MATH 502: HOMEWORK \#5

DUE AT THE FINAL EXAM

1. Localization

In these problems, R is a non-zero commutative ring and S is a multiplicatively closed subset of R which contains 1. Recall that the localization $S^{-1} R$ of R at S is the set of all formal quotients $[r / s]$ in which $r \in R, s \in S$ and we say that $[r / s]=\left[r^{\prime} / s^{\prime}\right]$ if there is an $s^{\prime \prime} \in s$ such that $s^{\prime \prime}\left(r s^{\prime}-s r^{\prime}\right)=0$. These quotients are added and multiplied by the usual rules for adding and multiplying fractions. There is a ring homomorphism $\pi: R \rightarrow S^{-1} R$ defined by $\pi(r)=[r / 1]$. The additive identity of $S^{-1} R$ is [0/1].

1. Corollary 37 of $\S 15.4$ of the Dummit and Foote text shows that the kernel π is the ideal of all $r \in R$ such that $s^{\prime \prime} r=0$ for some $r \in R$. (This is clear from the definition of $[r / 1]=[0 / 1]$.) Use this to show that π is an isomorphism if and only if S is contained in the multiplicative group R^{*} of units of R.
Hint: The issue is surjectivity. Consider when $[1 / s] \in S^{-1} R$ is in the image of π.
2. Given an example in which R is a finite ring and π is not an isomorphism. Then show that if R is finite, π is always surjective.
Hint: If R is finite and $s \in S$, show $s^{m}=s^{m^{\prime}}$ for some integers $0<m<m^{\prime}$.

2. Chinese Remainder Theorem

3. Let R be the ring $\mathbb{Q}[x]$ of polynomials with rational coefficients in one variable x. Solve for $f(x) \in \mathbb{Q}[x]$ the system of congruences

$$
\begin{aligned}
& f(x) \equiv 1 \\
& \\
& f(x) \equiv 2
\end{aligned} \quad \bmod \quad \mathbb{Q}[x]\left(x^{2}+1\right)
$$

or explain why there is no solution.

3. Euclidean rings

Suppose R is an integral domain, i.e. a commutative ring without zero divisors. A norm on R is a function $N: R \rightarrow \mathbb{Z}_{\geq 0}$ to the non-negative integers. One says that R is a Euclidean domain if there is a norm for which the following is true. For all $a, b \in R$ with $b \neq 0$, there are $q, r \in R$ such that

$$
a=q b+r \quad \text { and either } \quad r=0 \quad \text { or } \quad N(r)<N(b) .
$$

In the following problems, suppose N is a Euclidean norm on R.
4. Let m be a minimal element in the image $N(R)$ of R under N. Show that every non-zero element $a \in R$ for which $N(a)=m$ must be a unit. Deduce from this that if there a non-zero element $a \in R$ with $N(a)=0$ then a is a unit.
5. When $R=(\mathbb{Z} / 2)[x]$, find the g.c.d. of $f(x)=x^{4}-x$ and $g(x)=\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)$.

4. Extra Credit Problems.

A. Show that the subring $R_{-3}=\mathbf{Z}+\mathbf{Z}\left(\frac{1+\sqrt{-3}}{2}\right)$ of the complex numbers is a Euclidean ring.
B. Suppose A_{1} and A_{2} are ideals in a commutative ring R which are not necessarily co-maximal. Show that there is an exact sequence of additive groups

$$
0 \longrightarrow A_{1} \cap A_{2} \longrightarrow R \longrightarrow R / A_{1} \bigoplus R / A_{2} \xrightarrow{\mu} R /\left(A_{1}+A_{2}\right) \longrightarrow 0
$$

C. Suppose $R=\mathbb{Z}$. Can you find a similar sequence involving more terms when one considers three ideals A_{1}, A_{2} and A_{3} of R, which need not be comaximal? What happens when R is allowed to be an arbitrary principal ideal domain?.

