive if and only if the coefficients ¢;; are
those of a positive operator. A similar result holds for infinite dimensional Hilbert
spaces. Note the spectrum of ¢ as a mapping are the numbers ¢;;. We see then
that a completely positive mapping can have negative spectrum and even complex
spectrum.

Definition 4.31. The mapping p — w(p) from B(R). to weights defined on the
null boundary algebra 2((£)) is said to be Schur diagonal with respect to an or-
thonormal basis {f; : i = 1,2,---} of R if p;;(A) = (fi, Af;) for A € B(K) and
eif = (fi, f)fi then

w(pij)(A) = w(piz)((es @ I)Ae; @ )

for all A in the null boundary algebra A($) for all 7,5 = 1,2,--- . In this case the
matrix elements of the mapping p — w(p) are the weights

wij(A) = w(piz)(ey; ® A)

defined for A in the null boundary algebra 2(L?(0,00) where {e;;} are the set of
matrix units defined by e;; f = (f;, f)fi for all f € R and 4,5 =1,2,---- .

The next lemma shows that if the mapping p — w(p) is completely positive to
show the mapping is Schur diagonal we need only check the diagonal entries.
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Lemma 4.32. Suppose the mapping p — w(p) from B(R). to weights defined on
the null boundary algebra 20($)) is completely positive. Suppose {f; :1=1,2,---}
is an orthonormal basis for 8 and p;;(A) = (fi, Af;) for all A € B(R) and all i and
j and e;; f = (f;, f)fi for f € R Suppose w;; = w(p;;) and suppose the diagonal
weights w;; are Schur diagonal, so w;;(A) = wy((ey; @ I)A(ey; ® I)) for A in the
null boundary algebra A(L?(0, o)) for each i and j. Then w is Schur diagonal with
respect to {f; :1=1,2,---}.

Proof. Assume the hypothesis and notation of the lemma are satisfied. Suppose
fi and f; are distinct vectors in the orthonormal basis for & Since p — w(p) is
completely positive we have

for A, B in the null boundary algebra 2((L?(0, 00)) Multiply B by z with z a com-
plex number and minimizing the above expression we find the above inequality is
equivalent to the inequality

|wi; (A*B)]* < wii(A* A)w;;(B*B)

for A, B € A(L?*(0,00)) Replacing B by B((I — ej;) ® I) we have w;;(A*B((I —
ejj) @ 1)) = 0 or w;;(A*B) = w;j(A*B(e;; ® I)) for all A, B € A(L?*(0,00)). Ap-
plying this argument to A, and replacing A by A((I — e;;) ® I) we recalculate that
w;j(A*B) = w;;((ei; ® I)A*B) for all A, B € A(L?(0,00))U(t). Since A and B are
arbitrary we combine these results to obtain w;;(A4) = w;;((es ® I)A(ej; ® I))
for all A € 2A(L?(0,00)). Hence w is Schur diagonal with respect to the basis
{(firi=1,2,---}. O

The following theorem gives a reasonably computable condition that the Schur
diagonal mapping p — w(p) gives rise to a C'P-flow.

Theorem 4.33. Suppose R is finite dimensional and p — w(p) is a linear mapping
of B(R). into weights w(p) on the null boundary algebra 2($)) which is Schur
diagonal with respect to an orthonormal basis {f; : i = 1,2,---- ,n} and p;;(A) =
(fi, Af;) for each i and j and for A € B(RK). Fort > 0 and p € B(RK), let

wi(p)(A) = w(p)(E(t, 00)AE(t, 00))

for all A € A($). Note p — wy(p) is Schur diagonal with the same basis. For
p € B(R), let

a(p)(A) = /Ooo e 'w(p)(U(t)AU(t)") dt

for all A € B(9). Then the mapping o is the boundary resolvent of a C P-flow if
and only if for each t > 0 the matrix with entries given by

__ wilpiy)
L+ wi(pij)(A)

Mij
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fori,7 =1,2,---,n are the matrix elements of a completely positive contraction of

B(R). into B(9H)..

Proof. Assume the hypothesis and notation given in the statement of the theorem
apply. Suppose the mapping p — w(p) is the boundary weight map of a C P-flow.
Suppose t > 0. From Theorem 4.23 it follows the mapping p — w;(p) defines a C' P-
flow. From Theorem 4.27 it follows that this semigroup is derived from a completely
positive normal contraction 7 of B($)) into B(RK) and from the details of the proof
of Theorem 4.27 it follows that 7(p) = w(O(p)) for all p € B(RK), where O is the
inverse of the map p — p + A(wi(p)). Let pi;(A) = (fi, Af;) for A € B(K) and
ei; [ = (fj, f)fi for i,j = 1,--- ,n. Let © be the linear mapping of B(RK). into
B(R). given by 0 (p;;) = (1 4+wi(pij)(A)) " 1pi; fori,j =1,---,n. Since p — wy(p)
is Schur diagonal with the basis {f; : ¢ = 1,--- ,n} a direct calculations shows
that © is the inverse of the map p — p + A(wy(p)) and since the inverse is unique
©’ = ©. Hence, we have

wi(piz)
L+ wi(pij)(A)

7(pij) =

and since p — w(p) is Schur diagonal and 7 is a completely positive contraction of
B(R), into B(9H). the conclusion of the theorem follows for the 7;;.

Conversely, suppose for each ¢ > 0 the matrix entries 7;; given in the statement
of the theorem are define a completely positive contraction 7, of B(RK). into B(H)..
Then it follows from Theorem 4.26 that p — w¢(p) is the boundary weight map of
a C'P-flow which is derived from ;. Since p — wi(p) gives rise to a C'P-flow for
each t > 0 it follows from Theorem 4.23 that inequality (4.19) of Theorem 4.23
is satisfied and this implies weaker limit inequality (4.20) which implies p — w(p)
defines a CP-flow. [

We begin our investigation of the limit 7, of 7% as s — 0+ where 77 is a
generalized boundary representation.

Lemma 4.34. Suppose « is a CP-flow over £ and 7 is the associated generalized
boundary representation. Ift, > 0 and 0 < s < t < t, then the mapping A —
7 (E(ty, 00) AE(ty, 00)) — 7 (E(ty, 00)AE(t,,0)) is completely positive (i.e., the
mapping ¢s(A) = 7#(E(t,,00)AE(t,,00)) is an increasing (in sense of complete
positivity) function for s € (0,t,]).

Proof. Suppose 77 is a generalized boundary representation described above. As we
have done before when we will put a prime on mapping to indicate the associated
map where R is replaced by 81 = R ® K, and § is replaced by H; = H ® R,
where £, is a separable infinite dimensional Hilbert space and the primed mapping
is the usual tensor extensions. To prove the lemma all we need do is prove the
mapping described in the lemma is positive for the primed maps. Suppose then
that A € B($1) is positive. Suppose t, > 0 and 0 < s < t < t,. We show
T # (B (t,00)AE(t, 00)) < 7,7 (E'(t,00)AE'(t,00)). Suppose p € B(&1), and p > 0.
Let

Q(t) = p(m," (E'(t, 00) AE' (¢, 00)) — m# (E'(t, 00) AE' (¢, 00)))-
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Then we have

Q(t) =(51# — #7#)(p)(E! (¢, 00) AE'(t, 0))
—(wy (I + N ! — Wl (1 + Kel) ™) (p) (E'(t, 00) A/ (£, 50)).

Because w’(E’(t,00)AE'(t,00)) = w;(A) we have

Q(t) =(wj(I + Nw) ™ — wj(I + Nw) ™) (p)(A)
=wy (I + Nw)) (I + ANwl) — (I + Aw)))(I+ Nw)) ™) (p)(A)
=wy (I + Nw)) 7 A (W] —w)) (I + Nw)) ™) (p)(A)
=777 (A (ws — wi) (T + Nws) 7 () (A).

Since A > 0 we see Q(t) > 0 if the mapping in the brackets following 772# is positive.
To give this mapping a name we call it W. Suppose B € B(RK;) and B > 0 and
n € B(R1). is positive, then we have

U(n)(B) =N (), —wp) (I +A'w))~n)(B)
—/ (I + M) ') (E' (s, 00) N (B) E'(s, 00) — E'(t, 00)N(B) E' (£, 50)).

Since E'(x,00) commutes with A’(B) for all x > 0 we have
U(n)(B) =o' ((I + A'w))™"n)(E' (s, t)A(B) E'(s, 1))
Since W' (E'(s,t)CE’(s,t)) = wl(E'(s,t)CE'(s,t)) for all C € B($) we have

V() (B) =w, (I + Nw)™'n)(E'(s, )N (B)E'(s,1)).
=7 () (E' (s, )N (B)E'(s,1)).

Since 7'# is positivity preserving W is positivity preserving and Q(¢) = #7 (¥ (p))(A)
is positive. Replacing A by E’(t,, 00)AE’(t,, A) in the expression for Q(t) completes
the proof of the lemma. [J

Theorem 4.35. Suppose « is a C P-flow over £ and 7 is the generalized boundary
representation of a. Then 7# (A) — n# (A) for as s — 0+ in the o-strong topology
for each A € UysoU(t)B(H)U(t)* where ©# is a o-weakly continuous completely
positive contraction of B(%)) into B(K).

Proof. Suppose « is a CP-flow over R with generalized boundary representation
7. Let ¢4(A) = 77 (E(t,00)AE(t,00)) for 0 < s < t and A € B(H). From the
previous lemma we have ¢, is an increasing function of s in the sense of complete
positivity. From the Stinespring Theorem we have ¢;(A) = V*y(A)V for A € B(H)
where v is a #-representation of B(f)) on a Hilbert space $), and V is a linear
contraction from R to $),. Since ¢ < ¢, for s < t we have ¢s(A) = V*Csy(A)V
for A € B($) where Cs € v(B($H))" and 0 < Cy < I. Since the ¢ are increasing
we have 0 < Cp < Oy < I for 0 < z <y < t. Since the Cy are decreasing as
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s — 0+ we have the C; converge strongly to a limit C, as t — 0+ . Hence, ¢s(A)
converges o-strongly to ¢,(A) = V*Coy(A)V as s — 0+. For A e U(t)B(H)U(t)*
then we define 7m,(A) = ¢,(A). The mapping ¢, depends on ¢ but we note that
for two ¢'s defined for two t's the ¢, from the smaller ¢; agrees with the ¢, from
the larger t on U(t2)B(H)U(t2)*. Then for A € U(t)B(H)U(t)* we define 77 (A)
defined from any ¢, constructed from a t; < t. This defines the mapping 77 on
Us=oU (#)B(H)U(t)* and we have 77 (A) — m#(A) in the o-strong topology as
s — 0+ for A € UpsoU()B(H)U(t)* We now show m# is o-weakly continuous.
Note that ¢,(A) = V*Coy(A)V for A € B(H) is o-weakly continuous since =y
is a *-representation of B($)) and, hence, we have A — 77 (E(t,00)AE(t,c0)) is
o-weakly continuous for all ¢ > 0. Suppose n € B(R),. and n > 0 and p(4) =
n(mo(E(t, 00)AE(t,00))) for t > 0 and A € B($). Then from Lemma 2.10 we have

loe = psll* < 20(nf (E(s,00)))* = 2n(nf (E(t,0)))* < dllnlln(d (E(s,1)))

Since limg oy n(7#(s,00)) < n(I) we have if s,, is a sequence of positive numbers
decreasing to zero we see from the above estimate that the p, form a Cauchy
sequence in norm. Since each element of B(R), can be written as a sum of four
positive elements we see that functionals A — n(7#(A)) are norm limits of normal
functionals and, hence, these functionals are normal so 77 is normal which implies
n# is o-weakly continuous. [J

Definition 4.36. If o is a CP-flow over £ and 77 is the generalized boundary
representation of a then 77 as defined in the previous theorem is called the normal
spine of .

