MATH 502: HOMEWORK #5

DUE AT THE FINAL EXAM

1. LOCALIZATION

In these problems, R is a non-zero commutative ring and S is a multiplicatively closed subset of R which contains 1. Recall that the localization $S^{-1}R$ of R at S is the set of all formal quotients [r/s] in which $r \in R$, $s \in S$ and we say that [r/s] = [r'/s'] if there is an $s'' \in s$ such that s''(rs' - sr') = 0. These quotients are added and multiplied by the usual rules for adding and multiplying fractions. There is a ring homomorphism $\pi : R \to S^{-1}R$ defined by $\pi(r) = [r/1]$. The additive identity of $S^{-1}R$ is [0/1].

1. Corollary 37 of §15.4 of the Dummit and Foote text shows that the kernel π is the ideal of all $r \in R$ such that s''r = 0 for some $r \in R$. (This is clear from the definition of [r/1] = [0/1].) Use this to show that π is an isomorphism if and only if S is contained in the multiplicative group R^* of units of R.

Hint: The issue is surjectivity. Consider when $[1/s] \in S^{-1}R$ is in the image of π .

2. Given an example in which R is a finite ring and π is not an isomorphism. Then show that if R is finite, π is always surjective.

Hint: If R is finite and $s \in S$, show $s^m = s^{m'}$ for some integers 0 < m < m'.

2. Chinese Remainder Theorem

3. Let R be the ring $\mathbb{Q}[x]$ of polynomials with rational coefficients in one variable x. Solve for $f(x) \in \mathbb{Q}[x]$ the system of congruences

$$f(x) \equiv 1 \mod \mathbb{Q}[x](x^2 + 1)$$
$$f(x) \equiv 2 \mod \mathbb{Q}[x](x^3 + 2)$$

or explain why there is no solution.

3. EUCLIDEAN RINGS

Suppose R is an integral domain, i.e. a commutative ring without zero divisors. A norm on R is a function $N: R \to \mathbb{Z}_{\geq 0}$ to the non-negative integers. One says that R is a Euclidean domain if there is a norm for which the following is true. For all $a, b \in R$ with $b \neq 0$, there are $q, r \in R$ such that

$$a = qb + r$$
 and either $r = 0$ or $N(r) < N(b)$.

In the following problems, suppose N is a Euclidean norm on R.

- 4. Let m be a minimal element in the image N(R) of R under N. Show that every non-zero element $a \in R$ for which N(a) = m must be a unit. Deduce from this that if there a non-zero element $a \in R$ with N(a) = 0 then a is a unit.
- 5. When $R = (\mathbb{Z}/2)[x]$, find the g.c.d. of $f(x) = x^4 x$ and $g(x) = (x^2 + x + 1)(x^3 + x + 1)$.

4. Extra Credit Problems.

- **A.** Show that the subring $R_{-3} = \mathbf{Z} + \mathbf{Z} \left(\frac{1+\sqrt{-3}}{2}\right)$ of the complex numbers is a Euclidean ring.
- **B.** Suppose A_1 and A_2 are ideals in a commutative ring R which are not necessarily co-maximal. Show that there is an exact sequence of additive groups

$$0 \longrightarrow A_1 \cap A_2 \longrightarrow R \longrightarrow R/A_1 \bigoplus R/A_2 \stackrel{\mu}{\longrightarrow} R/(A_1 + A_2) \longrightarrow 0$$

C. Suppose $R = \mathbb{Z}$. Can you find a similar sequence involving more terms when one considers three ideals A_1 , A_2 and A_3 of R, which need not be comaximal? What happens when R is allowed to be an arbitrary principal ideal domain?.