MATH 502, PROBLEM SET 4.

DUE IN MATEI'S MAILBOX BY NOON ON DEC. 2

1. Product Rings

I will assume in what follows that all rings R have a multiplicative identity 1_{R}. Suppose J is a non-empty set and that $\left\{R_{i}\right\}_{i \in J}$ is a collection of rings indexed by J. The underlying set of the product ring $R=\prod_{i \in J} R_{i}$ is the set of all functions $f: \rightarrow \cup_{i \in J} R_{i}$ such that $f(i) \in R_{i}$ for all $i \in J$. (One can think of f as corresponding to a vector whose i-th component is $f(i) \in R_{i}$). The ring operations + and \cdot on R are those which result from adding and multiplying functions on J using the addition and multiplication of the R_{i} 's.
1.1. Describe the unit group R^{*} of R using the unit groups of the rings R_{i}.
1.2. An element a of a ring R is a zero divisor if a is not 0 and there is a non-zero b in R such that either $a b=0$ or $b a=0$. Suppose each of the R_{i} has a non-zero element. Under what conditions on J and the R_{i} associated to $i \in J$ does R have no zero divisors?
1.3. An element b of a ring A is an idempotent if $b^{2}=b$. Show that if J_{0} is a subset of J, then there is an idempotent $b \in R$ defined by $b(j)=1_{R_{i}}$ if $j \in J_{0}$ and $b(j)=0$ if $j \notin J_{0}$. Prove that these are the only idempotents if each R_{i} has no zero-divisors.
1.4. Suppose J is finite. Show that every left ideal I of R has the form $\prod_{i \in J} I_{i}$, where I_{i} is a left ideal of I_{i} and $f \in R$ is in $\prod_{i \in J} I_{i}$ exactly when $f(i) \in I_{i}$ for all $i \in R$. (Hint: Use the idempotents b of problem $\# 3$ which are associated to subsets J_{0} which have a single element.)
1.5. A left ideal \mathcal{P} of a ring A is proper if $\mathcal{P} \neq A$. Call \mathcal{P} a maximal left ideal of it is proper and there is no proper left ideal \mathcal{Q} of A which contains \mathcal{P} but is not equal to \mathcal{P}. Show that if J is finite, then the ideals I in problem \# 1.4 which are maximal are those for which there is some $i \in J$ for which I_{i} is a maximal left ideal in R_{i} and $I_{j}=R_{j}$ for $j \neq J$.
1.6. An ideal \mathcal{P} in a commutative ring A is a prime ideal if it is a proper ideal with the following property. If $a, b \in A$ and $a \cdot b \in \mathcal{P}$ then either $a \in \mathcal{P}$ or $b \in \mathcal{P}$. Show that if all the R_{i} are commutative and J is finite, then the prime ideals I of R are those for which there is some $i \in J$ such that I_{i} is a prime ideal of R_{i} and $I_{j}=R_{j}$ for $i \neq j \in J$. Show that this leads to identifying the set $\operatorname{Spec}(R)$ of prime ideals of R with the disjoint union of the sets $\operatorname{Spec}\left(R_{i}\right)$ as i ranges over J.

2. Prime ideals, nilpotent elements and Zorn's Lemma

In these problems, R is a commutative ring which is not the zero ring. An element α of R is nilpotent if $\alpha^{n}=0$ for some integer $n \geq 1$.
2.1. Show that the set of nilpotent elements of R forms an ideal $\mathcal{N}(R)$, which is called the nilradical of R.
Hint: You can use without proof the binomial theorem, which says that