Lemma 4.37. Suppose ¢ is a o-weakly continuous completely positive contraction
of B($) into B(RK) and « is the minimal C P-flow derived from ¢. Suppose 7# is
the generalized boundary representation for o and 7# is the normal spine of a.
Then ¥ = ¢.

Proof. Assume the hypothesis and notation of the lemma. For ¢ > 0 let ¢;(A) =
G(E(t, 00)AE(t, 00)) for A € B($). We establish a formula for 77 . From Theorem
4.26 we have the boundary weight w(p) for « is given by

~ ~ ~

w(p) = d(p) + d(A((p))) + S(A(S(A(G(0))))) + - -

where the sum converges on the null boundary algebra 2(($)) and for p positive the
sum satisfies w(p)(I — A) < p(I). Suppose t > 0. The truncated weight w; is given
by

~ A ~ ~

wi(p) = 91(p) + e (A($(p))) + Se(AS(A(S(0))))) + - -~

where now the sum converges in norm. Then Wfﬁ is given by ﬁf =w (I + Awt)_l

or ﬁf I+ f\wt) = w¢. Then applying this equation to I — Aq?) and canceling terms
which is permissible since the sums converge we find #7* (I — A(¢ — ¢;)) = é¢. Then
applying this equation to the finite geometric sum of powers of A(¢ — ¢¢) we find

A~ ~ ~ A~

ﬁfﬁ(f — (A= )™ ) = G (I + A(d— ) + -+ (A(d — d))™)
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Since E(t,00) commutes with A(A) for A € B($) it follows that

(¢ — ¢¢)(A(A)) =¢(A(A) — E(t, 00)A(A)E(t, 0))
=¢((I = E(t,00))A(A))
=p(E(t)A(A)) = ¢(E(t)A(A)E(t))

Hence, A((ﬁ — (ﬁt) is a completely positive map. Since the terms in the above
equation are positive it follows that the series converges in norm. We will show
that the 77 ((A(¢ — ¢¢))" ! term converges to zero as n — co. Recall the equation
## (I + Awy) = wy. Applying this to (A - ¢)" we find

(A" =T — 7 Nw(A- )"

Since the series for w; converges it follows that wt(f\ . (ﬁ)” converges pointwise to
zero in norm. Since Wf is a contraction ﬁf (A - ¢)™ converges pointwise to zero in
norm as n — oo. A bit of computation shows that (A - ¢)™ > (A(¢ — ¢¢))™ so for

positive p € B(RK). we have

77 (A §)"pll =7 (K- )" p)(I) = (] (A — d0))"p)(I)
=[|%{ (A(d — b)) pll

Since each p € B(R). is the linear combination of four positive elements we have

177 (A(¢ — ¢¢))"p|| — 0+ as n — oc. Using this in the equation for 77 we find

~

(4.21) 77 = eI+ A(d— ) + (A — d))* +--+)

where the series converges in norm for each p € B(RK).. Assume s > 0. Applying
this to a positive p € B(R). we have for ¢ € (0, s] and a positive A € B($H) that

i (p)(E(s,00)AE(s,00)) = (65 (I + A(d — 1) + (A(d = 1))” +---))(A)

for A € B($). Since the terms above are positive and decreasing as t decreases
it follows that 7 (p)(E(s,00)AE(s, 00)) — ¢(E(s,00)AE(s,00)) as t — 0+ . By
linearity this result extends to all p € B(RK). and A € B(H). Since s > 0 is arbitrary
and from the definition of 77 we have 7% = ¢. [

We suspect that in the previous lemma with more work one could show |77 (p) —
d(p)|| — 0 as t — 0+ for each p € B(K)..

Lemma 4.38. Let a be a CP-flow over & and let 7% be the generalized boundary
representation for a. Let a® be the minimal CP-flow derived from ©# for s > 0.
Then aj(A) — ai(A) o-weakly as s — 0+ for t > 0 and A € B($) and the
convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. We will use the Trotter
convergence theorem for resolvents. Let R® and R be the resolvent of a® and v and
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let w® and w be the boundary weights of a® and «. Then we have from Theorem
4.17 and the Definition (4.13) of the boundary resolvent that

A A

R*(n) = D(w*(A(m)) +T(n)
and
R(n) = T(w(A(n))) +T(n)
for n € B(9).. Suppose further that 7 is positive and ||n|| < 1. We have
IR =T(w(A(n)) +n)(1)

A

<P(Rm)(I) = / Ty de <1

where h(t) = e tw(A(n))(E(t,>)). Now suppose A € B(H) with [|A| < 1. Then

we have

(R=R*)(n)(4)] = [D(w (A1) —w®(A(m))(4)]

/O " e tw(A) (UM AU ()" — B(s, 00)U (t) AU (£)*E (s, oo))dt‘

Now U(t)*E(s,00) = E(s —t,00)U(t)* for t € [0,s] and U(t)*E(s,00) = U(t)* for
t > s. Hence, we have

(R~ B =| [ RO - (s - 1.00)AB(s -, oo>>U<t>*>dt)
= /OS e 0,w(A(n))(A— E(s —t,00)AE(s — t, oo))dt'

</ e—tznétmmn))ndt\
0

_ /O et (An) (B(t, oo)dt' ) /0 ) dt

Since this estimate is true for all A € B($) with ||A]| < 1 and h € L(0,00) we
have

I - B () s2/08h<t>dmo

as s — 0+. Since each 1 € B(RK). is the linear combination of four positive elements
we have ||(R — R%)(n)|| — 0 as s — 0+ for all n € B(K),. Then by the Trotter
resolvent convergence theorem [BR] (Theorem 3.1.26) we have ||&;(n) —a(n)|| — 0
as s — 0+ for all n € B(RK). and t > 0 where the convergence is uniform for ¢ in
a bounded interval. This result for the predual maps implies the conclusion of the
lemma for the maps a® and a. [
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Lemma 4.39. Suppose ¢ is a o-weakly continuous completely positive contraction
of B(H) into B(RK). Let ¢s(A) = ¢(E(s,00)AE(s,00)) for s > 0 and A € B(9H).
Let o be the minimal C' P-flow derived from ¢ and let a® be the minimal C' P-flow
derived from ¢4 for s > 0. Then af(A) — a4(A) o-weakly as s — 0+ for t > 0 and
A € B($) and the convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. Again we will use the
Trotter convergence theorem for resolvents. Let R® and R be resolvents of o® and
« and let w® and w be the boundary weights of a® and a. Then from Theorem 4.27
and Definition 4.28 we have

N A

R*(n) = T(w*(A(n))) + T(n)
and R R R R

R(n) = T(w(A(n))) + T(n).
for s > 0 and 1 € B(R).. Assume n € B(H), is positive and let p = An. Then from
Theorem 4.26 we have

~ A ~ ~ ~

D(w(p)) = T(b(p) + ¢(A((p) + S(AB(A(S(p))) + )
and
D(w*(p)) = T(bs(p) + 0s(A(bs(p))) + &5 (A5 (A(Ds(p)))) + - --)
As we saw in the proof of Theorem 4.26 the series above converge with the T' term

included. Note the series above is uniformly bounded since we can compute the
norms by evaluating on the unit I and we obtain the estimates

ID(@s(AG-- (D5 (0)) - I < ITSA-- (6(p) --)))I

Since each of the terms with the ¢, converge to the corresponding term with the ¢
and since we have uniform bounds on the sum of the norms of the terms we have
IT(w*(p)) = T'(w(p))| = 0 as s — 0+ . Hence, [|(R — R*)(n)|| = 0 as s — 0+.
Again since each n € B($), is the linear combination of four positive elements this
results holds for all n € B(9).. Then using the Trotter convergence theorem as we
did in the previous lemma the result of the lemma follows. [

Lemma 4.40. Suppose m and ¢ are two o-weakly continuous completely positive
contractions of B($)) into B(R). Suppose a and [ are the minimal C P-flows derived
from w and ¢, respectively. Then o > 3 if and only if m > (3.

Proof. Assume the hypothesis and notation of the lemma. Assume further that
m > ¢. Let m5(A) = w(E(s,00)AE(s,00)) and ¢5(A) = ¢(E(s,00)AE(s,o0)) for
s > 0and A € B(H). For each s > 0 let a® and (° be the minimal CP-flows
derived from 74 and ¢, respectively. Suppose 7} # and o; # and are the generalized
boundary representations of a® and 3°. Note 7% = 7% = 1, and ¢/ = ¢# = ¢,
for t € (0, s|. Since ms > ¢5 we have a® > (3° from Theorem 4.29. From Lemma
4.39 we have af(A) — a(A) and 87 (A) — B1(A) o-weakly as s — 0+ for all t > 0
and A € B(%)). Since a® > (3° is follows that & > 3 in the limit of s — 0 + .

Conversely suppose a > 3. Then 7# > ¢# for all s > 0 where 7% and ¢* are
the generalized boundary representations of « and (3. Since the normal spines of «
and 3 (77 and ¢, respectively) are limits of the 77 and ¢¥ we have 77 > ¢7.
From Lemma 4.37 we have 77 = 7 and ¢7 = ¢ so m > ¢. [
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Lemma 4.41. Suppose « is a CP-flow over & and ©# is the normal spine of .
Suppose (3 is the minimal C P-flow derived from 7#. Then o > 3.

