MATH 350: HOMEWORK \#5

DUE IN LECTURE WEDNESDAY, OCT. 29, 2014.

1. Primitive roots and their applications

1. Suppose that p is an odd prime and c is a positive integer. Prove that if b is an integer which is congruent to $1 \bmod p$, then an odd power of b is congruent to $1 \bmod p^{c}$. (Hint: Show that the odd power can be taken to be a power of p.)
2. Suppose c is a positive integer and $n=p^{c}$ for some odd prime p . Using the preceding problem and the fact that n has a primitive root, show that an integer d which is prime to p is a square $\bmod n=p^{c}$ if an only if d is a square $\bmod p$.
3. Do problem 13 of section 9.3 of Rosen's book. You can use what we showed in class about which integers are primitive roots.
4. Do problem 2 of section 9.4 of Rosen's book.
5. Do problem 2 of section 9.5 of Rosen's book.

2. Beginning of quadratic reciprocity

6. Do problem 5 of section 11.1 of Rosen's book.
7. Show that if p is an odd prime, then the product of all the non-zero quadratic residues mod p is congruent to $1 \bmod p$ if $p \equiv 3 \bmod 4$ and is congruent to $-1 \bmod p$ if $p \equiv 1 \bmod 4$. (Hint: Let x be a primitive root, and show that the non-zero quadratic residues are the set $\left\{x^{2}, x^{4}, \ldots, x^{p-1}\right\}$ where $x^{p-1} \equiv 1 \bmod p$.)
8. Suppose p is a prime and that $p \equiv 3 \bmod 4$. We showed in class that -1 is not a square $\bmod p$. Show that for all non-zero residue classes $y \bmod p$, either y is a quadratic residue or $-y$ is a quadratic residue. Use this and problem \#7 above to do problem 9 of section 11.1 of Rosen's book.