$$
(\alpha+\beta)^{n}=\sum_{i=0}^{n}\binom{n}{i} \alpha^{i} \beta^{n-i}
$$

for $\alpha, \beta \in R$.
2.2. For which integers $m>0$ is $\mathcal{N}(R)=\{0\}$ when R is the ring \mathbb{Z} / m ?
2.3. Show that for all commutative rings $R, \mathcal{N}(R)$ is contained in every prime ideal \mathcal{P} of R.
2.4. Suppose that $f \in R$ is not nilpotent. Use Zorn's Lemma to show that there is a prime ideal \mathcal{P} of R which does not contain f.
(Hints: Let \mathcal{S} be the set of all ideals I of R which do not contain any element of the set $\left\{f^{i}\right\}_{i=1}^{\infty}$. Show that \mathcal{S} is not empty using that 0 is not in $\left\{f^{i}\right\}_{i=1}^{\infty}$. Then show that the hypotheses of Zorn's Lemma are satisfied by \mathcal{S}. Finally, show that a maximal element \mathcal{P} of S has to be a prime ideal. For this step, observe that if $\alpha \notin \mathcal{P}$ then the ideal $R \alpha+\mathcal{P}$ generated by α and \mathcal{P} is strictly bigger than \mathcal{P}, so can't be in \mathcal{S}. Therefore $f^{i}=r \alpha+m$ for some $i \geq 0$ for some $r \in R$ and $m \in \mathcal{P}$. Similarly, if $\beta \notin \mathcal{P}$ then $f^{j}=s \alpha+m^{\prime}$ for some $j \geq 1$ and some $s \in R$ and $m^{\prime} \in \mathcal{P}$. Now consider $f^{i} \cdot f^{j}=f^{i+j}$ to show $\alpha \cdot \beta \notin \mathcal{P}$.)
2.5. Use problems 2.3 and 2.4 to show that $\mathcal{N}(R)=\cap_{\mathcal{P}} \mathcal{P}$ where the intersection is over all the prime ideals \mathcal{P} of \mathcal{R}.

3. Spectra of Rings

In these problems, R is a commutative ring. Recall that $\operatorname{Spec}(R)$ is the set of prime ideal \mathcal{P} of R, with the following topology. The closed subsets of $\operatorname{Spec}(R)$ are those of the form

$$
V(\mathcal{A})=\{\mathcal{P} \in \operatorname{Spec}(R): \mathcal{A} \subset \mathcal{P}\}
$$

as \mathcal{A} ranges over all the ideal of R.
3.1. Suppose $\mathcal{Q} \in \operatorname{Spec}(R)$. The closure $\overline{\mathcal{Q}}$ of \mathcal{Q} is defined to be the intersection of all closed subsets of $\operatorname{Spec}(R)$ which contain \mathcal{Q}. The reduction homomorphism $r: R \rightarrow R / \mathcal{Q}$ is the ring homomorphism defined by $r(t)=t+\mathcal{Q}$ for all $t \in R$. Show that there is a bijection

$$
\overline{\mathcal{Q}} \rightarrow \operatorname{Spec}(R / \mathcal{Q})
$$

which sends an ideal \mathcal{P} to the ideal $r(\mathcal{P})$ of R / \mathcal{Q}.
Hint: First show $\overline{\mathcal{Q}}=V(\mathcal{Q})$.
3.2. The induced topology of $\overline{\mathcal{Q}}$ is the one whose closed sets have the form $V(\mathcal{A}) \cap \overline{\mathcal{Q}}$ for some ideal \mathcal{A} of R. Show that the bijection in problem $\# 6$ identifies the closed subsets of the induced topology of $\overline{\mathcal{Q}}$ with the closed subsets of $\operatorname{Spec}(R / \mathcal{Q})$. One says that the bijection in problem $\# 6$ is a homeomorphism of the topological spaces $\overline{\mathcal{Q}}$ and $\operatorname{Spec}(R / \mathcal{Q})$.
3.3. In class we will discuss the case in which $R=\mathbb{C}[x, y]$ for some indeterminates x and y. Show that $\mathcal{Q}=R \cdot x$ is a prime ideal, and that R / \mathcal{Q} is isomorphic to $\mathbb{C}[y]$. Using the fact that every polynomial in $\mathbb{C}[y]$ factors into a product of linear factors and the two previous problems, describe explicitly the closure of \mathcal{Q} in $\operatorname{Spec}(R)$.