Proof. Assume the hypothesis and notation of the lemma. Let ¢ = 77 and let ¢,
be defined as in Lemma 4.39. For s > 0 let 3° be the minimal C P-flow derived
from ¢, and let a® be the minimal C' P-flow derived from 77 where the family 77 is
the generalized boundary representation of a. From Lemma 4.34 and the definition
of the normal spine 7# we have 77 > ¢, for each s > 0. Then from Lemma
4.40 we have o® > 3°. From Lemmas 4.38 and 4.39 we have of(A) — a4(A) and
B;(A) — Bi(A) o-weakly as s — 0+ for all £ > 0 and A € B(H). Since a® > [° it
follows that o > 3 in the limit as s - 0+. [

Theorem 4.42. Suppose « is a CP-flow over & and 7¥ is the normal spine of .
Suppose ¢ is a o-weakly continuous completely positive contraction of B($)) into
B(R) and [ is the minimal C P-flow derived from ¢. Then o > (3 if and only if
Wf > .
Proof. Assume the hypothesis and notation of the theorem. Suppose a > 3. Let
7rt# and gbfﬁ be the generalize boundary representations of v and (3, respectively.
From Theorem 4.29 we have 77" > ¢7 for all t > 0. Let 7# and ¢# be normal
spines of a and (3, respectively. Since ¥ and ¢# are defined in terms of limits of
the wf and QSfé we have 7 > ¢7. From Lemma 4.37 we have ¢¥ = ¢ so 7 > ¢.
Next suppose 7 > ¢. Let v be the minimal C' P-flow over & derived from 77.
From Lemma 4.41 we have a@ > v and from Lemma 4.40 we have v > (3. Hence,
a>p. 0O

Arveson defines the index of a unital C'P-semigroup « in terms of semigroups
S(t) of contractions so that if Q;(A) = S(t)AS(t)* for A € B($H) and ¢ > 0 then
eFtay > . This index is of great importance since if 7 is the minimal dilation of a,
so v is an E,-semigroup then the index of v is the Arveson index of . The factor of
e** which Arveson allowed we will eliminate by rescaling S(t) with a factor of e~ 2%t
The following lemmas lead up to a Theorem 4.46 which enables us to determine
when a C' P-semigroup of the form ;(A) just given is a subordinate of . This will
enable us to show the Arveson index of a C'P-flow is just the rank of the normal

spine.

Lemma 4.43. Suppose « is a C P-flow over 8 and S(t) is a strongly continuous one
parameter semigroup of contractions of §) and ;(A) = S(t)AS(t)* for all A € B($)
and t > 0 and oy —$Qy Is positive for all t > 0. Then if —d is the generator of U(t) (so
U(t) = exp(—td)) and —D is the generator of S(t) there is a complex number ¢ with
non-negative real part and a linear operator V from $ to R with norm satisfying
IV < \/2Re(c) so the domain of D is D(D) = {f € ©(d) : f(0) = Vf} and
Df = —d*f+cf. (Note as we saw in the discussion of the boundary representation
that each element of ©(d*) has a unique representation as a continuous R-valued
function f(x) so in particular f(0) is well defined.)

Proof. Assume the hypothesis of the lemma. It follows that for all A € B(9) with
A >0and ¢t >0 we have from Lemma 4.1 that

Ut)* S(#)ASE) U (t) < Ut) an(A)U(t) = A.
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If A is a rank one projection and f is a units vector in the range of A if follows
that U(t)*S(t)f = «f for some complex number z. Now if g is a second unit vector
orthogonal to f then U(¢)*S(t)g = ygand U(t)*S(t)(f+g) = z(f+g) = x f+yg with
y and z complex numbers. Since f and g are orthogonal we have x = y = z = a(t)
where a(t) is constant independent of the vector f so U(t)*S(t) = a(t)I. Since both
U(t) and S(t) are semigroups we have

CL(tl + tQ)I = U(tg)*U(tl)*S<t1)S(t2) = a,(tl)U<t2)*S(t2) = a(tl)a(tg)f

Since a(t) is continuous we have a(t) = e~ for all ¢ > 0 where ¢ is a complex
number and since U(t) and S(t) are contractions the real part of ¢ is non-negative.
Let W(t) = e“*S(t). Then U(t)*W (t) = I for all ¢ > 0. Since S(t)AS(t)* < ay(A)
for A > 0 and t > 0 we have

W(t)W(t)* _ €2R€(C)tS(t)S(t)* < eQRe(c)tat<I)

and since [|[W(t)|? = ||W (t)W (t)*|| we have ||[W ()| < et for all t > 0. Let —T
be the generator of W (t) so W(t) = e~'T". Suppose f € D(d) and g € D(T). Then
we have

%(U(t) £ W ()9l = —(df, 9) — (£, Tg) = 0

It follows that ¢ € ©(d*) and T'g = —d*g. Hence, T is a restriction of —d*. Note
that for f € ©(T) we have

(W(@)d"f, W(t)f) + (W () f, W(t)d" f)
(W) f, W)+ (W)L, dW () f) = (W) ) O)?

d
SIw 2

So s(t) = [[W(t)f||? is a function with a continuous positive derivative and since
s(0) = || f]|?> and s(t) < e2Fe(©t|| £||2 for t > 0 we have

d
ZIWOfIPli=o = £ (0)]1* < 2Re(e)] fII*

For f € ©(T) C ©(d*) the mapping f — V f = f(0) is clearly linear and from the
above inequality we have | V|| < (2Re(c))2. We show D (T') consists of all f € D (d*)
so that f(0) = V f. Suppose A > Re(c). Since ||[W (t)|| < et for t > 0 it follows
that the integral of e W (t) from zero to infinity exists and gives the inverse of
(T + M\I). Hence, we have

(T—i—)\I)_l:/ e MW () dt
0
Now suppose f € D(d*) and f(0) =V f. Let g = —d*f + \f. Let fi = (T+\I)"1g.

Then
—d*fi+Mfi=(T+AN)fi =g=—d"f+\f.

Hence, d*(f — f1) = A(f — f1). But this implies (f — f1)(z) = e™**(f — f1)(0) so

we have
1£(0) = f1(0)[|> = 2XIf = ful1?
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Now we have
1£(0) = AL (O)I* = [V(f = f)II* < 2Re(O) || f — fill?
Combining these inequalities we have
2(A = Re(c)llf = ful* < 0.

Since A > Re(c) we have f = f;. Hence, we have shown that ©(T") consists of all
f € D(d*) so that f(0) = Vf. Since S(t) = e “*W(t) for ¢t > 0 the conclusion of
the lemma follows. [

Lemma 4.44. Suppose D satisfies the conclusion of the previous lemma so D
is defined on ©®(D) = {f € ©(d*) : f(0) = Vf} by Df = —d*f + c¢f where
V' is a linear operator from $) to K with norm satisfying ||V|| < \/2Re(c) and
Re(c) > 0. Then —D is the generator of strongly continuous semigroup S(t) of
contractions and if f € $ is of the form f(x) = e **h for x > 0 with s > 0 and
h € & then t 1S(t)*E(t)f — V*h ast — 0+ and we have the uniform estimate
t=HS@E@) fI < IV |[R]| for all h € &

Proof. The proof of the lemma can be extracted from [PP]. Since the situation is
different we give a complete proof.
Suppose D satisfies the hypothesis of the lemma. Now for f € ©(D) we have

Re(f,~Df) =Re((f.d" 1) — e(f, f)) = 3| /(0)|" ~ Re(c)|f|P

Z%HVfIIQ — Re(o)||fII* < 5(IVII* = 2Re(e))[If]I* < 0.

N | —

Hence, —D is dissipative. We show ®©(D) is dense in §). For s > 0 let Q5 be
the isometry of from & to § given by (Q.k)(z) = \/ske~2°% for k € R. Then
IVQs|l < |V and, hence, (I —s~2VQ,) is invertible for s > ||V||2. Suppose
feD(dand s> |[V|2. Let g = f+52Q,(I—s2VQ,) "V f. We have g € D(d*)
and

Vg=Vf—s5(I—s2VQy)s 2(I— s 2VQ,)'Vf+s2s 3(I—s2VQ,) 'V
=V =Vi+ -5 2VQy) " f =g(0).

Hence, g € ©(D). Now we have

1

sT3|V £
1—s77||VQ,|

ls™2QuI = s BVQ) TV < 571 =572V Q) TV ] <

and as s — oo the above tends to zero. Hence, for each f € ®(d) and each € > 0
there is a element g € ©(D) with || f — g|| < €. Since, D(d) is dense in ) we have
D (D) is dense in §). Next we show that the range of D + I is §). Suppose g € $. If
(D +1I)f = g then f satisfies the differential equation

df

2 @)+ (e +1)f(z) = g(2)



94 ROBERT T. POWERS

and solving this equation we find

) = £(0)e 07 (e [ elerbig )
0

or in operator form f = W f(0) + Bg where W is the operator from R to $) given
above and B is the operator from § to § given above. Note B = (—d+ (c¢+1)I)~1.
Since f € ©(D) we must have

fO)=Vf=VWf0)+VBg or (I -VW)f(0)=VDByg
Now |W|| = (2Re(c) + 2)~ = which implies

2Re(c)
2+ 2Re(c)

N|=

VW] <( )z <1

so (I — VW) is invertible and we find f(0) = (I — VW)~V Bg and the range of
D+1 is all of $. Hence, —D is a densely defined dissipative operator with the range
of I + D is $ and by the standard tools described in section II we have —D is the
generator of a strongly continuous one parameter semigroup of contractions S(t).

We show U (t)*S(t) = e~ T for t > 0. Suppose f € D(d) and g € D(D). Then

%( £U)S(t)g) = — (dU )£, S(H)g) — (U ()£, DS(t)g)
— —(U(t)f,d*S(t)g) — (U(t)f, (—=d* + cI)S(t)g)
=—c(f.U()"S(t)g)

If then follows that (f,U(t)*S(t)g) = e *(f,g) for all f € D(d), g € D(D) and t >
0. This equation extends by continuity to all f, g € $ and we find U (t)*S(t) = e~ '
for all ¢ > 0. Then we have S(t) = E(t)S(t)+ U (t)U(¢)*S(t) = E(t)S(t) +e U (t)
for all ¢ > 0. Using this we can establish the uniform estimate of the lemma.
Since the range of E(t) and U(t) are orthogonal compliments we have ||S(t)f]|? =
|E)S(t)f||? + e 2Rt U(t) f||?. Since S(t) is a contraction if follows that

IB@SELI? < IFIP — e 2R £
for all ¢ > 0. Hence,
IE@)S(H)]| < (1 — e 22 < \/2tRe(c)
for all t > 0. Now if f(z) = e 5*h for x > 0 with s > 0 we have

IS@)*E@)fIl <ISOEME®)f] < (2tRe(c))? || E() S|

1— e—25t

55 )Pl < t(2Re(c)) = |[Al] < VI |[A]

< (2tRe(c))%(

for ¢t > 0.
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As in [PP] compute the action of D* on ®(d*). Suppose f € ©(d*) and g € D(D).
Then we have

(f,Dg) frd*g) +c(f, 9)
frd*g) = (d"f,9) + ((d" +<I)f,9)
£(0),9(0)) + ((d* +2I) f, 9)
(0),Vg) + ((d" +¢I) f,9)
Z(((d* +el)f =V f(0)),9)
Hence, f € ©(D*) and D*f = (d* +¢l)f — V*f(0). Then for f € D(d*) we have
t=1(S@t)* —I)f — —D*f ast — 0+ . Hence, for f € D(d*) we have
tISE)E@)f =t () (I - UMU)”)f
=t (S(t)"f —e " U®)"f)
=t (SW) f = f = (eTU®)f = 1))
— —D*f = (=d" —el)f = V" [(0)
Ast — 0+4. Now if f(z) = e *"h for x > 0 with s > 0 and h € K we have f € D(d*)
and f(0)=h. O

Lemma 4.45. Suppose {S(t) : t > 0} is a strongly continuous semigroup of con-
tractions of $§ = R ® L?(0,00) satisfying the conclusion of the Lemma 4.43 so
S(t) = e7*P where the domain of D is given by ®(D) = {f € D(d*) : f(0) = Vf}
and Df = —d*f 4+ cf and V is a linear operator from $) to & with norm satisfying
|V < +/2Re(c). We assume further that Re(c) > 0 and ||V|| < \/2Re(c). Fort >0
let

—(
—(
—(
- (f

Be(A) = (1 — e_QRe(C)t)_IE(t)S(t)AS(t)*E(t) +U(t)AU(t)*
for A € B(9). Then for A € B($H) we have (B;/,)"(A) — 1:(A) in the strong
operator topology as n — oo for each t > 0 where v is the minimal C P-semigroup

of B($) derived from the completely positive normal map w(A) = (2Re(c)) "1V AV*
as defined in Definition 4.25 and constructed in Theorem 4.26.

Proof. Assume the hypothesis and notation of the lemma. We have made the
further hypothesis that |V < y/2Re(c). With this additional assumption ||7(A)| <
(1 —¢)||Al| for A € B($) with € > 0 and by Theorem 4.26 there is only one CP-
semigroup v derived from 7 and, furthermore, the geometric series occurring in the
calculations we need converge.
We use the ingenious inequalities of Chernoff [Ch] and let D,,(A) = n(f8,/,(A) —
A). Note D,, is the generator of a semigroup given by
> thpk "(A
£(4) = exp(tD,)(4) = et 3 Tl L)
k=0

We note each of the term in the above serles is completely positive and, hence ( )

is completely positive. Evaluating ﬂt ( ) we see that 0 < @f”)( I)<1Iso ﬂt is a
contraction. Using Chernoft’s inequality (see Lemma 3.1.11 of [BR]) we have

18 (A) = (Boyn)™ (A < V| Boyn(A) — Al
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for A € B($). For a typical operator ||3,/,(A) — Al| is the order of one as n — oo
so the above inequality is not very helpful. However, at this point it is profitable
to work on the predual and the same inequality holds there, namely,

(4.22) 18T (1) = (Boyn) ) < /| Bs (1) — 1

for all n € B(9).. Let v be the minimal C' P-semigroup which is intertwined by U (t)
derived from 7. Since ||7|| < 1 it follows from Theorem 4.26 that v is the unique

C P-semigroup derived from 7. Let § be the generator of v and § be the generator
4 (the action of v on the predual). We establish the key estimate of the lemma

which says that D,n — sd(n) as n — oo for all n € D(8). Our arguments draw
heavily on Theorem 4.26 and we assume the notation used in that theorem is in
effect. Let p — &(p) be the 1ntegrated boundary map which generates ~. Since 7 is
derived from 7 we have 6(p — A(7(p))) = L'(7(p)) for all p € B(K).. Since ||7|| < 1

the mapping p — p — A(7(p)) is invertible and we have

5(p) = T(#(p) + #(A(7(p) +---)

where the geometric series converges for all p € B(RK).. From the definition of 6 we
have each element of D(4) is of the form &(A(n)) +I'(n) for some n € B(H), and

5(6(A(m) +T(n) = 6(An) +T(n) -
It follow that each element of D () is of the form I'(v) and

A

0(Tw) =T()—n
where X X X
v=n+#(An) +7(AFAMN))) + -

for some 1 € B(H).. The above equation for v is equivalent to the equation n =
v—m(A(v)). We compute D,,(I'(v)). From direct calculation for A € B($)) we have

Dy (D())(A) =n(1 — e 2 /M) "Ly (D(E(s/n) S (s/n) AS (s/n) E(s/n)))

— nes/m /S/n e (U () AU (t)*) dt + n(e*/™ — 1)v(T'(A)).

Then rewriting this purely in terms elements of 2B(5)). we have

A

Dn(T(v)) =n(1 — e 2R@s/m) =1 (¢ (F(w)))
s/n
el / e, (v) dt +n(e¥/™ — 1) (v)
0

where (A) = S(t)AS(t)* for all A € B($H) and t > 0. It is clear that the second
and third term above converge to sv and sI'(v) in norm as n — co. From Lemma
4.19 we have ||¢(T'(v) — ®(A(v)))||/t — 0 as t — 04 so we have

~

Dn(f(y)) :n(l - 6_2R6(C)8/n)_lzﬁs/n(CS/n((i)(A(V))))
— sv+ sT'(v) + o(n)
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as n — oo. Now A(v) has a decomposition so that for A € B(K)
= Xi(hy, Aky)
i=1

where h;, k; € R are unit vectors and \; > 0 for ¢ = 1,2,--- and the sum of the \;

is bounded. Then
i=1

for A € B(H) where fi(z) = e 2%h; and g;(z) = e~ 2%k; for all 2 € [0,00) for
1=1,2,---. Then we have

n(l— e—2Re(0)s /n> 1¢ /n(és/n é A an
where
P (A) = n(1 — e 2R TN (S(s/n) E(s/n) f1, AS(s/n) E(s/n)g:)
for A€ ®B($H) and i =1,2, - . From the previous Lemma 4.44 we have

(n/s)|IS(s/n) E(s/n) fill < [V |h:]l < IV < v/2Re(c)

fori =1,2, - and the same estimate applies with the f; replaced by g;. Also, from
Lemma 4.44 we have

(n/s)S(s/n)*E(s/n)fi — V*h; and (n/s)S(s/n)*E(s/n)gi — V*k;

asn — oo for i =1,2,---. Hence, ]’ — 1n7° as n — 0o where

2Re(c)

for A € B($) and we have the uniform estimate that ||n!*|| < s independent of n

for i = 1,2,---. Since the sum of the \; converges and with our uniform estimate
and the convergence for each ¢ = 1,2,---- and the definition of 7 we have

~

n(1 — e 2RI TP (Com(@AW))) — sT(A ()

as n — co. Hence, we have D, (I'(v)) — s#(A(v)) —sv+sT'(v) as n — oo. Recalling
n=v — 7(A(v)) we have that

A ~

Dy (F(w)) — —sn + sT'(v) = s6(0(v))

A

as n — oo. Hence, D, (n) — s8(n) for all n € D(5). Then from Chernoff’s inequality
(4.22) we have

18 (1) = Beym)" I < Vil Baa(m) = nll = | Da()ll/ V0 — 0
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asn — oo for all n € @(5) Now by standard convergence arguments we have for
n € ©(J) that

3 () — 4 / B8 (D — 56) (3e(m))) .

Since the integrand is uniformly bounded and converges pointwise to zero in norm
we have Hﬁ(n)( ) —4s(n)]] — 0 as n — oo. Combining this with our previous
inequality we have ||(55/,)™ (1) —4s(n)|| — 0 as n — oo for all n € D(4). Since D(0)

is dense in B(H), and the mappings are uniformly bounded we have ||(3; m)"(n) —
Ys(M)]| — 0 as t — 0 for all n € B($H). and this immediately gives us o-strong
convergence on B($). O

The next theorem gives a relatively computable condition that a C'P-semigroup «
of B($) intertwined by U (t) dominates §; with Q;(A) = S(t)AS(t)* for A € B(H)
and ¢ > 0.

Theorem 4.46. Suppose « is a C P-flow over 8 and S(t) is a strongly continuous
one parameter semigroup and Q.(A) = S(t)AS(t)* fort > 0 and A € B(H) is a
subordinate of a. Then S(t) is a strongly continuous one parameter semigroup of
contractions with generator —D where (D) = {f € ©(d*) : f(0) = Vf} and
Df = —d*f + cf where c is a complex number with non-negative real part and V'
is a linear operator from $) to & with norm satisfying ||V ||?> < 2Re(c). Furthermore,
if 1(A) = (2Re(c)) "1V AV* for all A € B($) and v is the minimal C P-semigroup
derived from 7 then o dominates 7. In the case Re(c) = 0 we take define m = 0.

Conversely, if ¢ is a complex number with Re(c) > 0 and V' is a linear operator
from §) to & with norm satisfying ||V'||> < 2Re(c) and if 7(A) = (2Re(c)) "1V AV*
for A € B(9) and ~y is the minimal C P-semigroup derived from = and o dominates
7 then if D is an operator with domain ®(D) = {f € ©(d*) : f(0) = Vf} and
Df = —d*f+cf. Then —D is the generator of a contraction semigroup S(t) and if
0 (A) = S(t)AS(t)* fort > 0 and A € B($) and o dominates .

Proof. Suppose the hypothesis and notation of the first paragraph of the theorem
is satisfied. Then it follow from Lemma 4.43 that S(¢) is a strongly continuous
one parameter semigroup of contractions with generator —D where ©(D) = {f €
D(d*) : f(0) = Vf} and Df = —d*f + cf where ¢ is a complex number with
non-negative real part and V is a linear operator from § to & with norm satisfying
|V |I? < 2Re(c). Let w(A) = (2Re(c)) "1V AV* for all A € B($) and let v be the
minimal CP-semigroup derived from 7. (In case Re(c) = 0 we define 7 = 0.) Here
we make a slight change. Note if we replace ¢ with ¢+ € with € > 0 we replace S(t)
with e“*S(¢) and all the hypothesis concerning €); remains true. Note with this
change we have ||7|| < 1. In what follows we will assume this replacement of ¢ with
¢ + € has been made.
Let A € ®B(9) be a positive. Then we have

S(t)AS(t)* < ar(A) = E(t)a(A)E(t) + U(t) AU (t)*
Since U (t)*S(t) = e~ “'I we have
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Combining this with the previous inequality we have
E(t)(as(A) — S()AS(t)*)E(t) — e " E(t)S(t) AU (t)*
— e U R)ASH) E(t) + (1 — e 2O U ) AU ()" > 0
If X denotes the operator above and h = U(t)g + E(t)f then we have

(h, Xh) =(E(t)f, (u(A) — S(t)AS(t)*)E(t) f) — 2Re(e™ " (f, E(t)S(t)Ag))
+ (1 — e 2Rl (g, Ag) > 0.

for all f,g € $. Then by the Schwarz inequality the above inequality is satisfied if
and only if

|(f, E(t)S(t)Ag)|? < (27 —1)(E(t) f, (ar(A) = S()AS()") E(t) f)(9, Ag)

for all f,g € $. Specializing this inequality to the case when A = FE with F an
hermitian rank one projection and g is a unit vector in the range of E (so Eg =g

and Ef = (g, f)f for f € $) we find
R (F, E()S(8)g)[* < (274 —1)(E(t) f, cr(E)E(t) f)
for all f € . Then we find
IES@) E@)f|* < (1 - e 2N E®)f, a(E)E(®)f)
for all f € § and this is equivalent to the operator inequality

E(t)((1 — e 2B, (E) — S(t)ES(t)*)E(t) > 0.

Now if A € B($) is of the form A = >~ | \;E; where the E; are hermitian rank
one projections and the \; > 0 for ¢ = 1,---,n then it follows from the above
inequality that

E(t)((1 — e2Re@b)q, (A) — S()AS(H))E(t) > 0.

And since every positive A € B($)) can be approximated in the o-strong topology
by expressions of the above form it follows that the above inequality is valid for all
positive A € B(H). For t > 0 let §; be the map

Bi(A) = (1 — e 2RI R)S(H) AS(H)*E(t) + U(t) AU (t)*
for A € B($). Note that
ai(A) = B:(A) = E(t)(ap(A) = (1 — e 2F4I)TIS(1) AS(1)*) E(t)
for A € B($). We have shown that oy — 3; is positive for each t > 0. As was

done in the last section we can introduce the primed maps which are obtained by
replacing $) with § ® R, with K, in infinite dimensional separable Hilbert space and
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making the obvious definitions. Since for each t > 0 we have A — a;(A) — Q(A) is
completely positive the mapping A — o} (A) — Q;(A) is positive and the argument
that a; — (3 is positive extends directly to the primed maps and we find that a} — 3]
is positive and this is equivalent to the fact that oy — 3; is completely positive. Now
for each ¢ > 0 we have

n

at(A) — (Be/n)"(A) = Z(at/n>k_1((at/n — Bin)(Biyn)" " F(A))

k=1

for A € B($). Since the mappings above are all completely positive we have
A — ay(A) — (By/n)"(A) is completely positive. Now from Lemma 4.5 we have
(Bi/n)"(A) — 7:(A) o-strongly as n — oo for all A € B(H) and ¢t > 0. Here, is
where we needed the fact that we had replaced ¢ with ¢+ € since we needed ||| < 1.
Taking the limit as n — oo we have the mapping A — «a;(A) —v:(A) is completely
positive for all t > 0 and, hence, a dominates ~.

Now we deal with the fact that we replaced ¢ with ¢ + €. Let us now denote the
dependence of 7 and 7 on € by writing 7€ and €. We have shown that o dominates
~¢ for all € > 0 and ¢ is the unique C'P-semigroup derived from 7¢. As was shown
in the proof of Theorem 4.26 we have vf(A) converges o-weakly v(A) for each
A€ B(H) and t > 0 where v° is the minimal C P-semigroup v° derived from 7°.
Hence, we have @ dominates v where v is the minimal C'P-semigroup derived from
7 (now € = 0). This completes the proof of the implication of the theorem in one
direction.

Now suppose the hypothesis and notation of the second paragraph of the state-
ment of the theorem is satisfied. As we did in the first part of the proof of this
theorem we replace ¢ by ¢ + € with € > 0 in the definition of D (and, therefore,
S(t)) and 7. Again the hypothesis remain true after this replacement. For ¢ > 0 let

Bi(A) = (1 — e 2RI R S(H) AS(H)*E(t) + U(t) AU ()*
and f,(A) = A for A € B(H). Since S(t) = E(t)S(t) + e “*U(t) we have
(Be(A) = Qu(A)) = (27" — )7 B(t) AB(t)"

with
B(t) = E(t)S(t) — (2t —1)etU(t)

from which it follows that the mapping A — (;(A) — Q¢(A) is completely positive
for all £ > 0. Note Q:(Q25(A)) = Qy5(A) for all A € B(H) and t,s > 0. Then we
have

(Be/n)"(A) = Q4 (A) =(Br/n)™(A) — (/)" (A)
=" Besn) T ((Bayn — Q) Q)™ H(A)))
k=1

for A € B(H) and ¢ > 0 and n a positive integer. Since all of the mappings in the
above sum are completely positive we have the mapping A — (8;/,)" (A) — Q:(A)
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is completely positive. From Lemma 4.5 we have (3;/,)"(A4) — 7:(A) o-strongly as
n — oo for all A € B($) and ¢t > 0. Hence, v > Q.

Now we deal with the fact that we replaced ¢ by ¢ 4 e¢. Again we denote the
dependence of ¢, ; and 7 on € by writing ¢, Q¢ and 7€. Then we have shown
that v¢ > Q€ where € is the unique C'P-semigroup derived from 7€. As € — 0+ we
have from the proof of Theorem 4.26 that ~vf(A) — 77 (A) in the o-strong topology
for all A € B(9) and t > 0 where 7 is the minimal C' P-semigroup derived from
m°. Since Qf(A) — Q2(A) as € — 0+ for each A € B(H) and ¢ > 0 in the o-strong
topology we have v° > Q°. Or with ¢ = 0 we have v > 2. Since a > v we have
a>Q. 0O

Before we show how to compute the Arveson index of a C'P-flow we make a
simple definition and prove a useful lemma.

Definition 4.47. Suppose « is a C' P-semigroup and [ is a subordinate of a. We
say [ is trivially maximal if 8, = €', for ¢ > 0 with s > 0 then ' is not a
subordinate of a.

Note that if 3 is a subordinate of « there is a unique subordinate 3’ of the form
B; = €53 for t > 0 with s > 0 so that 3 is a trivially maximal subordinate of . In
discussing subordinates it is often useful to consider trivially maximal subordinates.

Lemma 4.48. Suppose « is a spatial E,-semigroup of B($) and 3 is an extremal
subordinate of «a which is trivially maximal (where by extremal we mean every
subordinate v of 3 is of the form v, = e '3, for all t > 0 where s > 0). Then
there is a strongly continuous one parameter semigroup of isometries S(t) which
intertwine oy for each t > 0 so that

Be(A) = S(1)S(t) u(A) = e (A)S(8)S(8)" = S(t)AS(t)"

for all A € B($) and t > 0.

Proof. Assume the hypothesis of the lemma. Since « is spatial there is a strongly
continuous one parameter semigroup of isometries U (t) which intertwine a; for each
t > 0. As we saw in Theorem 3.4 there is a local cocycle C' so that 8;(A) = C(t)a;(A)
for all A € B(H) and ¢t > 0. Let ¢ (A) = C(t)2ay(A) for A € B(H) and t > 0. Since
0 < CO(t) <1 wehave 0 < C(t)? < O(t) for all t > 0 so ~ is a subordinate of
B3 and since [ is extremal we have v, = e %¢3, for all t > 0 with s > 0. Hence,
C(t)? = e7stC(¢t) for all t > 0. Hence, Q(t) = e*'C(t) is a projection valued local
cocycle so if n(A) = Q(t)ar(A) for all A € B(H) and t > 0 then 7 is a subordinate
of o and (3 is a subordinate of 7. Since (3 is trivially maximal if follows that n = 3
and C(t) is a projection for all t > 0.
Next consider R(t) = C(t)U(t). We have

R(t)R(s) =C(H)U()C(s)U(s) = C(t)ar(C(s))U()U(s)
=C(t+s)U(t+s) = R(t+s)

for t,s > 0. Note that R(t) intertwines a; for each t > 0 since

R(HA = COU(H)A = Ct)ar(A)U () = ar(A)CHU(t) = ar(A)R(2).
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We note R(t)*R(t) commutes with A for all A € B(9) since
R(t)*R(t)A = R(t)" o (A)R(t) = AR(t)*R(t).

Hence, R(t)*R(t) is a multiple of the identity and from the semigroup property of
R we have R(t)*R(t) = eI for t > 0 where s > 0. Let S(t) = 25t R(t) for ¢ > 0.
We see S(t) is a strongly continuous one parameter semigroup of isometries which
intertwines ay for t > 0. Note t — F(t) = S(¢)S(t)* is local cocycle so v given by
v (A) = F(t)ay(A) for A € B(H) and t > 0 is a subordinate of «. Since

F(t) = S(H)S(H)" = etCHU MU 1) C(2)

and C(t) for t > 0 are projections we see that F(t) < C(t) and, hence, v is a
subordinate of 3. Since 3 is extremal we have vy = e~ 3; for t > 0 with a > 0.
Since C(t) and F'(t) are projections we have a = 0 and = v. Hence,

Be(A) = S(1)S(t) u(A) = u(A)S(8)S(8)" = S(t)AS(t)"

forall A€ B(H) and ¢t >0. O

Theorem 4.49. The Arveson index of a unital C'P-flow o which is equal to the
index of the minimal dilation o of a to an E,-semigroup is the rank (given in
Definition 3.2) of the normal spine of «.

Proof. Suppose « is a CP-flow over K. Arveson’s definition of the index of a C'P-
semigroup involves identifying the semigroups S(t) so that Q,(A) = S(t)AS(t)*
for A € B($H) and ¢t > 0 is subordinate of a and computing the covariance of two
such semigroups. From Theorem 4.46 we can easily identify such semigroups but
computing the covariance is not something we know how to do easily. The Arveson
index of o is equal to the index of the minimal dilation a® of a to an E,-semigroup.
(This was the point of Arveson’s definition.) So to prove the corollary we will show
the index of the minimal dilation a? of « is the rank of the normal spine of a.

Suppose a? is the minimal dilation of & to an E,-semigroup and 7, is the normal
spine of a.. Recalling the relation between a and a? as described in the last section
we have a? is an E,-semigroup of B($H1) and W is a isometry of § into $; so
that WW* is an increasing projection for a? and a¢ is minimal over the range
of W and a;(A4) = W*ad(WAW*)W for all A € B(§) and t > 0. Now it was
shown in [P4] (see section 4) that E,-semigroup a is of index p if and only if there
are p + 1 minimal projective local cocycles F; for ¢ = 0,1,--- ,p which are lattice
independent and maximal in that one can not add another minimal projective local
cocycle and maintain lattice independence. In greater detail F' is a projective local
cocycle if F(t) is a projection valued local cocycle (i.e. F(t)ad(F(s)) = F(t+s) and
F(t) € ad(B(9H1)) for t,s > 0). And F is minimal if G is a projective local cocycle
so that 0 < G(t) < F(t) for t > 0 then G(t) = F(t) for all ¢ > 0. The projective
local cocycles F; are lattice independent if the suprema of the F; for ¢ # j is not
greater than Fj.

In the language of subordinates a minimal projective local cocycle F for a
corresponds to an extremal subordinate v of a? which are trivially maximal. This
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means F' is a minimal projective local cocycle for a? if and only if the mapping
1 (A) = F(t)ad(A) for A € B(H;) and t > 0 is an extremal subordinate of a?.
Note that extremal subordinates of a¢ which are trivially maximal correspond to
minimal projective local cocycle as was shown in Lemma 4.48.

Now we use Theorem 4.46 and the order isomorphism of Theorem 3.5 which
gives us an order isomorphism from the extremal subordinates of a? to the extremal
subordinates of a. Suppose the normal spine 7, of « is of finite rank p. This means
7, is of the form

p
mo(A) = > CAC;
=1

for A € B($) where the C; are linearly independent operators from $) to K for
i=1,---,p. Let ¢;(A) = C;ACS for i = 1,--- ,p and let ¢,(A) =0 for A € B(H).
Let D; be the operator with domain ®(D;) = {f € ©(d*) : f(0) = C;f} and
Df =—-d"'f+ %f fori=1,---,pand let D, = d. Let 3; be the minimal C' P-flow
over R derived from ¢; for ¢ = 0,1,----,r. Since m, > ¢; we have from Theorem
4.42 that o > [3; for each 7 = 0,1,--- ,p. And from Theorem 4.46 we have D,
is the generator of a contraction semigroup S;(t) and Q;(A) = S;(t)AS;(t)* for
A €eB(H) and t > 0 is a subordinate of a for i = 0,1, -, p. It is clear that the €;
are extremal subordinates of o which are trivially maximal. The fact that the €2;
are lattice independent may be seen as follows. Let 7; be the suprema of the ;
with j <14 for i =0,1,---,p. Note 7; is the minimal C'P-flow over K derived from
b0 + ¢1 + - + ¢;. We see then for each i = 1,--- ,p we have n; is strictly greater
than n;_. If the ; were not lattice independent we would have n; = n;_; for some
i=1,---,p. Note 7, is the CP-flow over & derived from 7,. Now suppose (3 is an
extremal subordinate of o which is trivially maximal. From the order isomorphism
of Theorem 3.4 there is an extremal subordinate v of a?

Be(A) = Wy (WAW* YW

for all A € 9B($) and ¢t > 0. Since 7 is extremal we have from Lemma 4.48 there is a
strongly continuous semigroup of isometries S (t) which intertwine a¢ for each t > 0
so that :(A4) = S1(t)AS1(t)*. Hence, we have [;(A) = W*S1(t)WAW*S,(t)*W
for A € B(H) and t > 0. Since WW* is an increasing projection for a® it follows
that S1(¢)* maps the range of W into itself. This is seen as follows. Suppose ¢ > 0.
Then S1(H)WW* = o (WW*)S;(t) and taking adjoints and multiplying by WW*
on the right we find

WW*S, () WW* = S, (1) ad(WW Y WW* = S, (t)* WW*

so S1(t)* maps the range of W into itself. It follows that S(t)* = W*S1(¢)*W is a
strongly continuous semigroup of contractions since

S()*S(s)* =W*S1(t)* WW*Sy(s)*W = W*S1(t)*S1(s)*W
=W*S1(t+ s)*W = S(t+s)*

for s,t > 0. Hence, [B(A) = S(t)AS(t)* for A € B(H) and ¢t > 0. Since [ is a
subordinate of a Theorem 4.46 applies to the semigroup S(¢) and the generator of
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S(t) has to satisfy certain conditions regarding the normal spine 7, of a. But 7, is
also the normal spine of 74 and therefore S(t) satisfies these same continuous for
the normal spine of 1y and, hence, by Theorem 4.46 we have that (3 is a subor-
dinate of 74. Hence, we have shown that every non zero extremal subordinate of

a is a subordinate of 1y so we have proved the subordinates g; for ¢ = 0,1,--- ,p
are a lattice independent set and maximal in the sense that any other extremal
subordinate 3 of « is a subordinate of 1y the suprema of the §; for : = 0,1, -+, p.

Hence, the index of a? is p and the Arveson index of « is p. In the case where the
normal spine 7, is of infinite rank the above argument shows that the index of a?
is greater than any positive integer so the index of a? is infinite. [

In the next lemma we show that if « is a unital C P-flow over £ and a® is the
minimal dilation of a to an E,-semigroup then a¢ is a CP-flow over ;.

Lemma 4.50. Suppose o is a unital C P-flow over & and a¢ is the minimal dilation
of a to an E,-semigroup and suppose the relation between o and o is given by

o (A) = W*a(WAW* )W

for all A € B($) (with § = & ® L*(0,00)) and t > 0 where W is an isometry
from $) to H1 and WW™ is an increasing projection for a® and o is minimal over
the range of W. Then $; can be expressed as 1 = R ® LQ(O, o0) and a is a
CP-flow over Ry so that if U(t) and Uy(t) are right translation on $) and ), for «
and a?, respectively, then Uy (t)W = WU(t) and U, (t)*W = WU (t)* for all t > 0.
This means W as a mapping of $ = & ® L?(0,00) into 1 = &K1® L?(0,00) can be
expressed the form W = W7 ® I where W7 is an isometry from K into K.

dj

Proof. Assume the hypothesis and notation of the lemma are satisfied. Since a® is

minimal over the range of W the linear combination of vectors of the form
af (WAW*) - (WA, W)W f

with f € R and A; € B(H) and t; >0fori=1,--- ,nand n=1,2,---- are dense
in ;. For t > 0 we define U;(t) on a vectors of the above form by the equation

Ur(t)ad (WAW™) - af (WA W)W f
=af L (WAW™) ol ((WAWHWU()f.

By expressing the inner product of such vectors in terms of a and using the fact
that U(t) intertwines «; one first checks that (Uy(¢)F, U (t)G) = (F,G) for F and
G vectors of the above form. Then it follows that these relations uniquely define an
isometry U (t) of $;. Recalling how a? is defined as explained in the last section
we can show that U (t) intertwines af so Ui (t)A = ad(A)U,(t) for all A € B(H)
and t > 0. Next it follows from the above equation that U, (t)W = WU(t) for all
t > 0. We note that

UL (&) WU(t) = Uy () Uy ()W = W = WU (1)U t)
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for all t > 0. It follow that U (t)*W = WU(t)* for all t > 0 if and only if B(t) =
Ur(t)*W(I = U(t)U(t)*) = 0 for all t > 0. We find

B(t)*B(t) =(I = UO)U @) )W*Ur(t)Ur(8)*W (I = U(H)U (£)*)
WU, (UL ()W — U)U(8)*

We show B(t)*B(t) = 0. Since Uy (t)*af(A) = AU,(t)* we have
WU (UL (t)* (W AW W = WU ()W AW*UL(t)*W = U(t) AU (t)*

for all A € ®B($) and ¢t > 0. Then setting A = I in this equation and noting that
since WW* is an increasing projection for a¢ we have af(WW*)W = W so the
above equation gives

W*UL()UL ()W = UU®)*

for all t > 0. Hence, B(t) = 0 for all ¢ > 0 and Uy (¢t)*W = WU(t)* for all t > 0.
Next we show U, (t)* — 0 strongly as t — oo. Since U, (t) intertwines o we have
for t; >0, A; € B($H) fori=1,--- ,n and ¢t > t; that

Ur(t)*af (WAW™) -l (WA, W)W f
= Ul(t — tl)*WAlw*Ul (tl)*atg (AQ) s Oé?n+t<WAnW*)WU(t)f
— WUt — 1) AW Uy (1), (Az) - - ol (WA WHWU (1) f.

Since U(t)* — 0 strongly as ¢ — oo we have the above expression tends to zero in
norm as t — 0o. Since the linear span of vectors of the above form is dense in $;
it follows that U;(t)* — 0 strongly as t — oo. Hence, Uy(t) is a pure shift. Since
U, (t) is a pure shift we can realize $; in the form £; ® L?(0, oo) where U; (t) is right
translation by ¢ for ¢ > 0. The details of this realization are as follows. Let M7 be
the von Neumann algebra generated by U (t) for ¢ > 0. Since the action of the right
shift operators S(t) are irreducible on L?(0,00) we have M; can be identified with
B(L?(0,00)) and U(t) corresponds to the right shift S(¢) for all £ > 0. Since M is
a type I factor its commutant M7 is a type I factor which we identify as B(£;). In
this way we realize $; = £&; ® L%(0,00) and U;(t) as the right shift by ¢ on $; for
all t > 0. Similarly in the realization of §) as = R® L?(0, 00) we let M be the von
Neumann algebra generated by U(t). Since W intertwines the action of Uy (¢) and
Ui (t)* with U(t) and U(t)* we see that if ¢ is the natural isomorphism of M with
M; induced by identifying U(t) with U;(t) we see that (I @ ¢(A)W =W (I ® A)
for all A € M. Note WW* is in the commutant of M; so WW™ corresponds to a
projection in B(RK;). Let I be the subspace of K; corresponding to the range of
this projection. Now if we simply think of ¢ as the identity map by which we mean
we identify U;(t) = I ® S(t) and U(t) = I ® S(t) where in the first case I is the
unit of B(R;) and in the second case I is the unit of B(R) for ¢ > 0 then W is of
the form W = W; ® I where W7 is an isometry of K into & with range 91. This
completes the proof of the lemma. [
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Theorem 4.51. Suppose « is a unital CP-flow over & and o is the minimal
dilation of o to an E,-semigroup and suppose the relation between o and a? is
given by

a(A) = W*ad(WAWH W

for all A € B(9) (with H = K ® L*(0,0)) and t > 0 where W is an isometry from
H to H1 and WW™ is an increasing projection for a® and o is minimal over the
range of W. Suppose S(t) is a strongly continuous semigroup of contractions of $)
and Q) given by Q4 (A) = S(t)AS(t)* for A € B($) and t > 0 is a subordinate of .
Further assume () is trivially maximal. Then there is a unique strongly continuous
one parameter semigroup of isometries Sy (t) which intertwine of for each t > 0 and

S(t) = W*S, ()W

for all t > 0.

Conversely, if S1(t) is a strongly continuous one parameter semigroup of isome-
tries which intertwine af for each t > 0 then if S(t) is as defined in the equation
above we have S(t) is a strongly continuous one parameter semigroup of contrac-
tions so that Q0 defined by 4 (A) = S(t)AS(t)* for A € B(H) andt > 0 is a
subordinate of o which is trivially maximal.

Proof. Assume the hypothesis and notation for a and o is in effect. The second
paragraph in the statement of the theorem was established in the proof of Theorem
4.49.

Suppose the hypothesis of the first paragraph of the lemma is satisfied. Since 2
is an extremal subordinate of v which is trivially maximal it follows from the order
isomorphism of Theorem 3.5 that there is an extremal subordinate v of a? which
is trivially maximal and Q;(A) = Wy (WAW*)W for all A € B(H) and ¢t > 0.
From Lemma 4.48 we have ~ is of the form

71(A) = S1(t)S1(t)* o (A) = S (t) AS1(t)"

for all A € B($H1) and ¢t > 0 where S1(¢) is a strongly continuous one parameter
semigroup of isometries which intertwine o for each ¢ > 0. Note since v is uniquely
determined by {2 we have the semigroup Si(¢) is uniquely determined except for
a unitary phase factor (i.e., the semigroup S (t) = €**tS1(t) for t > 0 with s real
gives the same 7). We have

S(H)AS(H)* = Qu(A) = W*S, ()W AW*S, ()W

for all A € B(9) and t > 0. It follows that S(t) = e**W*S; (t)W. for all t > 0 where
s is real. Now replacing Si(t) with e?*tS;(t) we have S(t) = W*S1(t)W and we
have established the connection between S(t) and Si(t) as stated in the theorem.
U

Theorem 4.52. Suppose « is a unital CP-flow over & and o is the minimal
dilation of o to an E,-semigroup. Then o is completely spatial if and only if « is
the minimal C P-flow derived from 7# the normal spine of a.

Proof. Assume the notation of the theorem. As shown in the last paragraph of
section 4 of [P3] a spatial F,-semigroup is completely spatial if an only if it is least
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upper bound of its extremal subordinates (in [P3| these extremal subordinates
were called minimal compressions). From Theorem 3.5 we know there is an order
isomorphism from the subordinates of a® with the subordinates of «. Hence, a?
is completely spatial if and only if « is the least upper bound of its extremal
subordinates.

Let ~ be the least upper bound of the extremal subordinates of o and let ¢
be the normal spine of . Since the extremal subordinates of a are of the form
Be(A) = S(t)AS(t)* for t > 0 (see Lemma 4.48 and Theorem 4.51) with S(¢) a
strongly continuous one parameter semigroup and if § is such a CP-semigroup
then v > 3 is determined only by ¢ (see Theorems 4.42 and 4.46) it follows that ~
must be the minimal C'P-flow derived from ¢. To see this simply replace v by the
CP-flow derived from ¢ and we have a C'P-flow +" with v >+’ and 4/ is still an
upper bound for the extremal subordinates of a.. Then it follows that ¢ is the least
upper bound of all subordinates of 77 of the form 7(A) = CAC* for A € B(H) with
C an operator from §) to f. Since ¢ is an upper bound we have ¢ > 77 and since
¢ is a least upper bound we have 7% > ¢ so ¢ = 77. Hence, we have shown that
the least upper bound of the extremal subordinates of « is the minimal CP-flow
derived from 7#. Hence, « is the least upper bound of its extremal subordinate if
and only if a is the minimal C' P-flow derived from 7%#. [

As in Theorem 3.14 of the last section we characterize corners for C P-flows. We
begin with a definition.

Definition 4.53. Suppose a and § are C'P-flows over K1 and Rs, respectively.
We say v is a flow corner from « to [ if v is a one parameter family of o-weakly
continuous maps ~y; of B(H2) to B($H1) (with H; = K; @ L?(0,00) for i = 1,2) so

that
o ([All A12] _ [at(All) ’Yt(A12>}
A Ago i (A21)  Be(Asz2)

for t > 0 and A;; is a bounded linear operator from $; to §; is a C'P-flow over
A1 @ R where the translation operator U(t) on (&; @ R2) ® L?(0, 00) is given by

w0 =" v

for t > 0 where U; is the translation operator on §; = &; ® L?(0,00) for i = 1,2.

Theorem 4.54. Suppose « is a unital CP-flow over & and o is the minimal
dilation of a to an E,-semigroup and suppose the relation between o and a? is a
stated in Lemma 4.50. We assume the notation of the Lemma 4.50. Suppose C' is
an a? contractive local cocycle so that C(t)U,(t) = Uy(t) for t > 0. Then

1(A4) = W*C(t)af (WAWH )W

for t > 0 and A € B(9) is a flow corner from « to a. Conversely, if 7 is a flow
corner from « to a then there is a unique a® contractive local cocycle C so that

C(t)Uy(t) = Uy (t) and

1(A) = W*C(t)af (WAW )W
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for A € B($) for all t > 0.

Proof. Assume the notation and set up of the theorem. Suppose C is an a? con-

tractive local cocycle and C(t)Uy(t) = Ui (t) for ¢ > 0 and -y is given in terms of C
as stated in the theorem. Then we have

Y (AU (t) = W*C(t)ad(WAW WU (t) = W*C(t)ad(W AW UL ()W
= W*CH)UL()WAW*W = WU, ()W AW*W
= U)W WAW*W = U(t)A

for t > 0 and A € B(9). Hence, U(t) intertwines 7, so we see that © as defined in
terms of v in Definition 4.53 is a C'P-flow.

Conversely, suppose v is a flow corner from « to a. Since « is a corner from «
to a we have from Theorem 3.14 that there is a a? cocycle C so that

Y (A) = W*C(t)ad(WAW* )W

for t > 0 and A € B(H). Since v is flow corner from « to a we have U(t)A =
Y (A)U(t) for all t > 0 and A € B(H). And setting A = I in the equation yields
the result that

(DU (t) = WC()af (WWH)WU(t) = W*C(t)ad(WW*)Ur (t)W
_WcmmUWWW W*C(HUL (W = U(t)

for t > 0. Note S1(t) = C(t)U1(t) is a strongly continuous semigroup which inter-
twines a? and W*S; (t)W = S(t) = U(t) for t > 0, where we introduce S(t) = U(t)
to recall the notation of Theorem 4.51. Note if Q4(A) = S(t)AS(t)* for t > 0
and A € B($H) then Q is a subordinate of o and applying Theorem 4.51 we see
that Sp is uniquely determined from S = U so Si(t) = Ui (t) for t > 0. Hence,
C(t)Ur(t) =Uy(t) for t > 0. O

One ambiguity that occurs with flow corner comes with the definition of maximal
and hyper maximal flow corners. In the definition of maximal and hyper maximal
we speak of the subordinates ©’ of © (see Definition 3.7). The question is do
we means subordinates of © or do we mean flow subordinates of ® which are
subordinates which are also C'P-flows. The next lemma shows that the subordinates
O’ are necessarily C' P-flows. This means that for flow corners the two notions of
maximal or hyper maximal are equivalent.

Lemma 4.55. Suppose a and (3 are C' P-semigroups over $; = & ® L*(0,00) and
o = Ry ® L?(0,00), respectively. Let U;(t) be translation on $; fort > 0 and i =
1,2. Suppose 7 is a corner from « to (. with the property that Uy(t)A = ~(A)Us(t)
for all A € B($1,92) andt > 0 (so v is a flow corner). Then o and 3 are C'P-flows.

Proof. Assume the hypothesis and notation of the lemma. Let © and U be defined
as in the above Definition 4.53 and let ¥4(A) = U(¢)*©.(A)U(t) for t > 0 and
A € B(H1 @ H2). Then we find

] x+  xrx X+ Us(8)" Be(X ™ X)Us(¢)



CP-FLOWS 109

for all partial isometries X from $- to ;. Note the diagonal entries in the above
matrix are positive contractions since © is a C'P-semigroup. Since ©; is completely
positive the matrix on the right hand side of the above equation must also be
positive. One checks that this implies Uy (t)*a(E)U1(t) > E for all projections
E € 3($1) and for all t > 0. Since a4 is a contraction we have Uy (t)*a (1)U (t) = 1
and using additivity we find Uy (t)*au(A)U;(t) = A for all projections A € B(9H1)
and for all ¢ > 0. By linearity this extends to all A € B($;). Now fix t > 0 and
let p(A) = ay(A) for A € B($H1) and let V = Uy(t). Note V*¢p(A)V = A for all
A € B(91). Since ¢ is completely positive we have

B(A) =) SAS;

iel

for A € B($;) and the S; are linearly independent over ¢?(N). Since V*¢(A)V = A
for A € B(9H1) we have V*S; is a multiple of the unit operator for all i € I. Then
with a change of basis we can rewrite the sum for ¢ with a new set of S; where
V*S; = 0 except for ¢ = 1 and V*S; = I. Since V is an isometry and S; is a
contraction it follows that S; = V. Then we have

$(A) = VAV* + > S;AS;

iceJ

for A € B(9H1) where J is the index set I with the index i = 1 removed. Since
V*S; =0 for j € J we have VA = ¢(A)V for A € B($1). Hence, a is a CP-flow.
The same argument shows (3 is a C'P-flow. [

Theorem 4.56. Suppose o and 3 are unital CP-flows over & and Rs and o
and 3¢ are the minimal dilations of o and 3 to E,-semigroups. Suppose v is a
hyper maximal flow corner from « to 3. Then o and % are cocycle conjugate.
Conversely, if a? is a type II, and a® and 3% are cocycle conjugate then there is a
hyper maximal flow corner from « to (3.

Proof. The first statement of the theorem is just an application of Theorem 3.13.
Assume the hypothesis and notation of the last statement of the theorem. We
know from Lemma 4.50 that the relation between the C'P-flows and the dilated
FE,-semigroups is given by

a(A) = Wiad (WL AW W, and  B,(B) = Wy BL(WoBW3)Ws

fort > 0 and Wy, W5, , A and B are operators on the appropriate Hilbert spaces with
the properties described in Lemma 4.50. Now o and 3¢ are cocycle conjugate and
mapping that establishes the cocycle conjugacy maps one parameter semigroups
of intertwining isometries for a? onto one parameter semigroups of intertwining
isometries for 4¢. Since a? and B¢ are type II, there is only one semigroup of
intertwining isometries up to multiplication by a phase factor. This means that the
corner which establishes the cocycle conjugacy for a® and 3¢ is after multiplication
by a phase factor e**! a flow corner and taking things back to the original C'P-
semigroups this gives us a hyper maximal flow corner from a to 5. [
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An important question in the theory of C' P-flows is whether two C'P-flows dilate
to cocycle conjugate E,-semigroups if and only if there is a hyper maximal flow
corner from one to the other. The previous theorem shows the implication one way
and both ways in the type II, case. It would be very nice to know if the implication
goes both ways in the type II,, case with n > 0. If follows from the papers of
Alevras ([Al1],[Al2]) this is a question of whether there a unitary local cocycles for
and F,-semigroup maps that maps one semigroup of intertwining isometries onto
any other semigroup of intertwining isometries.

In the last section we defined (n x m)-matrices of corners. There is the corre-
sponding notion of flow corners.

Definition 4.57. Suppose « is a CP-flow over K and n is positive integer. We
say © is a positive (n X n)-matrix of flow corners from « to « if © is a matrix
with coefficients #() where the (%) are strongly continuous semigroups of B($)
for i, =1,---,n so that © is a C'P-flow over (&} ,R) and the diagonal entries of
© are subordinates of a.

Definition 4.58. Suppose a¢ is CP-flow over £ which is also a F,-semigroup of
B(H) with § = 8 ® L2(0,00) and n is a positive integer. We say C is a positive
(n x n)-matrix of a? contractive local flow cocycles if the coefficients C;; of C are
contractive local cocycles for a? for i,j = 1,--- ,n which fix the translations U (t)
meaning C;;(t)U(t) = U(t) and the matrix C(¢) whose entries are C;;(¢) is positive
for all t > 0.

We remark if C' is a contractive local flow cocycle then C* is also a contractive
local flow cocycle. This is seen as follows. Suppose C'is a contractive local cocycle
for a¢ and C(t)U(t) = U(t) for t > 0. Then we have

(COUER) -U@)(CH)UE) -U®)
=U@)"CH)Ct)'Ut)-U@)*Ct)Ut)-U@)"Ct)"U(t)+1
=U)"CH)Ct)Ut)—I<U@®)'UEt)—I1=0

Since the above expression is positive it must be zero so C(¢)*U(t) = U(t) for t > 0.

Theorem 4.59. Suppose « is a unital C P-flow over £ and a? is its dilation to an
E,-semigroup a? of B($1). The relation between o and o is given by

o (A) = W*ad(WAW* )W
as described in Lemma 4.50.
Suppose n is a positive integer and © is positive (n X n)-matrix of flow corners

from « to a. Then there is a unique positive (n x n)-matrix C of contractive local
flow cocycles C;; for a fori,j=1,---,n so that

657 (A) = W*Ci; () a (W AW )W
for all A € B($) and t > 0. Conversely, if C' is a positive (n X n)-matrix of

contractive local flow cocycles for a® then the matrix © whose coefficients (%) are
give above is a positive (n x n)-matrix of flow corners from « to a.

Proof. Once one sees that there is a one to one mapping from flow corners from
a to a and flow cocycles for a? as was established in Theorem 4.54 the theorem
follows from Theorem 3.16. [
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Theorem 4.60. Suppose « is a unital C P-flow over & and a? is its dilation to
an E,-semigroup and the relation between o and o is as given in the previous
theorem. Suppose 6 is a flow corner from « to « and C' is the local contractive flow
cocycle for a? associated with §. Then C(t) is an isometry for all t > 0 if and only
if 0 is maximal and C(t) is unitary for all t > 0 if and only if 0 is hyper maximal.

Proof. The proof is the same as the proof of Corollary 3.17 taking into Theorem
4.54 0O

We think the next theorem is a surprising result. It is a basically a corollary of
Theorem 4.15.

Theorem 4.61. Suppose « is a CP-flow over K and U (t) is translation on § =
A® L*(0,00). Suppose v is a corner from « to « so that

Ut)A = ey (A)U(1)

fort >0 and A € B(9) where z is a complex number with non negative real part.
Let 3; = e*'~y; for t > 0. Then 3 is a flow corner from « to «.

Proof. Assume the hypothesis and notation of the theorem. Suppose a? the dilation
of o to an E,-semigroup and the relation between o and o is as stated in Lemma
4.50. We assume all the notation of the statement of Lemma 4.50. From Theorem
3.16 there is a local contractive a cocycle so that

1(A) = W*C(t)af (WAW )W

for all t > 0 and A € B($). From Lemma 4.50 we have

for all ¢ > 0. One checks that S(t) = e**C(t)U;(t) is a one parameter semigroup that
intertwines a¢ for t > 0. Since S(t) intertwines ¢ we have S(t)*S(t) commutes with
B($H1) so S(t)*S(t) is a multiple of the unit for ¢ > 0. Then S(t) = 5V (¢) for t > 0
where V is semigroup of intertwining isometries for a?. Since U(t) = W*S(t)W
it follows from Theorem 4.51 that S(t) = Uj(t) for ¢ > 0. Hence, C(t)Ui(t) =
e *tU,(t) for t > 0. Now let D(t) = e2**C(t)*C(t) for t > 0 where z is the real
part of z. and let ©,(A) = D(t)af(A) for A € B($H1). One sees O is a CP,-flow
with growth bound x = 2x. Then by Theorem 4.15 we have © is a C'P-flow so
|D(t)|| <1 for all ¢ > 0. Hence, e**C(t) is a contractive flow cocycle and 3 is a flow
corner from a to . [

For the case of type II, C'P-flows this theorem is very useful in calculating the
local cocycles for the dilated FE,-semigroup. It says they can all be obtained by
analyzing flow corners.
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Next we will present some results which show that the relation between a C' P-flow
and its normal spine 77 is not as simple as one would expect. Since 7# determines
WZ% for t > s for a generalized boundary representation one gets the impression that
the limit 7# of a boundary representation 7# as s — 0+ determines the C P-flow.
The next theorem shows the situation is quite delicate. This theorem shows that if 7
is a completely positive contraction of B($) into B(RK) and A = lim,, oo (7-A)™ (1)
is not zero then there are C'P-flows over R derived from 7 other than the minimal
one constructed in Theorem 4.26. This theorem is of importance because it shows
that the boundary representation does not completely specify the C'P-flow. The
generalized boundary representation contains more information than the boundary
representation.

Theorem 4.62. Suppose 7 is a completely positive contraction from B($)) to
B(R). Note (- A)"(I) = (m-A)"(7(A)) < (w-A)"(I) so (- A)™(I) is a decreasing
sequence of positive operators which then must converge strongly to a limit A as
n — oo. Suppose A is not zero. Suppose v is an positive element of B($)). with
v(I) <1 and

wo = v+ 7(A(W)) + 7(A(F(A()))) + - --

B(H)(I — A)z. Let p — w(p) be

[N

where the sum converges as a weight on (I — A)
the mapping given by

_a) ) AR 4 A AR (A
“l0) = iyt Fe)+ FAGEE) +FAGEAGE) +

for all p € B(R),.. Then the mapping p — w(p) is a boundary weight mapping of a
CP-flow a and « is derived from 7. Furthermore, if v(I) =1 then « is unital.

Proof. Assume the hypothesis and notation of the theorem apply. Since A is not
zero we have ||A|| > 0. Note 7(A(A)) = A. We have (7 - A)"(||A|[I —A) = ||A]| (7 -
AN)"(I)—A — (||A]| —1)A and since the limit is positive we have ||A|| > 1 and since
7 and A are contractions we have [[Al| < 1 so we have [|A|| = 1. The arguments
of Theorem 4.26 show the series for w(p) and w, converge as weights. Suppose
A € (0,1) and let ¢* be the mapping of B(§) into B(K) given by

oMp) = Ait(p) + (1 = Np(A)v

for p € B(R),. It is clear that ¢* is completely positive so to check that ¢* is a
contraction we need only check ¢* on the unit. One easily checks that for positive
p € B(R). we have ¢*(p)(I) < p(I) and since v(I) < 1 we have v(A(A)) < 1 so
|A¢*| < 1. Hence, the C'P-flow derived from ¢ is unique and its boundary weight
map is given by

(p) = 0N (p) + 6 AN (p) + PPAGMAG N (p) + -
for p € B(R),.. Computing the series which converges in norm we find

Ap) = i M)+ AR (E() + X FAFAFN) +-
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for p € B(R), where
W) = v+ M (AW)) + MaAGFEARW))) + -

Following the argument of Theorem 4.26 we can take the limit as A — 1— obtain
the mapping p — w(p) given in the statement of the theorem and we find the limit
inequality (4.134) of Theorem 4.20 is satisfied. Hence, the mapping p — w(p) is
the boundary weight map of a C'P-flow a where now we have set A = 1. Since
A =7(A(A)) we have

~

w(p— A7 (p))) = p(A — m(A(A)))wo + T(p) = 7 (p)

so from Theorem 4.24 we have that « is derived from 7.
Note that if v(I) =1 and p € B(R). is positive we have

(o)~ A) = p@)% oI = A) = p(D)

so in this case « is unital. O

We show that the previous theorem is not vacuous in that there are examples
of representations m where A is not zero. Let K be the infinite tensor product of
L?(0,0) so & = ®2,L?(0,00) with the reference vector (see [vN] for details of
infinite tensor products of Hilbert spaces)

_1y2 _ 152
F, = \e 2>‘1$®)\26 2>‘2$®...

and where \; > 0 for ¢ > 0 and
. -2 |/\ - )‘n+1|
ng_l A~ < oo and g /\2 a2

We note both these conditions are satisfied for \,, = n and the second condition is
not satisfied for \,, = 2". Let S be the unitary mapping of $ = & ® L?(0, 00) into
R given by

S(ALi®Rf20- )N =hQfi@fo®---

and let m(A) = SAS* and A = e " ®e * ® --- where e”” is shorthand for the
operation of multiplication by e™® on L?(0,00). The first sum condition insures
that A is not zero and the second condition insures that S is well defined. One
checks that

(m-A)"I)=e"Re"® - Re"®@I®I®---

where there are n factors of e=* and (7 - A)"(I) — A as n — oc.
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